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Freeway Speeds and Speed Variations Preceding 
Crashes, Within and Across Lanes

by Kara M. Kockelman and Jianming Ma

Relationships	 between	 speed	 choice	 and	 crash	 occurrence	 have	 been	 difficult	 to	 identify.	 This	
work	examines	vehicle	speeds	(and	their	variations)	derived	from	single	loop	detectors	for	several	
Southern	California	freeways,	within	and	across	freeway	lanes,	together	with	corresponding	crash	
data.	While	a	variety	of	factors	clearly	influence	speed	and	speed	variance,	there	is	no	evidence	in	
these	crash	data	sets,	and	observations	of	their	corresponding	series	of	30-second	traffic	conditions,	
that	speeds	or	their	variation	trigger	crashes.

BACKGROUND

In the United States and elsewhere, traffic crashes claim more human years than any other incident 
or disease. They also result in tremendous property losses. U.S. crash costs for the year 2000 are 
estimated to well exceed $200 billion, with roughly a quarter of this from property damage (Blincoe 
2002).  U.S. crashes claimed 42,636 lives in 2004 (USDOT 2005). Driver behavior, roadway design, 
weather and other factors all play a role in crashes. The most debated component is probably driver 
behavior in the form of speed choices.  While it is well understood that higher impact speeds produce 
more severe crashes (Joksch 1993, Kockelman and Kweon 2002, and Kockelman et al. 2006), it is 
not altogether clear what roles speed variation (across vehicles/drivers) and speed limit policies play 
(Lave 1985, Lave and Elias 1994, Johansson 1996, Aljanahi et al. 1999, Farmer et al. 1999, Davis 
2002, Ossiander and Cummings 2002, Navon 2003, and Vernon et al. 2003).  To this end, this paper 
focuses on the effect driver behavior has in creating crashes  in the form of speed choice – while 
controlling for roadway design features and weather conditions.

LITERATURE REVIEW

The speed-crash literature provides a valuable background for the debate, and motivates the 
questions at the heart of this research. In the 1960’s Solomon (1964) and Cirillo (1968) found that 
many vehicles involved in rural and interstate highway crashes were traveling well above or below 
the average speed. They did not control for access point densities, however.  Access points introduce 
practically stopped vehicles to the traffic stream, resulting in very dangerous conditions on high-
speed roadways. They also presumed their sampled speed data to apply to long roadway sections 
at all times of day. Lave (1985) cited their work when using models of aggregate speed and crash 
data to conclude that highway fatality rates depend more on speed variance (across vehicles) than 
on average speeds. However, Davis (2002) has clearly demonstrated how aggregate relationships 
between speed, speed variance and crash frequency are not necessarily supported by the underlying, 
disaggregate data.

Garber and Gadiraju (1989) investigated how differences in design speeds and posted speed 
limits influence speed choices. They found minimal speed variation (with speed standard deviations 
on the order of 7.55 mph) when posted speed limits were 10 mph below design speeds, and 
essentially constant speed variation, regardless of the difference in posted and design speeds. They 
also found that drivers chose higher speeds on roadways with better geometric design, irrespective 
of posted speed limits, and concluded that higher speeds do not necessarily result in higher crash 
rates, whereas higher speed variation does.
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Using data from rural highways with speed limits 80 kilometers per hour (km/h) or above 
in Adelaide, Australia, Kloeden et al. (2001) estimated that a vehicle’s risk of involvement in an 
injurious crash doubles when traveling just six miles per hour (mi/h) (10 km/h) above the roadway’s 
average speed.  This risk multiplier rises to six when traveling 12 mi/h (20 km/h) above the average 
speed.  They concluded that reductions in average speeds would be more helpful in reducing the risk 
of crash involvement than reductions in speed difference. Just one year later, using data from urban 
highways, Kloeden et al. (2002) concluded that differences in crash involvement arise mainly due 
to actual speeds at which drivers choose to operate their vehicles, instead of other factors, like driver 
type and speed variations.  However, they were unable to control for these other variables.

Golob et al. (2003c) obtained crash and nearby single-loop detector1 data for all crashes reported 
along six freeways in California’s Orange County in 1998.  They distinguished eight traffic flow 
regimes based on speed variation and found the highest crash rates (6.3 crashes per million vehicle 
miles traveled (VMT) during the morning peak period) during heavily congested flow, corresponding 
to low mean speeds, low speed variation, low flows, and low flow variation.  In contrast, the lowest 
crash rates (0.6 per million VMT) appeared as morning-peak traffic approached capacity conditions, 
characterized by high speeds and low speed variation.  However, in order to avoid “assumptions 
of uniform speed, average vehicle length, and … the physical installation of each loop (detector)” 
Golob et al. (2003c p. 3), used the ratio of 30-second volume-to-occupancy as a proxy for speed2.  In 
addition, they characterized “speed variation” as the difference between the 90th and 50th percentile 
values of speed estimates during the 27.5 minutes preceding each crash.  Thus, the presence of long 
vehicles (such as commercial trucks) will reduce speed estimates, and the measure of variation is 
far from instantaneous.  If truck presence and/or local speed variations are important crash factors, 
these speed estimates will not capture such effects.  

In summary, based on a review of the literature, data and methodological limitations have 
prevented a resolution of the speed-crash debate.  This research employs some new methods, using 
a subset3 of Golob et al.’s data set.  30-second detector data from single loops, paired with effective 
vehicle length assumptions, roadway conditions, and crash data result in estimates of instantaneous 
speed variation within and across lanes. These permit models based on more disaggregate 
information, and allow one to ascertain the effects of various design variables, such as number of 
lanes, lane location, and lighting conditions.

DATA DESCRIPTION

The data set used in this work involves crashes that occurred in January 1998 on six Orange County, 
California, freeways: Interstates 5 and 405, and State Routes 22, 55, 57, and 91. Crash-specific data 
were acquired from Caltrans’ Traffic	Accident	Surveillance	and	Analysis	System (TASAS) database 
and assembled by Golob and Recker (2002). Golob and colleagues compiled and have used the 
entire 1998 year’s data set in several studies of traffic crash typology (Golob and Recker 2002 and 
2003, Golob et al. 2003a and 2003b).

The January 1998 database subset contains all 744 crashes that resulted in police reports, and 
55 of these resulted in injury or death; these are the subject of this investigation. The database 
also contains basic traffic flow data for 30 minutes preceding each crash. These were derived from 
single-loop detectors upstream4 and within 2,000 feet of the crash mile-post locations.5 

Recognizing actual crash times are not known precisely and traffic conditions existing several 
minutes prior to a crash probably have little effect on the crash’s occurrence, Golob and Recker 
(2002) discarded the 2.5 minutes of traffic data immediately preceding each crash’s reported time.  
This strategy also was employed here, resulting in the removal of five 30-second (sec) intervals from 
each 30-minute period of traffic condition data that accompanies every crash record.

In addition, the algorithm for within-lane speed variance estimation (discussed in the following 
section) results in the loss of the first two 30-sec traffic observations at each loop detector. Thus, 
there remain 53 usable sequential 30-sec observations preceding each crash.  After accommodating a 
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small portion (less than 2%) of observations with incomplete detector data 2,858 30-second roadway 
section observations remained.  All roadway sections in the data set contain from three to five (one-
way) lanes, resulting in 12,243 30-second lane observations. Therefore, statistical results are based 
on either the section-specific 2,858 observations, or the lane-specific 12,243 observations.

The loop detector data provide information on lane number, occupancy, volume, and time of 
day. The crash reports provide information on lighting, pavement surface, and other crash conditions.  
And the FHWA’s Highway Safety Information System (HSIS) data set (FHWA 2000) provided 
design speeds for the detector locations.6 All these factors, along with lane location, presence of 
obstructions, and other readily available variables were controlled for in the models that follow.  
However, before applying such models, flow and occupancy had to be translated into robust 
estimates of speed and speed variance.

ESTIMATION OF SPEED & SPEED VARIANCE

In 1998, the six freeways under study were instrumented with single inductive loop detectors.  
Single loops provide only two measures of traffic conditions:7  traffic counts (the number of 
vehicles registered as passing over the loop detectors) and occupancy (the fraction of time the loop’s 
detection zone is occupied by a vehicle). Speed estimates require vehicle length and detection zone 
length assumptions. Speed variance estimates (across individual vehicles, both within and across 
lanes) require assumptions regarding speed distributions and their temporal stability. The methods 
of estimation used in this work are standard for average speed and novel for speed variance.

Estimation of Average Speeds

Under an assumption of zero acceleration (or deceleration),8 a vehicle’s speed is the ratio of the 
distance it travels and its travel time.  A single vehicle passing over a presence-type detector9 travels 
a distance equal to the vehicle length (li) plus the effective detection zone length10  (ld) during the 
detector’s occupancy time (ti). The speed formula is thus as follows:  

(1)  3600
5280

i d
i

i

l lv
t

 +
=  

 
where vi	= speed of individual vehicle i (miles per hour), li	= length of vehicle (feet), ld	= effective 
loop detector length (feet), and ti	= detector occupancy time (seconds).

Many vehicles can traverse a detector during a 30-second interval.  The average speed during 
any such interval can be computed using Equation 2:

(2) 
( ) ( )3600 3600

5280 5280
i i d i i d

i

v l l t l l
v

N N t
 + +

= = ≈ ×  
 

∑ ∑ ∑
∑

where v  is average speed and N  is the number of vehicles traversing the detector during the 30-sec 
interval.

The final part of Equation 2 is only an approximation.  It holds exactly if the individual speeds 
are constant/equal during the interval.
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Assuming constant speeds, average occupancy times ( ot ) and vehicle lengths ( vl ) may be used 
to form the following average speed equation:

(3) 3600ˆ
5280

v d

o

l lv
t

 +
=   

 
For a 30–second period, with constant speeds and an occupancy fraction11 of %OCCi,t, the average 
vehicle speed can be estimated using the following expression:

(4) , ,
,

,

100ˆ
30 3600 5280%

l t l t d
l t

l t

n l l
v

OCC
  +

=   
 

where ,l̂ tv  is the average speed estimate, nl,t is the number of vehicles and ,l tl  is the average vehicle 
length during the tth 30-second interval in the lth lane.

Unfortunately, the effective vehicle length ( vl + dl ) is not known.  Much research has addressed 
estimation of vehicle speeds using single loop detector data. (See, for example, Pushkar et al. 1994, 
Wang and Nihan 2000 and 2003, Coifman et al. 2003, Coifman 2001, and Bruce 2002.)  All require 
strong assumptions, and/or more data than are available.12 

After some initial and very disappointing13 work using effective loop- and vehicle-length 
assumptions of 10 feet and 14.75 feet, respectively (in order to estimate speeds based on occupancy 
and count data), local “g factors” were used.  These are estimates of total effective lengths ( vl + dl ), 
as provided by the Performance Measurement System (PeMS) group at the University of California, 
Berkeley, and based on historical data for every 5-minute period of every day of the year at every 
detector station in the system. (Jia et al. 2001, PeMS 2002)  They are based on free-flow-speed 
assumptions during uncongested periods. (Chen et al. 2002)  Figure 1 summarizes the g-factor 
(vehicle length) values used here, and Table 1 provides g-factor values for example sections and 
times of day.  While these g-factors typically provide very reasonable average speed estimates, the 
methods of their derivation are not entirely known.  Based on these g-factors, Equation 4 offers 
estimates of the time-mean speed for each station, in every 30-second interval and every lane.  
Vehicle count-weighted averages of these lane-based speed averages provided road section speed 
averages, recognizing all lanes.  Both within-lane and section speed averages were modeled, and are 
key inputs to the speed variance estimates described below.

Estimation of Speed Variation

Along with average travel speeds, speed variations may play important roles in crash occurrence 
and severity.  But disaggregate estimates, of instantaneous variation, are needed; and these are 
difficult to obtain, without individual speed measurements.  In this work, estimates of within-lane 
speed variation rely on the within-lane average speed estimates, while across-lane and total section 
speed variance estimates rely on both within-lane and section average speeds.

To transform a series of 30-second speed averages into estimates of instantaneous speed 
variation, a strong assumption is needed; speed distributions, and thus speed variance, vary little 
across every five consecutive 30-second intervals. Because significant shifts in traffic conditions 
generally occur on the order of hours (such as peak to off-peak periods of demand), this assumption 
of steady traffic conditions during each 2.5-minute interval seems quite reasonable. The observed 
variation in 30-second average speeds, around the 150-second interval’s grand mean (

150sec ,l tv ) can 
then be used to approximate the underlying speed distribution’s overall variation.
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Figure 1. Frequency Distribution of g-Factors (i.e., mean effective vehicle lengths)

These computations rely on the following equations:
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s t s t

SDSPDLANE n v v n
+ +

= − = −
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where 150sec ,l tv  is the count-weighted average speed during the 150-second interval, and ,l tn   and ,l̂ tv   
are as defined earlier (Equation 4). 

Equation 6 estimates the standard deviation ( ,
ˆ

l tSDSPDLANE ) of every 150-second interval’s 
middle speed profile (i.e., that of its third 30-second interval).  Thus, these estimates can vary every 
30 seconds, even though the base assumption involves stationary 150-second traffic speeds. If traffic 
conditions are not stationary, as in evolving traffic, actual speed variations – and thus standard 
deviations – are likely to be lower.14

Estimation of variations in average speeds across lanes is more straightforward than that 
within lanes.  Average within-lane speeds and counts during each 30-second interval can be used as 
follows:

(7) 
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(8) 

where ˆ
tSDACROSSLN  is the estimate of standard deviation in average within-lane speeds across 

lanes in time interval t. 
Together, within-lane and across-lane (or “between-lane”) information on speed variation 

provides information on overall, road-section speed variations. Using within and between sums of 
squared deviations (WSS and BSS) from within-lane and across-lane grand mean speeds, one has 
the following:

(9) 

Table 1: Example g-Factors Values from Orange County Freeways

Route
Milepost,

Time of Day, 
& Date

Lane # Min
(ft.)

Max
(ft.)

Mean
(ft.)

Std. Dev.
(ft.)

Interstate 5
19.98 (NB)
17:18-17:44
Jan. 31, 1998

1 12.09 12.11 12.10 .00744
2 11.10 11.10 11.10 .00000
3 16.62 17.38 17.06 .24978
4 15.88 16.42 16.18 .17783
5 16.31 16.77 16.58 .17373

Interstate 405
12.55 (NB)
14:27-14:53
Jan. 13, 1998

1 10.96 10.99 10.97 .00891
2 21.17 21.61 21.38 .13787
3 19.77 20.09 19.94 .09583
4 16.95 17.54 17.20 .17198
5 16.38 17.08 16.70 .22373

State Route 22
9.77 (WB)
8:47-9:13

Jan. 6, 1998

1 24.78 24.86 24.82 .02966
2 20.89 20.95 20.92 .02053
3 19.52 19.70 19.66 .05322
4 19.77 19.93 19.85 .05787

State Route 55
4.65 (SB)
4:02-4:28

Jan. 3, 1998

1 44.43 44.94 44.73 .16760
2 31.68 31.96 31.80 .10888
3 23.02 24.31 23.70 .47654
4 36.13 36.69 36.42 .17883

State Route 57
16.17 (NB)
19:07-19:33
Jan. 5, 1998

1 19.55 19.66 19.58 .03299
2 18.84 19.20 18.99 .11294
3 19.98 20.58 20.26 .19344
4 15.56 15.74 15.63 .05403
5 12.34 12.50 12.43 .05301

State Route 91
6.49 (WB)
2:22-2:48

Jan. 1, 1998

1 21.65 22.06 21.92 .13871
2 21.42 21.67 21.54 .07457
3 24.17 24.46 24.32 .09807
4 18.58 19.00 18.88 .12976
5 22.51 22.93 22.79 .14326

Source: PeMS (2002).
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(10) 

(11) TSS WSS BSSt t t= +

(12) 

As a result of these operations, one has estimates of within-lane speed variation, across-lane speed 
variation, and total speed variation, for every road section instrumented with loop detectors.  Any 
one and all three measures may be relevant for crash analysis, so all three are modeled here.15

METHODOLOGY

This work’s objective is to find relationships among speeds, speed variation (measured as standard 
deviation), and crash likelihood.  Ordinary least squares (OLS), weighted least squares (WLS), and 
binomial regression models were used, while controlling for weather and lighting conditions, lane 
position, and other key variables.

Based on simple rules of variance for mean estimates, average within-lane speed observations 
are weighted by the vehicle counts used in their computation.16 Non-constant variation of these 
estimated values is called heteroskedasticity. The squared residuals of an OLS regression can be 
studied for indications of such variation. As expected, those squared residuals for within-lane and 
section average speeds fell with traffic count, so the theoretically applicable weight of count (VOL 
and VOLUME, respectively) was used.17 When weights are appropriately chosen, WLS results offer 
more efficient parameter estimates than OLS (Greene 2000).

In addition to OLS models of section-based speed averages and standard deviations in speeds, 
and a WLS model of within-lane speed average, binomial models of crash likelihood were explored.  
If crashes are precipitated by special speed patterns, these features may be evident in the data, in 
the moments before a crash. The data set’s time-till-crash variable (TMTLCRSH) is the difference 
between the reported crash time and the traffic observation time.18 Based on the time-till-crash 
estimates, indicator variables of whether the crash occurred within a certain period (three minutes, 
five minutes, and 10 minutes) of the observed traffic were coded. In the binomial models of crash 
likelihood, these indicator variables served as the response variable, Y:  

(13) ( )Prob Y 1
1

X

X

e
e

′

′+

β

β

where control variables X are defined as in Tables 2 and 5.  From the estimated values of their 
coefficients, , one can appraise the predicted direction and magnitude of their effects on the short-
term likelihood of crash occurrence.  It was hoped that these binomial models would bear some fruit.   
However, it is the models of speed and speed variation that provided the most useful results.

RESULTS

Tables 2 and 5 summarize the data used to estimate effects of speed and its variations on crash 
occurrence while controlling for a variety of factors that are expected to influence driver speed 
choices, such as roadway features, environmental conditions, and traffic characteristics.  Tables 
4 and 8 provide model results for average within-lane and section speeds.  Results for standard 
deviations of speeds, within-lanes, across-lanes, and in total, are shown in Tables 3, 6, and 7.  Crash-



Freeway Speeds

�0

likelihood model results are not provided because they perform little better than a constants-only 
model. 

All tables provide a column for standardized coefficient (Std. Coef.) estimates, which represent 
the number of standard deviation changes in the response variables (speed and speed standard error) 
that would be expected following a one-standard deviation change in the associated explanatory 
variable.  These offer analysts a sense of the practical significance of all control covariates.  All 
potential control covariates are included in the initial model’s tabled results; final model specifications 
(shown alongside) emerged from a process of stepwise elimination, whereby statistically insignificant 
control variables (those having p-values greater than 0.10) were removed, one-by-one.

As expected, traffic density plays a critical role in virtually all model results, reducing travel 
speeds and generally moderating speed variation.  More dense traffic conditions mean less room 
for crash avoidance, causing drivers to proceed more cautiously, slow down and synchronize their 
speed choices (as independent speed choice becomes difficult).  Also as expected, more lanes result 
in higher average speeds, by permitting greater maneuverability and flexibility in driver speed 
choices.  As anticipated, greater speed variations are estimated to occur in the outer, right-side lanes, 
due to the presence of ramps, slow vehicles, and weaving maneuvers.  Slower speeds generally 
are witnessed along wet pavements and in the vicinity of obstructions and construction zones (as 
expected, due to driver concerns for safety in such locations).  Finally, an obvious anticipation of 
higher speeds on higher design-speed facilities (though all roadways in this data set shared the same 
posted speed limit) was discerned in the empirical results.  Other than these control variables, no 
clear expectations of behavioral response existed on the part of the researchers.  While some may 
expect increasing variability in recorded traffic speeds to signal the onset of crash conditions, no 
results – in any of the model specifications (Tables 3, 4, 6, 7, and 8) – suggest that vehicle speeds or 
speed variations rise (or fall) near the reported time of crash.  Essentially, it may be very difficult to 
anticipate the onset of a crash, based on loop detector data.  The following discussion provides more 
detail on these and other relationships apparent in the various speed and speed variance behaviors.

Table 3’s results suggest higher (free-flow) speeds occur on four-lane and five-lane (one-
way) freeways than on three-lane freeways:19 average speeds on five-lane (one-way) freeways are 
estimated to be 3.81 mph faster than those on three-lane freeways, everything else constant.  And 
those on four-lane sections are estimated to be 2.16 mph higher.  Essentially, drivers have more 
opportunity to operate the vehicle at their preferred speeds when there are more lanes to choose 
from.  These empirical results (3.81 and 2.16 mph) are consistent with, but 27% and 44% higher 
than, the HCM-suggested adjustments of 3.0 and 1.5 mph (TRB 2000).

Also according to Table 3, the lowest average speeds arise in the next-to-right-side lane, and, 
as expected, the inside lanes (far left) have the highest average speeds. Traffic in the left-side lanes 
travels, on average, 7.41 mph (5.25-(-2.16) = 7.41) mph faster than that in the next-to-far-right 
lanes.  The HCM offers no information in this regard, making these results all the more useful for 
the transportation engineering community.

Table 4 suggests the highest speed variations (averaging 2.68 mph higher) can be found in the 
far right-side lane.  As noted earlier, those far-right lanes tend to have many weaving, merging and 
diverging maneuvers (from the left-side lanes and the far-right ramps and auxiliary lanes) as well as 
the section’s slowest vehicles, so these results are consistent with expectations.  Within-lane speed 
variation tends to rise with average speeds, and average within-lane speeds rise with number of 
lanes; however, the highest within-lane standard deviations are predicted on four-lane sections (as 
shown in Table 4, and assuming everything else constant).  The results also indicate higher within-
lane speed variability accompanies higher average speeds, and the presence of construction zones.  
In some contrast, Tables 6 and 7’s estimates do not imply that higher across-lane or total speed 
variability accompanies higher average speeds.  Evidently, problem perspective is important: speed 
variations within lanes can exhibit very different relationships from those that exist across lanes.  Of 
course, it is probably within-lane variation that is more likely to provoke a crash than across-lane 
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variation, but both may be relevant for safety analysis, particularly when lane changes are taking 
place.

As anticipated, model results suggest higher traffic densities result in lower average within-lane 
speeds and higher within-lane speed variation (Tables 3 and 4), while producing lower across-lane 
speeds and speed variation, and lower overall speed variations (Table 6, 7 and 8).  As alluded to 
earlier, the reason for such results is felt to be that tight spacings (high densities) lead to greater 
driver caution, via use of lower speeds.  They also require greater coordination of driver speeds, 
within each lane, since following drivers cannot afford to collide with those in front but want to 
travel as fast as possible, though conditions are relatively congested.  Across lanes, however, traffic 
congestion (and thus density) can result in less speed coordination, as shockwaves propagate back 
and forth lane by lane, and right-side lanes may back up, slowing to a crawl, while left-side lanes 
continue to flow.

The results in Tables 3 and 8 also indicate that people drive slowest on freeways at night and 
without the benefits of streetlights, as compared to other lighting conditions.  And they drive faster 
on higher design-speed sections, as one would expect.  Within-lane and total speed variation (Tables 
4 and 7, respectively) rise substantially under nighttime, streetlight conditions (by 4.129 and 4.224 
mph, respectively), much more so than under no-streetlight nighttime conditions (1.789 and 0.786 
mph).   The presence of lighting may provide great confidence to a subset	of drivers, who then drive 
faster, thereby widening the range of speed choices under such nighttime conditions. 

Within-lane and total speed variations also rise with design speeds, suggesting that some drivers 
are not comfortable with and/or do not take advantage of the higher-design conditions.  The within-
lane and total speed standard deviations are predicted to rise 1.8 mph (Table 4) and 4.6 mph (Table 
7), respectively, for every 10 mph increase in design speed.

As expected, average speeds are lower on roads that are wet or have obstructions (Tables 3 
and 8), due to driver safety considerations.  Within-lane speeds tend to fall 4.72 mph on wet roads, 
as compared to dry roads, and across-lane speeds drop 4.77 mph.  However, within-lane speed 
variations are higher when obstructions are present (Table 4), perhaps because of variation in driver 
familiarity and response to such conditions.  The increases in within-lane speed variation and total 
speed variation due to roadway obstructions are estimated to average 6.02 mph (Table 4) and 2.38 
mph (Table 7), respectively.  

Perhaps most interesting is the fact that the time-till-crash variables offer no predictive power 
in any of the speed and speed variation models (Tables 3, 4, 6, 7 and 8).  And, as previously 
mentioned, the crash-likelihood regressions (for three minute, five minute, and 10 minute cases) are 
not statistically significant (and thus not presented in tabular form).  This set of disappointing results 
is probably due to two key factors:  First, the reported crash times may be off by five minutes or 
more, in many cases.  Second, a lot can happen in 30 seconds, so the temporal aggregation inherent 
in the loop detector traffic reports obscures specific crash-precipitating events.  However, it also 
may be that most speed information says little about crash occurrence, and other factors are at play, 
provoking crashes.  Of course, speeds remain basic to crash severity, and may be fundamental to the 
types of crashes that occur (e.g., rear-end versus rollover crashes).
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Table 3: Weighted Least Squares Regression Results of Within-Lane Average Speeds

Variables
Initial Model Final Model

Coef. Std. Err. Std. Coef. P-value Coef. Std. Err. Std. Coef. P-value
CONSTANT 30.021 7.446 0.000 29.79 7.437 0.000
FOURLN 2.126 0.455 0.0363 0.000 2.156 0.452 0.0368 0.000
ABVFOUR 3.837 0.491 0.0668 0.000 3.811 0.481 0.0664 0.000
DUSKDAWN 0.566 0.864 0.00256 0.512
DARKSTRL -3.477 0.396 -0.0472 0.000 -3.516 0.39 -0.0478 0.000
DARKNOSL -4.73 0.301 -0.0774 0.000 -4.748 0.294 -0.0777 0.000
WET -4.781 0.302 -0.0799 0.000 -4.723 0.288 -0.0790 0.000
OBSTRXN -9.096 1.203 -0.0349 0.000 -9.094 1.203 -0.0348 0.000
CONSTRXN -0.05136 0.464 -0.000608 0.912
RGHTSIDE -1.093 0.544 -0.0160 0.045 -1.098 0.544 -0.0161 0.043
NXT2RGSD -2.162 0.426 -0.0316 0.000 -2.164 0.426 -0.0317 0.000
MIDDLELN 1.689 0.432 0.0200 0.000 1.686 0.432 0.0200 0.000
NXT2INSD 3.551 0.431 0.0519 0.000 3.541 0.431 0.0518 0.000
INSIDELN 5.254 0.53 0.0787 0.000 5.247 0.529 0.0786 0.000
DSGN_SPD 0.623 0.106 0.0282 0.000 0.626 0.106 0.0283 0.000
TIME3MIN -0.00226 0.004 -0.00277 0.557
TIME5MIN -0.00028 0.002 -0.000725 0.88
TIME10MIN 0.000169 0.001 0.00110 0.799
DENSITY -0.617 0.005 -0.580 0.000 -0.617 0.005 -0.580 0.000
R-sqrd .626 .626
Adjust R-sqrd .625 .625
Num. of Obs. 9716 9716
Dependent Variable: AVGSPDLANE – Average Vehicle Speed
Weighted Least Squares Regression - Weighted by VOL

Note: Italics indicate the most practically significant variables, based on standardized coefficient values.



Freeway Speeds

��

Table 5: Description of Section-Specific Variables
Variables Description N Min. Max. Mean Std. 

Dev
SDSPDSXN Std. deviation of speed across & within lanes (30-sec) 2585 0 123.28 10.83 10.02
SDACROSSLN Std deviation of speed across lanes (30-sec) 2585 0 107 7.88 9.88
AVGSXNSPD Average vehicle speeds across lanes (30-sec) 2585 0 123.06 42.89 22.05
VOLUME Sum of traffic counts across lanes (30-sec) 2585 0 83 32.18 19.94

DENSITY #vehicles per lane per mile = 5280*OCC*g-Factor (where 
OCC = fraction of 30 sec. period that detector is occupied) 2585 0 144.47 23.88 21.58

TMTLCRSH Reported crash minus the time of the observation 2585 120 1680 900.08 458.94
FOURLN 1 if the road section has 4 lanes (per direction), 0 otherwise 2585 0 1 0.44 0.50

ABVFOUR 1 if the road section has more than 5 lanes (per direction), 0 
otherwise 2585 0 1 0.39 0.49

DUSKDAWN 1 if crash occurred during dusk or dawn, 0 otherwise 2585 0 1 0.02 0.14

DARKSTRL 1 if crash occurred at night with street lights working, 0 
otherwise 2585 0 1 0.19 0.39

DARKNOSL 1 if crash occurred at night & without street lights, 0 otherwise 2585 0 1 0.30 0.46
WET 1 if the roadway was wet when crash occurred, 0 otherwise 2585 0 1 0.35 0.48

OBSTRXN 1 if there is obstruction on roadway when crash occurred, 0 
otherwise 2585 0 1 0.02 0.14

CONSTRXN 1 if crash occurred in a construction zone, 0 otherwise 2585 0 1 0.13 0.34
WITHIN3MIN 1 if crash occurred within 3 minutes of observation, 0 otherwise 2585 0 1 0.06 0.23
WITHIN5MIN 1 if crash occurred within 5 minutes of observation, 0 otherwise 2585 0 1 0.13 0.34

WITHIN10MIN 1 if crash occurred within 10 minutes of observation, 0 
otherwise 2585 0 1 0.32 0.47

TIME3MIN WITHIN3MIN* TMTLCRSH (secs) 2585 0 180 8.50 35.18
TIME5MIN WITHIN5MIN* TMTLCRSH (secs) 2585 0 300 27.77 74.43
TIME10MIN WITHIN10MIN* TMTLCRSH  (secs) 2585 0 600 115.31 187.41
DSGN_SPD Design speed (mph) 2585 60 70 69.82 1.35

Source: PeMS (2002).

Table 4: Ordinary Least Squares Regression Results of Within-Lane Speed Variation

Variables
Initial Model Final Model

Coef. Std. Err. Std. Coef. P-value Coef. Std. Err. Std. Coef. P-value

CONSTANT -14.198 3.463 0.000 -13.847 3.45 0.000
FOURLN 1.785 0.243 0.125 0.000 1.52 0.149 0.107 0.000
ABVFOUR 0.352 0.257 0.0252 0.170
DUSKDAWN -2.778 0.447 -0.0517 0.000 -2.805 0.446 -0.0522 0.000
DARKSTRL 4.119 0.182 0.230 0.000 4.129 0.182 0.230 0.000
DARKNOSL 1.783 0.15 0.120 0.000 1.789 0.15 0.120 0.000
WET 1.73 0.149 0.119 0.000 1.764 0.147 0.121 0.000
OBSTRXN 6.173 0.515 0.0971 0.000 6.018 0.498 0.0947 0.000
CONSTRXN 1.135 0.232 0.0552 0.000 1.201 0.226 0.0584 0.000
AVGSPDLANE 0.09484 0.004 0.390 0.000 0.09546 0.004 0.392 0.000
RGHTSIDE 2.896 0.274 0.174 0.000 2.68 0.169 0.161 0.000
NXT2RGSD 1.662 0.219 0.0999 0.000 1.51 0.153 0.0907 0.000
MIDDLELN 1.105 0.221 0.0537 0.000 0.981 0.185 0.0477 0.000
NXT2INSD -0.4 0.221 -0.0240 0.071 -0.56 0.153 -0.0336 0.000
INSIDELN 0.22 0.274 0.0135 0.422
DSGN_SPD 0.179 0.049 0.0333 0.000 0.179 0.049 0.0333 0.000
TIME3MIN -0.00095 0.002 -0.00478 0.617
TIME5MIN -0.00148 0.001 -0.0157 0.108
TIME10MIN 0.000162 0 0.00435 0.627
DENSITY 0.000198 0 0.000765 0.000 0.000197 0.000 0.000761 0.000
R-sqrd .169 .168
Adjust R-sqrd .167 .167
Num. of Obs. 9716 9716
Dependent Variable: SDSPDLANE – Within-Lane Speed Variation

Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 
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Table 6: Ordinary Least Squares Regression Results of Across-Lane Speed Variation

Variables
Initial Model Final Model

Coeff. Std. Err. Stdz. Coeff. P-value Coeff. Std. Err. Stdz. 
Coeff.

P-
value

CONSTANT 19.638 7.335 0.007 19.61 7.262 0.007
FOURLN 1.161 0.43 0.0588 0.007 1.138 0.43 0.0576 0.008
ABVFOUR -10.103 0.459 -0.501 0.000 -10.115 0.431 -0.502 0.000
DUSKDAWN -6.614 1.09 -0.0937 0.000 -6.247 1.039 -0.0885 0.000
DARKSTRL 0.104 0.445 0.00411 0.815
DARKNOSL -0.405 0.366 -0.0189 0.269
WET 0.359 0.365 0.0174 0.326
OBSTRXN -2.996 1.091 -0.0425 0.006 -3.02 1.076 -0.0428 0.005
CONSTRXN -0.379 0.605 -0.0130 0.531
AVGSXNSPD -0.29 0.01 -0.647 0.000 -0.29 0.01 -0.647 0.000
DSGN_SPD 0.207 0.106 0.0283 0.051 0.207 0.104 0.0283 0.047
TIME3MIN 0.000798 0.004 0.00284 0.859
TIME5MIN -0.00329 0.002 -0.0248 0.131
TIME10MIN 2.86E-05 0.001 0.000543 0.971
DENSITY -0.292 0.009 -0.638 0.000 -0.293 0.008 -0.640 0.000
R-sqrd .470 .468
Adjust R-sqrd .467 .467
Num. of Obs. 2585 2585
Dependent Variable: SDACROSSLN – Across-Lane Speed Variation

Note: Italics indicate the most practically significant variables, based on standardized coefficient values.

Table 7: Ordinary Least Squares Regression Results of Total Section Speed Variation

Variables
Initial Model Final Model

Coef. Std. Err. Std. Coeff. P-value Coef. Std. Err. Std. Coef. P-value
CONSTANT -18.611 7.65 0.015 -18.666 7.646 0.015
FOURLN 1.369 0.449 0.0683 0.002 1.368 0.449 0.0683 0.002
ABVFOUR 9.965 0.479 0.487 0.000 9.965 0.479 0.487 0.000
DUSKDAWN -2.037 1.137 -0.0285 0.073 -2.039 1.137 -0.0285 0.073
DARKSTRL 4.223 0.464 0.164 0.000 4.224 0.464 0.164 0.000
DARKNOSL 0.784 0.382 0.0360 0.04 0.786 0.382 0.0361 0.040
WET -0.996 0.381 -0.0477 0.009 -0.996 0.381 -0.0477 0.009
OBSTRXN 2.381 1.137 0.0333 0.036 2.381 1.137 0.0333 0.036
CONSTRXN -4.002 0.631 -0.136 0.000 -4.005 0.630 -0.136 0.000
AVGSXNSPD -0.04178 0.011 -0.0919 0.000 -0.0414 0.011 -0.0911 0.000
DSGN_SPD 0.461 0.111 0.0621 0.000 0.460 0.111 0.0620 0.000
TIME3MIN -0.00144 0.005 -0.00506 0.759
TIME5MIN -0.00126 0.002 -0.00936 0.579
TIME10MIN -0.00012 0.001 -0.00224 0.882
DENSITY -0.169 0.009 -0.364 0.000 -0.169 0.009 -0.364 0.000
R-sqrd .403 .403
Adjust R-sqrd .400 .400
Num. of Obs. 2585 2585
Dependent Variable: SDSPDSXN – Total Section Speed Variation

Note: Italics indicate the most practically significant variables, based on standardized coefficient values.
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CONCLUSIONS

The purpose of this research is to illuminate average speed and speed variation patterns across 
lanes and environmental conditions and to identify any connection between such patterns and 
crash occurrence.  Speeds are widely believed to be a key to understanding crash severity, and their 
variation has been argued to be fundamental to crash occurrence.  However, in this study of speed 
information preceding injury and fatal crashes on Southern California freeways, no indication of 
changes in 30-second speed patterns emerged prior to crash occurrence.  All models controlled for 
traffic conditions (including density), weather conditions, lighting conditions, lane geometry, and 
road surface conditions.

While no evidence emerged that supports a hypothesis of speed conditions influencing crash 
occurrence (probably due to data aggregation, crash-time reporting errors, local factors in the 
vicinity of crash site that are unobserved), there are many interesting results.  For example, higher 
design speeds result in higher speed variation (as well as higher overall speeds).  And higher within-
lane speed variations accompany higher (within-lane) speeds.  Traffic density is a key predictor, 
associated with significantly higher speed variations, but lower average speeds – as expected.  
Right-side lanes exhibit the greatest speed variation, while left-side lanes exhibit the highest average 
speeds. More lanes mean higher speeds, even higher than suggested by the Highway	 Capacity	
Manual.  As expected, poor lighting conditions and wet pavement surface tend to slow traffic.

The key limitation of this work lies in its data.  Essentially, all loop detectors, whether they 
are single or double, aggregate counts and occupancies to 20-second or longer intervals.  Crashes 
are very rare events, so automated forms of traffic data collection are needed to associate the two.  
However, crash times are rarely known with great certainty and time-averaging obscures many odd 
speed events that may arise.  In addition, single-loop detector data requires one to rely on effective 
length estimates for average speed prediction.  Here, the g-factors vary every five minutes and are 
not based on the actual vehicles traversing a station in any given interval.  Furthermore, without 

Table 8: Weighted Least Squares Regression Results of Section Average Speeds

Variables
Initial Model Final Model

Coef. Std. Err. Std. Coeff. P-value Coef. Std. Err. Std. Coef. P-value
CONSTANT -70.53 13.668 0.000 -71.361 13.644 0.000
FOURLN 1.928 0.684 0.0437 0.005 1.947 0.498 0.0441 0.000
ABVFOUR 0.204 0.741 0.00453 0.783
DUSKDAWN 1.938 1.596 0.0123 0.225
DARKSTRL -4.522 0.729 -0.0800 0.000 -4.666 0.719 -0.0825 0.000
DARKNOSL -8.464 0.567 -0.177 0.000 -8.516 0.564 -0.178 0.000
WET -4.98 0.562 -0.108 0.000 -4.766 0.53 -0.104 0.000
OBSTRXN -8.353 2.217 -0.0530 0.000 -8.457 2.164 -0.0537 0.000
CONSTRXN 1.401 0.864 0.0216 0.105 1.476 0.832 0.0228 0.076
DSGN_SPD 2.081 0.196 0.127 0.000 2.094 0.196 0.128 0.000
TIME3MIN -5.53E-03 0.007 -0.00882 0.438
TIME5MIN -3.26E-03 0.003 -0.0110 0.34
TIME10MIN 6.44E-04 0.001 0.00547 0.601
DENSITY -0.705 0.012 -0.690 0.000 -0.707 0.012 -0.692 0.000
R-sqrd .591 .591
Adjust R-sqrd .589 .589
Num. of Obs. 2585 2585
Dependent Variable: AVGSXNSPD – Section Average Speed
Weighted Least Squares Regression - Weighted by VOLUME

Note: Italics indicate the most practically significant variables, based on standardized coefficient values.
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individual speed information, speed variation had to be inferred from the variation in average speeds 
over a series of intervals and over a series of lanes.  This is a bold assumption.  In this time of 
emerging technologies for traffic monitoring and data manipulation, it is hoped that coming data 
sets will illuminate any relationships between speed choice and crash occurrence.  Europe is already 
encouraging moderate driving speeds to avoid the onset of forced-flow (or unstable) traffic conditions 
(Helbing and Huberman 1998, FHWA 1999, Helbing 2002, and Commonwealth of Australia 2002).  
The world may be able to moderate speeds to avoid crash occurrence.
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Endnotes

1. A single loop detector has a single electronic resonant circuit which measures the change of 
inductance caused by metal bodies that pass over the loop.  Basically, a single loop detector 
produces volume (the number of vehicles crossing the loop detector during a time interval T) 
and occupancy (the fraction of T during which a vehicle “occupies”/lies above the loop). 

2. Traffic flow equals traffic density multiplied by speed, and density equals occupancy divided 
by average vehicle length (assuming speeds and vehicle lengths are independent [Kockelman 
1998]). Thus, traffic flow divided by occupancy is nearly proportional to speed, as long as 
vehicle lengths are relatively stable/constant.

3. This subset is all 55 crashes involving injury or death.

4. Upstream is defined as toward the direction from which vehicles come.

5. Off-ramps, on-ramps, and lane drops within 2,000 feet of the detectors could influence crash 
occurrence but are outside the scope of the paper.

6. All studied sections’ speed limits are 65 mph (Golob 2003c), so this invariable factor could not 
be controlled for in the analysis.

 
7. Double-loop detectors are the primary alternative to single loops.  They are closely spaced and 

provide the time interval between a vehicle’s arrival at each loop. Given the distance between 
the two loop heads, this information permits ready speed estimation.  Dual loops also permit 
direct estimation of vehicle length, given the speed estimate and assuming an effective detection 
zone length of either or both detectors.

8. A constant-speed assumption during passage over a loop detector is reasonable here, given the 
short effective length of the detection zone (which is on the order of 25 feet).

9. Presence-type detectors detect vehicle presence by measuring changes in sensor signals. 
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10. Inductive loop detectors are “occupied” when able to detect the presence of metal bodies 
overhead.  At the level of the pavement, their effective detection zones typically exceed their 
physical length. However, at the level of a vehicle’s metal body, the effective zone length may 
differ.  Depending on the placement and sensitivity of each detector, as well as vehicle body 
heights, effective lengths differ (Reno A&E 2003).

11. Occupancy fraction is the portion of the 30-second interval during which a vehicle lies above 
the loop.

12. For instance, Wang and Nihan’s (2003) method requires a distribution of vehicle lengths and 
classifies vehicles into just two classes (short and long) in order to compute average speeds for 
both types.  

13. Using these fixed-length assumptions, 6.32% of the average speed estimates exceeded 100 
mph, and 0.93% exceeded 120 mph.  Only unreasonably low estimates of vehicle length could 
produce reasonable speed distribution estimates.

14. If the speed distributions “shift” over the 150-second interval, but retain their spread (or 
instantaneous variance), the data will suggest more variation than actually exists.  If, instead, 
the means stay constant but variations change, estimates may be biased high or low for the 
middle 30-second interval’s speed variation.

15. The database provides no information regarding crashes that start in one lane but end in 
another.

16. Since the variance of a sample average is inversely proportional to the sample size (assuming 
independent observations), the observational weights are these sample sizes (i.e., traffic counts). 
(See Greene 2000.)

17. Ideally, weights vary inversely with error-term variation.  Since the variation of averages is 
proportional to the inverse of sample size (assuming independent observational units), this 
weight should apply here, at least in theory. 

18. Since detector stations are within 2000 feet of all crashes, the travel times from detector to crash 
were negligible under most traffic conditions, relative to the 30-second aggregation period. 
Thus, the time-till-crash variable does not adjust for this length discrepancy. 

19. Five lanes was the maximum (one-way) freeway width found in the data set.
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