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Truck Volume Estimation via Linear Regression

Under Limited Data

This paper employs linear regression algorithms in order to train models under the presence of
limited training data. Usually in transportation applications, these models are built via Ordinary
Least Squares and Stepwise Regression, which perform poorly under limited data. The algorithms
presented in this paper have been extensively used in other scientific fields for problems with
similar conditions and seem to partially or fully remedy this problem and its consequences. Four
different algorithms are presented and several models are built. The models are used for truck
volume prediction on highway sections in New Jersey, and results are compared to Stepwise Linear

regression models.
by Maria Boilé and Michail Golias
INTRODUCTION

Trucks negatively impact the roadway network,
primarily because of their massive weight, poor
operating characteristics, and large dimensions.
These impacts intensify the need for better
truck traffic estimation techniques. Such
estimates are used by state DOTs (Departments
of Transportation) and MPOs (Metropolitan
Planning Organizations) in pavement and
bridge design and management, reconditioning
and reconstruction of highway pavement,
planning for freight movements, environmental
impact analyses, and investment policies.
Transportation planners and researchers have
attempted to address the issue of predicting
freight movements at the regional, state, and
local level. The successful implementation of
this type of analysis is limited, compared with
similar analyses in passenger transportation due
to the lack of appropriate freight transportation
modeling methodologies, (models and data),
and the complexity of the freight transportation
system. The Quick Response Freight Manual
(FHWA 1996) provides simple techniques and
transferable parameters that can be used to
develop commercial vehicle trip tables. The Trip
Generation Handbook (2003), which provides
guidelines for the preparation and application
of trip generation data for a wide range of land-
use categories, albeit not explicitly for freight
trips, are widely used in practice even though
the sources they are derived from are limited

and outdated (Transportation Research Board
2001).

The current state of practice in truck trip
activity estimation and freight modeling in
general falls short of today’s needs. According
to the Federal Highway Administration
(Transportation Research Board 2001) there
are three major widely reported approaches
to estimate truck trip data: a) Estimation of
simple rates, b) Linear regression models, and
¢) Commodity flow models. Linear regression
is one of the main methods used in vehicle-
based modeling and can be considered rather
simple and straightforward. Critical limitations
of vehicle-based freight modeling include
(Ortuzar and Willumsen 2001; Allaman et al.
1982): a) insufficient data and accuracy of the
measured truck counts, b) different vehicle
classification methods that further limit the
available data, c) limited traffic data, d) time
and place dependence of the models, and
e) choice of the independent variable set.

Typical approaches to develop truck trip
estimates using land-use and socio-economic
data include, acreage of land used, square
footage of building floor area, and employment
or activity indicators (e.g., number of container
lifts and import/export container moves). The
selection of land-use categories is a critical
question and one for which little guidance
is available. The general approach in truck
demand modeling applications is to employ
land-use categories that correspond closely to
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industry/employment categories. In addition,
state DOTSs obtain truck activity information on
state highways through their traffic monitoring
systems. These systems typically include
information on traffic counts taken at various
locations throughout the state. Although these
counts usually provide a good geographic and
temporal coverage for the overall traffic, there
are a limited number of classification counts
providing information explicitly on truck
volumes. To fill the gap of limited availability
of observed truck traffic data, various models
may be used as predictive tools.

This paper describes the implementation
of different linear regression techniques, which
may be used to obtain more accurate estimation
of commercial traffic. The goal is to create linear
relationships between point estimates of truck
volumes and surrounding land use activities
and economic development in the form of:
Observed Truck Volume = F(Socioeconomic
Variables), where F is a linear function of the
independent variables that represent land use
and socioeconomic activity measures. Mittal et
al. (2004) employed Stepwise Linear Regression
(SLR) to build linear models that in some
instances experienced: a) negative or extremely
high predictions for the validation dataset, b) a
negative sign on variables that have a positive
effect on truck volumes, and c¢) over-fitting
or null-model results (no predictors enter the
model and the mean is used as the prediction for
cach observation). These problems are typical
in linear regression modeling with limited
data. In this paper, more advanced regression
algorithms, which are shown in the literature
(Hastie et al. 2001; Helland and Almoy 1994;
Hubert and Vanden Branden 2003; Ngo et al.
2003) to have the capability to deal with issues
such as the ones mentioned above, have been
implemented and tested. Different approaches
are used to create relationships between truck
traffic volumes on roadways and their adjacent
land use and economic activity. The resulting
models are used to estimate truck volumes on
roadway sections where such information does
not exist through classification counts. Model
results are compared with actual observations to
determine their accuracy. The paper concludes
with a discussion of the implementation of
the proposed modeling framework within a
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Geographical Information System framework
for easy access to data available to state DOTS,
quick update of the models whenever new data
becomes available, improved user friendliness,
and visualization of model results.

BACKGROUND

Using Ordinary Least Squares (OLS) regression
analysis for the estimation of truck trips as a
function of a set of variables has been widely
used. (See the Transportation Research Board,
2001, for a detailed list of truck demand
modeling studies using linear regression.) The
following is a brief description of the OLS
method and its limitations with a presentation
of alternative modeling approaches that may
overcome these limitations.

OLS Regression

Suppose we have a training dataset® (X, v,),
....... X, ), where i=1,..,n is the number of
observatlons j=1,.,m is the number of
independent variables/predictors, X, are column
vectors (observed values of the mdependent
variables), and y, is the vector of the observed
values of the dependent variable (in the case of
truck trip estimation y, are observed truck trips).
The comparison class consists of the linear
function Y=X*b. Throughout this paper
X={X,X,,....X} is referred to as the
mdependent varlable dataset and Y={y, y,,.....
v} as the dependent variable dataset. The least
squares linear regression method recommends
computing the column vector 5 (regression
coefficient vector) that minimizes the squared
difference of the observed values from the
models’ predictions:

b=argmin Y (y,—bo+Y X, b;)’
b i=1 J=1

where: bo is the intercept. A basic criterion
for the goodness of fit of the model is the R?
value (i.e., the fraction of the variance in the
data that is explained by the regression model)
while the significance of the model and the
variables are expressed through other statistical
measures (such as the F or p values). Prior to
creating the model, it is assumed that a number
of independent variables (X) have a causal
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effect on the dependent variable (Y), but it is
rarely known with certainty which independent
variables should be included in the final model.
Often in OLS, exact multicollinearity,
caused by limited data,? will cause instability
of the estimated parameters® (regression
coefficients) unrealistic models that overfit
the data, and conceptually incorrect models
(independent variables that appear in the model
with an “incorrect” coefficient sign; e.g.,
negative coefficient for an independent variable
that has been known to have a positive effect
on the dependent variable). Several different
approaches have been presented in the literature
to deal with this problem and can be classified as:
a) variable elimination, b) variable combination,
and ¢) variable shrinkage techniques. The main
idea behind these techniques is to try to reduce
either the number (variable elimination or
variable combination) or the influence (variable
shrinkage) of the independent variables.

Variable Elimination

Eliminating variables from a model is a special
case of model selection procedure and includes
Stepwise and all-subsets regression. In stepwise
regression (SR) the basic procedures involve:
a) identifying an initial model, b) iteratively
altering the model from the previous step by
adding or removing an independent variable in
accordance to a certain criterion (usually the F
or p values of the independent variable under
consideration), and c) terminating the search
when improvement of the model is no longer
possible given a certain criterion, or when a
specified maximum number of steps has been
reached. A limitation of the SR approach is that
it assumes there is a single “best” subset of the
independent variables and seeks to identify
it. Furthermore, if, during stepwise variable
selection, a predictor is ultimately excluded
from a model due to its low significance (F or
p value), the coefficients of the other variables
will change (Neter et al. 1996). Thus the use of
SR may exclude explanatory variables that are
actually highly correlated with the dependent
variable.

All-possible-subset regression (APSR) can
be used as an alternative to stepwise regression.

Using this approach, one first decides on the
range of subset sizes that could be considered
useful. For example, one might expect that
inclusion of at least three independent variables
in the model is necessary to adequately explain
the dependent variable, and also might expect
there is no advantage to considering models
with more than six independent variables. Only
the “best” of all possible subsets of three, four,
five, and six independent variables would then
be considered. The problem with APSR is that
the number of possible models increases very
rapidly as the number of independent variables
in the whole model increases. For example,
for the all-possible subsets regression with up
to 12 independent variables to be performed,
about 2.7 million different models need to be
estimated.

Both SR and APSR are very sensitive to the
size of the dataset and overfitting under limited
data is a major problem with both approaches
(Hastie et al. 2001).

Variable Combination

In some situations, it is not feasible to use
variable selection to reduce the number of
independent variables or it is not desirable to do
so because the experience of the modeler with
the problem suggests that all of the considered
variables should be present in the final model. In
these situations the general method used, based
on Principle Components Analysis (PCA), is the
Principal Component Regression (PCR). The
idea of PCR is to combine all the independent
variables into anew group of variables (principal
components), and then regress the dependent
variable on the newly created group. Major
limitations of this approach include choosing
the number of the new variables, interpretation
of the principal components, and complexity of
applying the method.

Another method that belongs to this
category is Partial Least Squares Regression
(PLSR). It is a recent technique that generalizes
and combines features from PCA and multiple
regression. It is particularly useful when a set of
dependent variables needs to be predicted from
a very large set of independent variables (Abdi
2003).
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Variable Shrinkage

A less complicated approach compared with
variable combination is the use of shrinkage
estimators.* Ridge Regression (RR), and Lasso
Regression (LR) are two of the most widely used
shrinkage techniques that perform well under
multicollinearity (LR can be also considered
as a variable elimination technique). Ridge
regression is probably the strongest competitor
for PLSR in terms of flexibility and robustness
of the predictive models. Both methods, which
can be considered as constrained versions of
OLS, require the setting of arbitrary “constant/
tuning parameters” (explained in more detail in
the Model Description section), which is used
to shrink the regression coefficients from their
original OLS value. This can be considered
as a major limitation of the methods because
selecting the constant could become a very
cumbersome and time-consuming procedure.
Both methods though, have been known to
produce more robust results when compared to
OLS or SR (Hastie et al. 2001).

MODEL FORMULATION
Approach Selection

In this section a brief description of the
different model formulations, with links to
related literature, are presented. PLSR, RR,
and LR are probably the least restrictive of the
various multivariate extensions of the multiple
linear regression models. This flexibility allows
them to be used in situations where the use of
traditional multivariate methods (OLS, SR) is
severely limited, such as when there are fewer
observations than predictor variables. An
extensive simulation study comparing variable
selection regression methods is presented in
Frank et al. (1993), and although results are
conditional on the simulation design, they
indicated that PCR, RR, and PLSR are, in
the case of limited data or multicollinearity
problems, highly preferable. Wentzell and
Montoto (2003) present theoretical and
empirical comparisons of PCR and PLSR/}
concluding that the two methods produce
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similar optimal predictions and perform in a
similar way, while Helland and Almoy (1994)
and Helland (2001) proved that neither PCR
nor PLSR dominate one another. On the other
hand, unlike LR, none of these methods perform
variable selection/elimination.

PLSR, RR, and LR have been used in
various disciplines such as chemistry, economics,
medicine, psychology, and pharmaceutical
science where predictive linear modeling,
especially with a large number of predictors
is necessary. These techniques will also be
examined in this paper. Motivated by the use
of constraints in all three methods, a classical
constrained optimization approach is also
presented. The main reason for introducing
this approach, described later in detail, is that
in contrast to the other techniques, it is quite
suitable to include certain decision maker
preferences if these need to be reflected by the
final model and its predictions. The authors
would like to note that least absolute deviation
and least median of squares linear regression,
variations of OLS that can be used, were
not considered in this paper as they can very
frequently exhibit instability (Ellis 1998).

Ridge and Lasso Regression

Ridge and Lasso regression are shrinkage
methods that constrain large values of the
coefficients (b.) of the linear model. The
difference between these two algorithms is
that, while Ridge regression does not omit
any of the independent variables, Lasso, due
to the type of the constraint used, can zero-out
some of the coefficients. The formulas for both
methods are given below in equations 1 and 2.
In these equations bo is the intercept, b are the
regression coefficients, and X is the value of
the independent variable ; at y, Adjusting for
the tuning parameters s and t (parameters that
constrain/penalize the regression coefficients)
in equations 1 and 2 produces different model
estimates. Notice that when s and t are equal
to 0, the least squares estimate is obtained.
However, as s and t get bigger, over fitting gets
more expensive as larger values of bj penalize
the criterion more.
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Ridge Regression Formulation

M p= argmmZ(y bo—ZX b/

P

Subject to: b/ <s

i=1

Lasso Regression Formulation

@) p= argmmZ(y bo—ZX b/

Subject to.: Zp:

i=1

b;|<t

Ngo et al. (2003) presented three practical
cases where the application of ridge regression
is studied and illustrated through mathematical
derivation and computer simulation. In all three
cases, the improvement over the OLS method
was tremendous in both the relevant mean
square error function®and the ridge trace. (A
plot of the regression coefficients as a function
of the ridge parameter is shown in Figure 1
for a four-dimensional hypothetical regression
scenario.)

Figure 1: Hypothetical Ridge Trace Plot

It can be shown (Hastie et al. 2001) that
Ridge regression has a closed form solution.
Grandvalet (1998) derived an EM (expectation
maximization) algorithm that allows for
the computation of the Lasso solution. The
algorithm is used in this paper. The main
drawback of these two methods is the difficulty
in deciding on the values of the tuning (s and
t) parameters. Usually, cross-validation’ is used
but this requires a significant amount of training
data. In this paper we use an iterative process to
set the values for these parameters. Both RR and
LR algorithms are conceptually easy to apply
and are part of many statistical packages (SAS,
SPSS, MatLab, R, SPLUS), which facilitates
their implementation.

Partial Least Squares Regression

PLSR isalinear regression technique developed
to deal with high-dimensional regressors
(large number of independent variables) and
one or several dependent variables. In PLRS
we assume that X and Y are related through a
bilinear model. The main idea of the bilinear
structure is to first construct kp variables
as a linear combination of the X variables
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(k,=F (X), p<||X]|) and then regress the
response (Y) onto these kp variables (Y=G(k p)).
It is well known that popular algorithms for
PLSR (Wakeling and Macfie 1992; De Jong
1993) are very sensitive to outliers in the
data set. Hubert and Vanden Branden (2003)
present robust algorithms that can handle high
dimensional spaces.® Their algorithms are
extremely suitable for high-dimensional data
(when the number of the independent variables
are larger than half the number of observations).
Their approach combines the goodness-of-fit
and the predictive power of the model when
selecting the best sub-model. The selection of
the number of variables to be used is based on

the RCS, =y 4> +(1—y)A? statistic, where

v is a tuning parameter between 0 and 1, and A is
a robust statistic. For further details see Hubert
and Verboven (2003), and Hubert and Vanden
Branden (2003). The y parameter is used to
decide whether the model needs to be strong in
prediction (y > 0.5) or whether the goodness-
of-fit is a primary interest (y < 0.5). For this
paper a combination of three values (0, 0.5,
and 1) for the y parameter was used in order to
select the number of components as suggested
in Engelen and Hubert (2005). For more details
the reader is referred to Engelen and Hubert
(2005). A Matlab® toolbox enabling the use of
these algorithms is available and is used in this
paper (Verboven and Hubert 2005).

Constrained Linear Least Squares
Optimization (CR)

Constraint regression has been extensively
treated in the literature (Mukerjee and Tu
1995; Geweke 1996; Knautz 1998; Koenker
and Ng 2004; Klugkist 2004; Li 2005; Zhu et
al. 2005; Edlund and Ekblom 2005). Similar
to this concept and using an objective function
(equation 3) that minimizes the sum of squares,
constraints are added to the values of the
coefficients as well as to the values of the
predicted variables.
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Constrained Regression Formulation

3) mm{Z{(Z X, b))~y ¥

subject to:

(3a) Y X, bj<d, Vkci
J

(b) X X,by=di Vici
J

GBe) Ib<b,<ub Vj

(Bd) k+Il=n

Where: /b and ub are the lower and upper bound
vectors for the beta values, d, and 4/ are the
upper and equality bounds, and # is the number
of observations.

From the engineering point of view the
first constraint (3a) captures the range of the
expectation for the observed truck volumes,
taking into account the uncertainty of the
accuracy on the measurement of each station.
The second constraint (3b) can be considered a
weighting factor for the observed truck volumes.
In some cases it is known that the observed
truck measurement is accurate (i.e. weigh-in-
motion [WIM] station counts) and in some
cases it may not be very accurate (i.c., 48-hour
count stations). Setting up equality constraints
for some or all of the accurate measurements
forces the model to give more weight to these
measurements, minimizing transferring of error
that may exist in vehicle counts. The third
constraint (3c) can be considered a weighting
factor of the decision variables. The upper and
lower bounds of the constraints are based on
the training data and possibly the engineers’
experience with the study area. If a priori
knowledge for a variable’s positive effect
exists, that variables’ beta coefficient can be
constrained to positive values and vice versa.

CASE STUDY

The statistical methods described above were
tested with data consisting of classification
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traffic counts as the dependent variable and
socioeconomicdataastheindependentvariables.
The dependent variable dataset was obtained
from various locations throughout New Jersey.
It consists of 270 long and short duration truck
traffic counts (FHWA 2001) taken at different
locations in the state. Long duration counts
were obtained by permanent WIM locations.
Initially traffic counts of vehicle classes 5
through 13 in the FHWA vehicle classification
system were to be considered trucks. Following
NJDOT officials’ suggestion, vehicle class 5
was removed from the analysis because of the
arguable way that class 5 vehicles are classified,
resulting in cars, small pick-up trucks, and vans
to often be classified as class 5 trucks.

Data for the independent variable dataset
included population, the number of employees,
sales volume, and number of establishments
for each Standard Industrial Classification
(SIC) code. A total of 34 independent variables,
including population, were considered in the
final model training process (Table 1). Both
the dependent and the independent variables
and the estimates are based on 2001 data.
Data have been extracted from the ESRI BIS
(Environmental Systems Research Institute
Business Information Solutions), database,’ a
comprehensive list of businesses licensed from
InfoUSA.

Uniform highway sections were defined
around each classification count location. In

addition, for model validation and testing
purposes, uniform sections were defined
on 14 major highways. The sections were
defined based on a set of criteria such as major
interchanges, changes in roadway functionality
and in roadway geometry, and traffic count
availability. Socioeconomic data associated
with these sections were extracted and used
as input in the model training and testing
process. ArcView, a GIS software package, was
used to buffer and aggregate the independent
variable dataset for nine different bandwidths
of influence® (0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 2,
3, and 5 miles area around each section).

Creating models based on different buffer
zone sizes permits the determination of the
sensitivity of a model with the increasing size
of the area of influence of the independent
variables (as the buffer area size increases the
model accuracy fluctuates). This procedure will
identify the most appropriate buffer zone size
and model for a particular type of roadway.
In order to reduce the prediction error and
maximize the correlation between the prediction
variables and the predicted truck volumes, the
dataset was clustered into six subsets (Table 2)
according to the functional class (FC) of the
roadway (Weinblatt 1996).

Building models by considering roadway
classes is significant, as different roadways
attractdifferenttruck volumesthatare dependent
on different variables. Roadways are classified

Table 1: SIC Titles and Corresponding Independent Variables*

SIC Title and Corresponding Independent Variables

Mining Agriculture Manufacturing Construction Transportation Utilities
Number of Number of Number of Number of Number of Number of
Employees Employees Employees Employees Employees Employees
Sales Volume Sales Volume Sales Volume Sales Volume Sales Volume Sales Volume
Number Of Number of Number of Number of Number of Number of
Establishments Establishments Establishments Establishments Establishments Establishments

Retail Wholesale Real Finance/ Services

Trade Trade Estate Insurance
Number of Number of Number of Number of Number of
Employees Employees Employees Employees Employees .

ploy! ploy! ploy! ploy ploy Population
Sales Volume Sales Volume Sales Volume Sales Volume Sales Volume
Number of Number of Number of Number of Number of

Establishments Establishments Establishments

Establishments Establishments

*Data provided by NJDOT is in SIC, not NAICS
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under different FCs based on the type of the
roadway, lane width, traffic, and functionality.
Roadway information was obtained through
the NJDOT Statewide Truck Model (STM) and
the 2002 New Jersey Straight Line Diagrams
(NJSLD).

Table 2: Clustered Dataset by Highway
Functional Class and Count Availability

Functional Class Counts
FC =1, 2 (rural interstate and major arterials) 31
FC=6, 7,8, 9 (rural minor arterials, 51
collectors, and local)

FC =11 (urban interstate) 29
FC = 12 (urban expressways and parkways) 20
FC = 14 (urban major arterials) 59
FC=16, 17, 19 (urban minor arterials, 80

collectors, and local)

MODEL APPLICATION

The main issue with RR and LR was the choice
of the values for the tuning parameters s and t.
The limited training data did not allow cross-
validation to be performed. Instead, multiple
values for the parameters were used. As shown
in Figure 2, the values for the tuning parameters
are first initialized (s=t=1). Ridge and Lasso

Figure 2: Ridge and Lasso Regression
Tuning Parameter Value Selection
Process

Initialize Tunning
Parameters s and ¢
s=I
=1

I

¥ Perform RR and LR

Positive

redictions Yo END

regression are performed, and if all the predicted
truck volumes ()A’,-) are positive the process stops.
If not, the parameters are increased by 5% and
the algorithms are re-performed. Out of all the
different values of s and t that were used in the
iterative process shown in Figure 2, two are
chosen for each approach (RR and LR): a) the
values of s and t that produce the models with
the highest R? value, and b) the values of s and
t that produce a model with all the predictions
positive.

The main issue with PLSR as discussed
previously is the choice of the number of
components (latent variables) used. For that
purpose an extra parameter (y) was used to select
the optimal number of components. The values
of y range between zero and one. High y values
would improve goodness of fit at the expense
of predictive power and vice versa. For the
example presented herein, Figure 3 indicates
that the number of components that achieves
a balance between minimizing the error in

Figure 3: RCS Value for Three
Different y Values
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prediction while maximizing the goodness of
fit would range between two and five.

The constraint optimization approach was
the last to be implemented. The formulation
implemented for this study is given in equations
4a-4c.

CR Final Formulation

(4a) mln[Z{(z ,jbj) »¥ }
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subject to
(4b) 0.25% ), <Y X, b, <125%y,> Vi
J
SONETER7

Constraints on the minimum and maximum
value, for both the coefficients and the predicted
variables, may vary sothatthe modelsaccountfor
space variations corresponding to the functional
class of the highway and the geographical
location of the count. The first constraint
(4b) requires that the values of the estimated
truck volumes fall within 25% to 125% of the
observed value. This range of the predicted
truck volumes is not necessarily the same for all
the stations. It may vary based on the functional
class of the roadway, the type of the observed
count, and the count location. These bounds
were determined using the iterative process
shown in Figure 4. The values of the lower and
upper bounds are first initialized (lower bound
= 75%, upper bound = 100%) and then the CR
is performed. If a feasible solution is obtained,
the algorithm stops. If a feasible solution is not
obtained, the bound that causes the feasibility
problem is identified and the value is increased
(upper bound)/decreased (lower bound) by
5% and the CR is re-performed. This process
continues until both bounds provide a feasible
solution. The limitation of using constraint 4b
is that for relatively small training datasets and
strict lower and upper bounds, the solution may
be infeasible (as was the case here where the
lower bound dropped to 25% of the observed
value in order to obtain a feasible solution).
A pseudo-increase’? of the data, similar to the
bootstrap method®®, was performed for all the
subsets and the results showed that both interval
bounds are inversely correlated to the amount
of the training data. In other words: the larger
the dataset the stricter the bounds that can be
enforced.

The second constraint (4c) indicates
that the predictive variables should have a
positive effect on truck volume production.
This constraint was used because, due to the
small amount of data, one or two outliers were
enough to enter a variable into the model with
an incorrect sign (which was the case with
SLR). To verify the assumption of the positive

effect for all the independent variables, Mean
Coefficient Regression (Pazzani and Bay 1999)
was performed for each dataset and the results
showed positive correlation between predictors
and predicted variables in isolation.

In all three approaches, two criteria to be
met are set as shown in equation (5). The first
criterion requires that R? values fall between
two extreme values. It is assumed that if the
R?is greater than 0.9, then the model is over-
fitting the learning dataset, while for R? less
than 0.5 the predictive power of the model is
not adequate. The second criterion requires that
the predicted truck volume at i, 3, is greater than
or equal to a lower bound value (y,)

(5) 05<R*<0.9,and y > y,

Figure 4: Iterative Process for Upper and
Lower Bound Determination

Initialize Lower and Upper
Bound Yalues o 0.75 and |

Run CR.

Lower/Upper
Boand Problem
Lower Bound

Decrease Lower
Bound by 5%

MODEL EVALUATION

Increase Upper

A —Upper Bound———| Bound By 5%

For the first part of the evaluation, the adjusted-
R2 values* of the models obtained are compared
to the ones obtained from the SLR approach.
Table 3 presents the best R? value for each type
of roadway and the corresponding band buffer
used to extract the socioeconomic data. For all
statistical approaches, the results show that the
best model for a roadway depends on the type
and the function that the roadway serves, but is
also dependent on the size of the buffer zone
of influence. Table 3 shows that higher-level
roadways (expressways [FC=12] and urban
interstates [FC=11]) have a larger optimal band
size compared with lower level roadways. This
result satisfies the underlying assumption that
trucks will use local roads only to access local
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Table 3: R? Values and Band Buffer for the Best Model for Each Functional Class

CR SLR
(No R? (Negativity RR LR (Ne Palziii In
Roadwa Problem, No In Some (Small R? (Small R? Prgdictio)rlls)
Functivgngl Prediction Predictions Values for some  Values for some
cl Negativity and models) models)
ass Problems) R? Problem)
R? Band R? Band R? Band R? Band R? Band
1-2 0.82 0.25 0.97 0.25 0.54 0.25 0.65 0.25 0.69 0.25
6-9 0.79 0.25 0.84 0.5 0.62 0.25 0.76 0.25 0.65 0.25
11 0.77 0.5 0.92 0.75 0.34 0.5 0.41 0.5 0.65 0.75
12 0.87 0.75 0.99 1.0 0.28 1.0 0.44 1.0 0.80 0.75
14 0.87 1.0 0.13 0.25 0.1 1.0 0.1 1.0 0.38 15
16-19 0.82 1.25 0.59 0.25 0.1 1.25 0.18 1.25 0.33 1.00

facilities and they will travel over higher level
roadways for the rest of their trip.

It can be seen that SLR produces some
models that are unrealistic (R? values close
to 1) and most probably over-fit the learning
dataset (negative predictions). On the other
hand, the other approaches seem to produce
models with more reasonable R? values. Only
the CR models managed to meet both of the
criteria set in equation (5), and in that sense
produced better results than SLR. On the other
hand, RR and LR models did not always meet
both criteria simultaneously. For large values of
the parameters, the correlation coefficient was
more than satisfactory (R%>0.65, p<0.05) but
some of the predicted values on the learning
dataset were negative. Increasing the values of
the tuning parameters (S and t), the constraints
in equation (2) and (3) become less restrictive
and the solution approaches the least squares
solution. As the values of the tuning parameters
were decreased, the predictions were positive
but the R? value was below satisfactory levels
(as set in equation 5). The concept behind the
effect of changing the value of these parameters
is discussed in more detail in Hastie et al.
(2003).

PLSR exhibited similar behavior (results
depend on the chosen y value and the number
of components used) and produced negative
values for some of the observations. Results
shown in Table 3 are for y=0.5 (a value for which
the error between prediction and goodness-
of-fit models is averaged). Compared to the
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SLR approach, however, RR, LR, and PLSR
models produced better results. They reduced
the number of negative predicted truck volumes
by 80% to 100% compared to the same number
in the SLR models and produced models for
all the band buffers of the six different clusters
of roadways. Models 1-6 present the final
models built using CR, which are the only ones
meeting both criteria (as shown in equation 5).
All the variables that entered the model had a
p-value<0.05. However, it should be noted that
under such limited data p-values lose most of
their explanatory power.

Model 1: Trucks on Rural Interstate
(R?=0.82, p<0.05)

Daily Truck Volume = 48+8.5442*EMP_
TRANSP+ 1.2641*EMP_FINANC+
2.8996*EMP_REAL+ 0.1758*SALES
TRAN+ 0.0114*SALES_UTIL

Where: EMP_TRANSP is the employment in
the transportation industry, EMP_FINANC
is the employment in the finance industry,
EMP_REAL is the employment in real estate,
SALES TRANS is the number of sales in the
transportation industry, and SALES_UTIL are
the sales in the utilities industry.

Model 2: Trucks on Rural Minor

(R?=0.79, p<0.05)

Daily Truck Volume = 3+0.245*EMP_
AGRICU+ 1.02*EMP_CONSTR+
0.013*EMP_UTILIT+ 0.001*SALES_AGRI+
0.001*SALES_MANU+ 15.574*COUNT _
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TRAN+ 3.142*COUNT_WHOL

Where: EMP_AGRICU is the employment in
the agricultural industry, EMP_CONSTR is
the employment in the construction industry,
EMP_UTILIT is the employment in the utilities
industry, SALES_AGRI is the number of sales
in the agricultural industry, SALES_MANU
are the sales in the manufacturing industry,
COUNT_TRAN isthe number of establishments
in the transportation industry, and COUNT _
WHOL is the number of establishments in the
wholesale industry.

Model 3: Trucks on Urban Interstates
(R?=0.77, p<0.05)

Daily Truck Volume = 267+10.258*EMP_
AGRICU+ 7.71*EMP_MINING+
3.556*EMP_CONSTR+ 0.157*EMP_
MANUFA+ 0.073*SALES_MINI

Where: EMP_AGRICU is the employment in
the agricultural industry, EMP_CONSTR is the
employment in the construction industry, EMP_
MINING is the employment in the mining
industry, EMP_MANUFA is the employment in
the manufacturing industry, and SALES_MINI
is the sales in the mining industry.

Model 4: Trucks on Expressways

(R?=0.87, p<0.05)

Daily Truck Volume = 110+0.348*EMP_
WHOLES+ 0.428*EMP_RETAIL+
0.008*SALES _CONS+ 268.57*COUNT _
MINI+ 29.976*COUNT_TRAN

Where: EMP_WHOLES is the employment in
the wholesale industry, EMP_RETAIL is the
employment in the retail industry, SALES
CONS is the sales in the construction industry,
COUNT_MINI is the number of establishments
in the mining industry, and COUNT_TRAN
is the number of establishments in the
transportation industry.

Model 5: Trucks on Urban Major

(R?=0.87, p<0.05)

Daily Truck Volume = 26+0.673*EMP_
CONSTR+ 0.129*EMP_MANUFA+
0.076*EMP_WHOLES+ 0.007*SALES _
TRAN+ 0.001*SALES_UTIL+
13.213*COUNT_AGRI+ 257.39*COUNT _
MINI

Where: EMP_CONSTR is the employment in

the construction industry, EMP_MANUFA is
the employment in the manufacturing industry,
EMP_WHOLES is the employment in the
wholesale industry, SALES_TRANS is the
number of sales in the transportation industry,
SALES_UTIL is the number of sales in the
utility industry, COUNT_MINI is the number
of establishments in the mining industry, and
COUNT_AGRI is the number of establishments
in the agricultural industry.

Model 6: Trucks on Urban Minor (R?=0.82,
p<0.05)

Daily Truck Volume = 4+0.004*SALES _
MINI+ 0.002*SALES_TRAN+
2.98*COUNT_AGRI+ 24.995*COUNT _
MINI

Where: SALES_MINI is the sales in the mining
industry, SALES_TRANS is the number of sales
in the transportation industry, COUNT_AGRI is
the number of establishments in the agricultural
industry, and COUNT_MINI is the number of
establishments in the mining industry.

The second part of the evaluation compared
the predictive power of the models on 14
selected New Jersey highways. The RR, LR,
and PSLR models had a better predictive power
(less negative predictions) than SLR. The CR
models produced the best results among the
three methods and are used in the following
discussion. Results for highways 1-80 and US
206 are presented in Figures 5 and 6, and in
Tables 4 and 5. The reason for choosing these
highways is the high number of observed truck
traffic counts. These figures show the predicted
truck volumes for each section of the highway.
Observed counts are also shown for sections of
the highway, for which such information exists.
As can be seen in Figure 5 and Figure 6, the
negativity problem in the predictions has been
resolved. It is also obvious that the CR approach
tends to reduce, but not eliminate, the over-
estimation problem. This pattern is followed in
all 14 highways (205 sections) selected to test
the models.

Another problem of the SLR method
was related to the values of the intercept. The
intercept in these models can be interpreted
as: “How many trucks should we expect at a
specific section if there is no influence from
adjacent land use and economic activity.” The
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Figure 5: Observed and Predicted Truck Volumes from CR and SLR Models for Highway 1-80.
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Table 4: Observed, Predicted and Relative Errors of Truck Volumes for Highway 1-80
(Stepwise and Constrained Regression)

ngh\_/vay SLR CR Predictions Observed CR Relative Error SR Relative Error
Section Predictions

180_01 4576 551 N.O N.A N.A
180_02 7015 4885 7178 32% 2%
180_03 694 2038 N.O N.A N.A
180_04 4831 4773 7928 40% 39%
180_05 -9889 14564 N.O N.A N.A
180_06 6778 4994 N.O N.A N.A
180_07 25284 11773 7426 37% 71%
180_08 20583 6182 12913 52% 37%
180_09 57541 45608 38518 16% 33%
180_10 22793 19192 11353 41% 50%
180_11 29546 24168 5014 79% 83%
180_12 38607 28090 7906 2% 80%

N.O: No Observations, N.A.: Not Applicable

Table 5: Observed, Predicted and Relative Errors of Truck Volumes for Highway US 206
(Stepwise and Constrained Regression)

Highway SLR

. . CR Predictions Observed CR Relative Error SR Relative Error
Section Predictions

US206_01 -324 221 675 67% 148.0%
US206_02 1144 941 363 61% 68.3%
US206_03 931 419 848 51% 8.9%
US206_04 860 1263 N.O N.A N.A
US206_05 1289 539 N.O N.A N.A
US206_06 1474 433 N.O N.A N.A
US206_07 1117 728 180 75% 83.9%
US206_08 1455 603 N.O N.A N.A
US206_09 1261 503 N.O N.A N.A
US206_10 869 685 N.O N.A N.A
US206_11 2416 1894 N.O N.A N.A
US206_12 1395 1296 N.O N.A N.A
US206_13 1458 1562 N.O N.A N.A
US206_14 -296 1105 515 53% 157.5%
US206_15 -1200 4576 N.O N.A N.A
US206_16 1059 951 718 25% 32.2%
US206_17 2261 288 1848 84% 18.3%
US206_18 1976 577 526 9% 73.4%
US206_19 1635 706 437 38% 73.3%
US206_20 2393 665 364 45% 84.8%
US206_21 2689 644 450 30% 83.3%
US206_22 375 191 319 40% 14.9%
US206_23 -130 400 961 58% 113.5%
US206_24 863 54 194 2% 77.5%

N.O: No Observations, N.A.: Not Applicable
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intercept should be independent of the band
buffer area used to train the models and thus
changing the band size should not significantly
affect this value. Table 6 presents the intercept
of each model for each type of roadway.

When SLR was used, the limited training
data forced the intercept to become correlated
to the independent variables and vary with the
band buffer size. In RR and LR, the intercept is
calculated as the mean value of the predicted
variable and is constant for all the models. This
creates the problem, that under a limited training
dataset, the calculated intercept may be over-
estimated. Using PLSR and CR, the intercept is
part of the decision variables and is calculated
along with the rest of the beta coefficients of
each model. It should be emphasized that
PLSR and CR produced approximately the
same intercept for all nine different bandwidths
(0.25-5 miles) for each FC. The values of the
intercept also indicate that the models account
to a certain extent for the through (non-local)
traffic. High intercept values indicate that
through trucks use major facilities, such as

interstates and expressways. In lower level
highways, the small intercept value indicates
that the truck traffic depends primarily on the
local socioeconomic activity, which generates
local traffic.

GIS MODEL IMPLEMENTATION

One major disadvantage of the proposed
methods, making them unattractive to the
transportation practitioner, is that their use
necessitates some degree of sophisticated
computation, and their application depends
on the availability of software. In order to
make the algorithms more widely and easily
applicable to the practitioner, an add-on toolbar
that incorporates these methods within a GIS
environment (Boile and Golias 2004) has been
developed. This tool has been created as an
easy-to-use, in-house application (Figure 7) for
state DOTs and MPO transportation planners,
giving them the ability to develop regression
models and use them in order to obtain an
estimate of truck activity throughout the state.

Table 6: Variation of Intercept with Band Buffer Size

Intercept per FC (number of vehicles)

Statistical Technique Used (ii?lr:_g) EC EC EC EC EC EC
12 69 11 12 14 1619

CR 0255 48 3 267 110 26 4

RR & LR 0255 900 68 5000 2200 500 70

bLSR oosg 1096 267 5764 2319 611 99
025 412 75 6057 2766 1501+  119°

05 677 64 999¢  Nmp  NMT O go3

075 1008 89 6374 4890 "M 119

1 116 101 5537 35050 M’ 125

SLR 125 609 68 5306 3977 M’ 127
15 1210 63 1453 3182 M 49

2 354 37 4870 4454 2200 130

3 659 -6 5059 7224  NMP 171

5 1333 -56 11348 2845 2429 168

2SR Best Model, "N.M: No Model
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Figure 7: GIS Add-on Toolbar

The tool allows for the creation and update of
regression models using the statistical methods
presented in the paper. Furthermore, it allows
for the creation and display of thematic maps
of truck volumes (both observed and estimated)
on state highways, taking advantage of the
GIS capabilities of the software. The desktop
platform for this application is Arcinfo 9.0
by ESRIL.* The add-on toolbar is available at
http://www.cait.rutgers.edu/miemp/ as a beta
version.

CONCLUSIONS

This paper described the formulation and
implementation of different regression techniques
in vehicle-based freight modeling under limited
training data, following the work of Mittal et
al. (2004). The objective was to use “simple
and easy-to-use” techniques that are powerful
enough to provide more robust models than
SR, and provide a comparative analysis of their
performance using a real world example. Five
different algorithms, including SR, were used
and linear relationships between truck traffic
volumes on roadways and their adjacent land

use and economic activity were created. Due
to the limited dataset, cross validation was
not feasible and thus generalizations on the
models’ performance should not be made. The
implementation of the proposed techniques,
however, showed that these algorithms have the
computational ability to overcome many of the
problems that OLS and SLR face. In practice,
when dealing with problems under limited
data, all the techniques should be implemented
and the one with the best results should be
selected. The criterion for selecting the best
models should be a combination of the models
R? value, the significance of the model and its
parameters (p-value or t-statistic of the model
and the regression coefficients), and if data
availability permits, on cross validation.

The major advantage of these algorithms
is that they are conceptually easy to apply and
are part of many statistical packages, which
facilitates their implementation. To further
facilitate their use, the procedure has been
automated within a GIS environment. This tool
provides the framework for analyzing limited
transportation data in an efficient manner.
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Endnotes

1. Training dataset: Dataset used to create the model.
The number of observations is less then the number of predictors.

3. Omitting one or two observations or omitting one variable from the same dataset may
produce significant changes in the regression coefficients.

4. Shrinkage refers to the decrease of the regression coefficient (bj) values compared to the
OLS estimate.

An excellent literature review is provided to support the conclusions.

- _ 2
6. Mean Square Error = 27:1 Var(b;)+ z:;l[bias(b )]

7. Cross validation is a model evaluation method that is better than residuals. For further
information the interested reader is referred to: http://www.cs.cmu.edu/~schneide/tut5/
node42.html.

Large number of independent variables.

A data-manipulation software package that allows data to be analyzed and visualized using
existing functions and user-designed programs.

10.  www.esribis.com
11.  Area around a highway section that could produce/attract truck traffic.
12.  Randomly select and clone a number of existing observations.

13.  Bootstrapping is a method for estimating the sampling distribution of an estimator by re-
sampling with replacement from the original sample (http://www.icp.ucl.ac.be/~opperd/
private/bootstrap.html).

14.  Calculated on the estimation dataset.

15.  http://www.esri.com/software/arcgis/arcinfo/index html
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