
Beyond the Model Specification Problem: Model and Parameter Averaging Using 

Bayesian Techniques 

 

 

 

Henry L. Bryant and George C. Davis 

Selected Paper  
American Agricultural Economics Association Annual Meeting 

Chicago, IL, August 5 – August 8, 2001 
 

Abstract 

The model specification problem is perhaps the Achilles heel of applied econometrics. 
Rather than test down to a single model as is usually done, we estimate 72 different 
demand systems and use Bayesian averaging procedures over all 72 systems to generate 
meta estimates of the parameters (e.g., elasticities) of interest. 
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Beyond the Model Specification Problem:  Model and Parameter Averaging Using 

Bayesian Techniques 

 In its infancy, the promise of econometrics was that it would allow economists to 

uncover permanent laws with fixed coefficients and place economics on an equal footing 

with physics (Morgan).  In its childhood, it became clear that this was an overly 

optimistic hope because of, what is now called, the model specification problem 

(Epstein).  The model specification problem simply stated is the difficult problem of 

selecting the form of the equations to be estimated and the variables to go in the 

equations.  Though suggestive, economic theory is usually silent on how to fully specify 

an empirical model in terms of the functional form and all the explanatory variables.  

 The most common approach to the model specification problem has been what Pagan 

labels the ‘test-test-test’ approach, which is a general catch all name for the well known 

‘general-to-specific’ approach (Hendry) and the ‘probability reduction’ approach (Spanos 

1999, McGuirk et al. AJAE 1995).  In this approach the researcher begins with some 

general model and then starts testing the underlying assumptions of the model.  If some 

of these assumptions are violated then the model is respecified and tested again to see if 

the violations have been eliminated.  The modeler continues this process until a single 

‘statistically adequate’ model is obtained.  Though preferred to no model specification 

testing, there are three limitations of this approach.  One, the functional form is usually 

assumed to be the same throughout the search process.  Two, the single final model is 

conditional on the results of many tests so the overall type I error is hard to access. Three, 

if there were a particular parameter of interest one would like an idea of its robustness or 

fragility across different models. 



 An alternative approach that overcomes most of these classical limitations is a 

Bayesian model averaging approach.  Within a Bayesian context, model uncertainty is 

conceptually easily handled as it becomes just another unknown in the prior and posterior 

density functions.  Within this frame density functions can be formed over different 

models and consequently model results can be formally combined or averaged based on 

the model’s density functions, hence the term Bayesian model averaging.  Bayesian 

model averaging is not a new concept but until the last decade the computational 

components of Bayesian analysis have been rather taxing on its actual implementation.  

However, within the last few years Monte Carlo (MC) methods have been exploited to 

approximate the needed integrals in Bayesian analysis (Dorfman; Geweke 1989).  With 

MC methods it is now easier to implement Bayesian approaches to standard statistical 

problems such as the model specification problem and Bayesian model averaging has 

recently received a great deal of attention in the econometrics and statistics literature 

(e.g., George and McCulloch; Geweke (1999); Fernandez, Ley, and Steel; Hoeting, 

Madigan, Raferty, and Volinsky; Moulton; Raferty, Madigan, and Volinsky; Raferty, 

Madigan and Hoeting). 

 In the Bayesian model averaging approach, multiple nested or non-nested models are 

estimated.  The models and/or specific parameters are then averaged over models using a 

weighting scheme based on the posterior ratios.  The advantages to this approach are that 

(i) no single model is selected as ‘the true model’; (ii) because the weighting is based on 

posterior odds, the fits of the different models are taken into account; (iii) the averaged 

parameter estimate is robust to alternative types of model specification issues, especially 

functional form and the inclusions and exclusions of certain variables. 



 In this paper, we summarize the Bayesian approach to the model selection problem 

and averaging procedure. We then apply the techniques to the study of meat demand in 

the U.S. because it has been so intensely studied and hotly debated in the literature. 

 

A Bayesian Approach to the Model Selection Problem 

 Consider the general estimation problem faced by the empirically oriented economist.  

An economic theory suggests some functional relationship between variables, 
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where y is the variable or phenomenon the theory seeks to explain, the k variables 

denoted by x are identified as being the determinants of y, and f : ℜ k→ ℜ .  Now most 

theories, if not all, lack the required specificity to estimate (1).  The two major 

shortcomings are (i) the functional form for f is not specified beyond stating that it is 

within a class of functions with certain properties (e.g., signs on partial derivatives, 

restrictions on functions of the partial derivatives, etc.); (ii) the k variables are not 

uniquely identified beyond the statement that some are expected to be more important 

than others.  Thus the applied economist is forced to select from a functional form to 

represent f and the variables to be included in the function.  This is the model selection 

problem.   

 A model Mm can be formally defined as a pair{fi , Xj}, where fi∈ F, Xj ⊂  X, and F is a 

class of functional forms and X is a matrix of all possible explanatory variables.  The m 

index refers to a unique pair since the same variables can be used in different functional 

forms and so M = {M1, M2,…,Ms} denotes the set of all possible models to be considered.  

Now given a particular model Mm and observed data D, following standard Bayesian 



procedures the posterior distribution for the parameter vector for that model ωm can be 

written as 

(2) ),|()|(),|( mmmmmm MDpMpMDp ωω∝ω  

where p(ωm | Mm) is the conditional prior density for ωm and p(D | ωm, Mm) is the 

conditional density for the data, which is proportional to the likelihood function.1 The 

marginal likelihood for model Mm is then defined as 

(3) mmmmmm dMDpMpMDp ωωω= ∫ ),|()|()|( . 

Following Zellner (1971), the posterior odds ratio Krs favoring a model m over a model r 

is  
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where the first part of this expression is the prior odds ratio and the second part the Bayes 

factor.  For s possible models, the posterior probability of a particular model m is 
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From the Bayesian perspective, if a single model had to be chosen then it would be the 

model with the largest posterior probability.  Of course there is always a danger in 

choosing one out of many possible models but fortunately within the Bayesian 

framework there is enough information available to coherently and formally average over 

models. 

 Suppose there is some quantity of interest, say η, common to all models but that can 

differ across models which is a function of the parameters, i.e., ηm = h(ωm).  This quantity 



may be something as simple as an elasticity estimate or something more complicated 

such as a forecast. In the present setting, we concentrate on estimating elasticities. By the 

rules of probabilities, then the expected value of ε with a discrete set of models can be 

denoted as 

  

)|(],|)([),|()6(
1

∑ ϖ=η
=

r

i
iiii DMPMDhEMDE  

                              
,ˆ

)|(ˆ
1

η=

∑ η=
=

r

i
ii DMP

 

where iη̂ is the estimate of the expected value for η from model Mi and η̂ is the overall 

estimate for η.  Note then that the estimate of the η is nothing more than a weighted 

average of the individual estimates across models with the weights being the probability 

that a particular model is consistent with the data based on the posterior odds ratio. 

Furthermore, from the definition of a variance, an estimate of the variance of η̂  is  
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Because the elasticity estimate given in (6) is based on all models under consideration, it 

may be considered robust to the uncertainty about the underlying model.  Consequently, 

an elasticity such as (6) may be considered a meta-elasticity. 

 

                                                                                                                                                 
1 Throughout p(⋅) denotes a density function and P(⋅) a cummulative distribution function. 



An Application to Meat Demand in the United States 

 Many recent studies have modeled retail demand for meat in the United States.  The 

researchers conducting these studies have identified a myriad of factors that may be 

important determinants of meat demand.  Some examples include branded advertising 

(Brester and Schroder 1995), information on the health impacts of cholesterol (Kinnucan 

et al. 1997), and increasing participation of women in the labor force (McGuirk et al. 

1995).  But the debates surrounding meat demand always come back to the same 

fundamental issue: the model specification problem.  While there has been much 

discussion of the model specification problem in meat demand (e.g., Alston and Chalfant 

AJAE 1993; Davis AJAE 1997; McGuirk et. al JARE 1995; Kinnucan, et al. AJAE 1997) 

all of this analysis has been done within a classical framework. In the classical statistical 

framework, decisions regarding model specification are made on an “either-or” basis.  

After trying various possibilities and conducting various misspecification tests on each of 

these possible models, the researcher selects the single model believed to be most 

appropriate.  Conducting multiple misspecification tests, however, compounds the 

nominal significance levels that were used in the individual tests.  That is to say, the 

researcher who employs more than a very small number of such tests cannot be very 

confident in a concluding there is no model misspecification.  This suggests that analysis 

of meat demand could benefit from a methodology that explicitly acknowledges that no 

single model can be confidently declared to be the “true” model.  The Bayesian 

framework provides such a methodology.    

 Following the literature, we consider conditional demand systems consisting of the 

demand for beef, chicken, pork, and fish. As indicated, the model space is determined by 



the functional forms considered and the variables within each functional form.  At this 

point, two of the most popular demand systems are considered: the Rotterdam (RDAM) 

and First differenced AIDS (FAIDS). 

 Neves(1994) has demonstrated how these demand systems are closely related.  An 

important component in connecting these demand systems is the total differential of the 

expenditure share wi 

(8) dwi = wi d ln qi + wi d ln pi – wi d ln E  

with qi, pi, and E representing the per capita quantity and price on the ith good and E is 

the total expenditure on beef, chicken, pork, and fish.  The Rotterdam model has the form 

(9) wi d ln qi = µi(d ln E – d ln P) + ∑ j πij d ln pj   i = 1, 2, 3, 4, 

where µi is the constant marginal budget share for good i, πij is the price parameter, and P 

is the Divisia price index.  Defining the parameters, bi = µi – wi and γij = πij – wiwj + wiδij, 

δij being the Kronecker delta, the first difference version of the AIDS model using (8) and 

(9) is 

(10) wi d ln qi = bi(d ln E – d ln P) + ∑ j γij d ln pj  + wi(d ln E – d ln pi) i = 1, 2, 3, 4. 

Expressed in these forms, the only difference between the RDAM model and the FAIDS 

model is the extra term wi(d ln E – d ln pi), which will be called the defining term. From 

the two demand systems, price elasticities and expenditure elasticities can be calculated.  

Table 1 gives the elasticity formulas associated with each of the demand systems. 

 

Data 

The data used here are quarterly observations of all variables for 1976 through 1993. Per 

capita beef, pork, and poultry quantities and retail prices were obtained from Kinnucan et 



al., with the original sources being Putman and Allshouse and the USDA’s Livestock and 

Poultry Situation and Outlook Report.  The fish quantity and price series are those used 

by Kinnucan.  They were constructed using data from various sources.  A cholesterol 

index intended to measure the impact of health information knowledge on demand is also 

considered, and also comes from Kinnucan, et al.  Branded and generic advertising data 

were obtained from Brester and Schroeder, and following McGuirk, et al, a women’s 

participation in the labor force, as percent of employment was obtained from the Bureau 

of Labor Statistics.  See Kinnucan, et al., and Brester and Schroeder for discussions of the 

data. 

 Aside from the defining term, we define the full design matrix X to consist of 13 

variables: four price variables, the total expenditure variable, a contemporaneous and 

lagged branded advertising variable for beef, pork, chicken, and fish, a contemporaneous 

and lagged generic advertising variable for beef and pork, a cholesterol information index 

variable, a women’s participation in the labor force variable, and three quarterly dummy 

variables.  All of these are expressed in log differential form except for the dummy 

variables.  The prices, total expenditure, and dummy variables are taken as certain and 

included in all models.  The other six variables are considered questionable and are 

allowed to be included and excluded.   These variables are included or excluded in the 

following way. If advertising is included in a model, then all types of advertising are 

included (e.g., beef, pork, chicken, and fish branded advertising).  Lagged advertising is 

not included without contemporaneous advertising.  These restrictions lead to nine valid 

combinations of advertising variables for each combination of the two remaining 



variables, for a total of 36 = 9 × 22 possible model specifications for each of the two 

systems or |M| = 72 = 36 × 2 possible models.  

 

Priors and Computations 

The estimation is based on the seemingly unrelated regression (SUR) framework of 

Zellner and the Bayesian treatment of the model can be found in Zellner (1971, chapter 

8).  Using standard notation, the jth demand system is expressed as 

(11) y = Xjββββj + εεεεj  j = 1,2,...,144, 

(12) εεεεj | Xj ~ N3T(0, ∑∑∑∑j ⊗ I ) 

where y is 3T × 1, Xj is 3T × kj, ββββj is kj × 1, εεεεj is 3T × 1, ∑∑∑∑j 
 is the 3 × 3 positive definite 

matrix and I is T × T.  As priors, we assume that  

(13)  ββββj  ~ N(ββββj, Hj 
–1) 

(14) Hj ~ W(S-1, v)  

where the underscore indicates the prior, Hj 
–1 is the kj × kj precision matrix on the 

parameter vector prior, W refers to the Wishart distribution with mean v S-1 and degrees 

of freedom v.  This is the standard representation for the informative prior case in the 

multiple equation model and is usually referred to as the Normal-Wishart prior. 

 

Priors 

For all models we center our prior on ββββj at zero, except for the parameter for the model 

defining term, which we center at one.  For example, the prior on the parameters in 

equation (10) with only expenditures, prices, and the model defining term, would be (0, 

0, 0, 0, 0, 1).  The one in this prior on the mode defining term comes from the fact that we 



want the model defining term in every model with a one as its parameter and we will 

control this with a very small variance in the precision prior.  For the precision matrix  

Hj
-1 we use a block diagonal form 
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where the upper block is the Zellner g-prior for the precision matrix for all parameters 

except that parameter corresponding to the model defining term, which has a precision 

prior c.  For the Wishart prior in the present setting, the S-1 will be a 3 × 3 and v the 

degrees of freedom parameter.  In the present context, g, c, S-1and v are hyper-parameters 

to be chosen. We do not have strong priors and do not want to impose any strong priors 

so we specify the priors to allow for large dispersion. Following the advice of Fernandez, 

Ley, and Steel we chose g = 1/ 3T ≈ .05, c = .00001 (a very small variance on the 

defining term parameter), S = diag(.0001,.0001,.0001) and v = kj.  These priors remain 

the same across models.  

 

Computations 

The Bayesian Analysis, Computation, and Communication (BACC) program developed 

by John Geweke is implemented (see Koop 1999 for a review).  The BACC program uses 

Monte Carlo importance sampling techniques in generating the prior and posterior 

distributions.  The present analysis is a straightforward application of the normal linear 

model in BACC. For the Monte Carlo integration, 1,010 samples are drawn for the prior 

and posterior, and the first 10 were removed.  The Monte Carlo algorithm for the prior 



generates independent draws from the prior distributions.  The algorithm for the posterior 

is a two-block Gibbs sampler, which is given in the BACC manual.2  

 

Results 

Figure 1 plots the logarithm of the marginal likelihood, described by equation (3), 

associated with each of the 72 models.  The first 36 models are the Rotterdam 

specification, the last 36 are the First difference AIDS models.  Within each set of 36, the 

first nine contain neither the cholesterol index nor women’s labor force participation, the 

second nine contain the former but not the latter, the third nine contain both, and the last 

nine contain women’s labor force participation but not the cholesterol index.  Within each 

set of nine, the log marginal likelihood for the models generally declines as advertising 

variables are added.  For example, model one contains no advertising variables at all, 

while model nine contains both contemporaneous and lagged observations of both 

branded and generic advertising.  Thus the advertising variables are responsible for the 

saw tooth pattern observed in Figure 1.   

 Posterior probabilities, described by equation (5), were calculated for each of the 72 

models.  The posterior probability for model number one (this is the Rotterdam model 

containing none of the “optional” variables) was found to be effectively one, and 

effectively zero for all other models.  Given these results, the meta-elasticities that we 

calculate are equivalent to those for model number one.  We find the following 

compensated own-price elasticities, with standard errors given in parenthesis: –0.597 

(0.133) for beef, -0.773 (0.085) for pork, and –0.169 (0.070) for poultry.  Expenditure 

                                                 
2 The BACC software and manuals are available free at http://www.econ.umn.edu/~bacc/bacc99/. The 
software is obtainable as a Gauss module and thus all of the Bayesian analysis is done in Gauss.  



elasticities are 0.117 (0.111) for beef, 0.180 (0.122) for pork, and 0.169 (0.105) for 

poultry. 

 These extreme results are surprising and naturally raise suspicions about the priors 

and possible program.  We have experimented with other models using a different data 

set and find that the results are not as extreme.  However, in his review of BACC, Koop 

conducted an experiment where he got similar extreme results and McCausland in 

another setting got similar extreme results via a Monte Carlo experiment.  We are in the 

process of exploring these issues. 

 

Conclusions 

The model specification problem is perhaps the Achilles heel of applied econometrics. In 

this paper we summarize the Bayesian Model Averaging approach to this problem, which 

incorporates model uncertainty directly into the analysis.  In the Bayesian Model 

Averaging approach, a quantity of interest (e.g., an elasticity) is averaged over models 

based on the probability of each model occurring within the universe of models 

considered.  We estimate 72 meat demand systems associated with the Rotterdam model 

and AIDS model and including various combinations of advertising variables, a 

cholesterol index and women’s labor force participation.  We find that the basic 

Rotterdam model including only price terms and the volume index, has a probability of 

almost one relative to the other 71 demand systems.  Consequently the meta-elasticities 

obtained from averaging over the elasticity estimates from the different models weighted 

by the probability of the model are the same as though obtained from the basic Rotterdam 

model. 
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Figure 1: Log marginal likelihood estimates
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This figure plots the log marginal likelihood values reported by the BACC software for each model.  Models 1 thorugh 36 are 
Rotterdam models, models 37 through 72 are AIDS models.  


