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SUMMARY: 
 
Adapting variable rate technology (VRT) to Argentine conditions requires methods that 
use inexpensive information and that focus on the inputs and variability common to 
Argentine maize and soybean growing areas.  The goal of this study is to determine if 
spatial regression analysis of yield monitor data can be used to estimate the site-specific 
crop Nitrogen (N) response needed to fine tune variable rate fertilizer strategies.  N has 
been chosen as the focus of this study because it is the most commonly used fertilizer by 
corn farmers in Argentina.  The methodology uses yield monitor data from on-farm trials 
to estimate site-specific crop response functions.  The design involves a strip trial with a 
uniform N rate along the strip and a randomized complete block design, with regression 
estimation of N response curves by landscape position.  Spatial autocorrelation and 
spatial heterogeneity are taken into account using a spatial error model and a groupwise 
heteroskedasticity model.  A partial budget is used to calculate uniform rate and VRT 
returns.  First year data indicate that N response differs significantly by landscape 
position, and that VRA for N may be modestly profitable on some locations depending on 
the VRT fee level, compared to a uniform rate of urea of 80kg ha-1.  A more complete 
analysis will pool data over many farms and several years to determine if reliable 
differences exist in N response by landscape position or other type of management zone.  
The study is planned for four years.  The purpose of this preliminary analysis is to show 
how spatial regression analysis of yield data could be used to fine tune input use. 
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Precision Agriculture: Economics of Nitrogen Management in Corn Using Site-

specific Crop Response Estimates from a Spatial Regression Model 

INTRODUCTION 

Technologies based on computerized information and global positioning systems 

(GPS) are transforming large-scale commercial agriculture throughout the world.  This 

technology is often labeled “precision agriculture” and is giving new life to the old idea 

of site-specific management by reducing the cost of crop information and variable rate 

input application.   

The underlying concepts of site-specific management are transferable from place to 

place, but fine-tuning production systems are necessarily site-specific because soils, 

climate and economic conditions vary.  Argentine producers and agribusiness companies 

face some special problems in adapting precision agriculture to their conditions.  While 

yield monitoring in Argentina has followed a similar adoption path to that of North 

America, variable rate application of inputs has not been widely used because of the high 

cost of soil sampling and relatively low fertilizer use.  Furthermore, management induced 

variability in Argentina is less than in the US or Canada (Lowenberg-DeBoer, 1999). 

Commercial laboratory analysis of soil samples in Argentina ranges from $40 to $70 

per sample, compared to the $3 to $8 charge for the basic analysis in the US.  The cost of 

soil sampling makes the intensive grid or soil type sampling used in North America 

prohibitively expensive. 
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Adapting variable rate technology (VRT) to Argentine conditions will require 

methods that use inexpensive information, and that focus on the inputs and variability 

common to Argentine maize and soybean growing areas.   

The objectives of this study are to: 

1) determine if spatial regression analysis of yield monitor data can be used to estimate 

the site-specific crop N response needed to fine tune variable rate fertilizer strategies,  

2) estimate the profits for site-specific N management using the crop responses 

estimated under objective (1), and 

3) compare profits from site-specific N management using crop response functions with 

uniform rate management and proposed spatial management strategies. 

N has been chosen as the focus of this study because it is the most commonly used 

fertilizer by corn farmers in Argentina.  The methodology utilizes yield monitor data from 

a on-farm trial in southern Córdoba Province to estimate site-specific crop response 

functions with low cost independent variables such as landscape position, topography and 

soil color.  Producers and crop consultants can use the site-specific crop response 

methodology to guide N application and increase profits. 

The null hypotheses are: 

1) There is not spatial autocorrelation or heteroskedasticity in corn yield response to N 

rates across landscape positions. 

2) Maize N response does not vary by landscape position, 

3) VRT N application is not profitable on average for VRT fees of $6 ha-1. 
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The main expected result would be information leading to improved N management 

throughout the maize and soybean growing areas of Argentina, especially those in 

Córdoba.  From a methodological point of view, the results will show the consequences 

of ignoring spatial autocorrelation in a regression model when it is in fact present.  The 

potential users are producers, crop consultants, and fertilizer dealers throughout the corn 

and soybean-growing areas of Argentina.  Researchers in the area of precision agriculture 

will be pointed to the importance of spatial dependence in regression analysis models. 

LITERATURE REVIEW 

Site-specific fertilizer application is an old idea.  In the US, the first extension 

recommendations on intensive soil sampling and variable rate fertilizer application 

appeared in 1929 (Linsley and Bauer, 1929).  The recent resurgence of interest in the idea 

can be linked to the availability of GPS and information technology (IT) which lower 

information and VRT implementation costs dramatically.  VRT fertilizer was the earliest 

commercially available precision agriculture service in the US.  Currently, about 50% of 

the approximately 7500 retail fertilizer dealers in the US offer the service in the US 

(Akridge and Whipker, 1999).  In contrast, only ten VRT fertilizer applicators were being 

used in Argentina in 1998 (Bragachini, 1999).  In the US, VRT fertilizer is a common 

practice among producers of higher value field crops, such as sugar beets.  Many US corn 

and soybean farmers have tried VRT fertilizer, but doubts remain about its profitability 

(Lowenberg-DeBoer and Swinton, 1997).   

Swinton and Lowenberg-DeBoer (1998) review studies of the profitability of site-

specific N, phosphorus (P) and potassium (K) fertilizer application based on intensive soil 
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sampling, using either grids or soil type.  They conclude that VRT fertilizer is often 

profitable for higher value field crops but seldom profitable for extensive dryland crops 

like wheat and barley.  For maize and soybeans, VRT fertilizer often fails to cover the 

added costs of soil sampling and VRT application.  Key methodological problems 

identified in these studies include: failure to charge soil sampling, analysis and VRT 

application fees, and use of simulation models which assumed target yields would be 

achieved.  Lowenberg-DeBoer and Aghib (1999) use on-farm trial data from the eastern 

Corn Belt to show that VRT P & K just about covers costs as a stand-alone practice, and 

that it may have potential to reduce risks.  Bongiovanni and Lowenberg-DeBoer (1998) 

show that VRT lime is modestly profitable in the Eastern Cornbelt.  On-farm trials on the 

Sauder farm in central Illinois showed a 941 kg ha-1 yield increase for corn grown in an 

integrated site-specific management system which combined VRT NPK, lime, and plant 

population (Finck, 1998). 

Many alternatives to intensive soil sampling have been proposed for N management, 

but no method has been widely accepted as better than uniform rate application.  Pan et 

al. (1997) review studies of spatial variability of N in annual field crops.  They note that 

current university and industry N recommendations in North America may not be very 

useful for site-specific management because they are broad compromises intended to be 

used regionally.  Pan et al. also indicate that N available to the plant at any one location 

and time depends on many factors, including organic matter in the soil, previous crop, 

manure applications, recent temperature and rainfall patterns, and leaching losses.  

Because N is spatially and temporally dynamic, N soil tests, stalk nitrate tests, and leaf 
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nitrate tests are not necessarily a good basis for making N fertilizer decisions, even when 

these tests are available and affordable. 

Making better N management choices is not simply a case of understanding N 

dynamics, but also requires a decision support system that effectively uses relatively low 

cost data to predict yields and profits under alternatives.  Many simulation and statistical 

models have been proposed (see various papers in Robert et al., 1994, 1996, 1998).  The 

simulation process models have been calibrated to mimic spatial variability in specific 

fields, but it is not clear that this can be generalized.  Most crop growth models currently 

lack many of the factors that drive spatial variability (e.g., topography, microclimate, 

water flow).  Crop growth models are great research tools, but it is unlikely that producers 

and crop consultants will be willing to invest the time and resources to calibrate and 

validate the models for specific fields.  Categorical models ranging from simple analysis 

of variance to clustering and fuzzy set analysis can be used to identify management areas, 

but leave the question of optimal N application unanswered. 

Several researchers have used ordinary least squares (OLS) regression to help 

estimate crop responses, but with mixed results (e.g., Khakural et al., 1998; Coelho et al, 

1998, Mallarino et al., 1996).  Regression crop response functions have the advantage of 

fitting easily into the traditional crop production economics decision model (Heady and 

Dillon, 1961; Dillon and Anderson, 1990).  Lowenberg-DeBoer and Boehlje (1996) show 

that the traditional uniform rate production economics decision framework can easily be 

modified for site-specific management.  Software that combines regression and 

optimization could easily be developed using well-known algorithms.  Annual updating 



 7 

of response coefficients to reflect genetic improvement and other management changes 

could be automated.  These updates would reestimate the response with yield monitor 

data. 

Kessler and Lowenberg-DeBoer (1998) show that spatial correlation of regression 

error is important in yield monitor data.  Because of this spatial correlation, OLS 

regression gives biased coefficient estimates.  Anselin (1988) outlines spatial regression 

models that adapt generalized least squares regression to spatial data.  These spatial 

regression models have been used mainly for regional economics analysis.  The authors 

do not know of any attempt to estimate spatial regression models with yield monitor data. 

Spatial Econometrics.  Anselin (1999a) defines spatial econometrics as a subfield of 

econometrics that deals with the treatment of spatial interaction (spatial autocorrelation) 

and spatial structure (spatial heterogeneity) in regression models for cross-sectional and 

panel data.  Spatial econometrics is distinct from spatial statistics in the same ways that 

econometrics is distinct from statistics in general.  These differences stem from the type 

of data being analyzed and the ways in which the results are used.  A difference between 

geostatistics and spatial econometrics is the way in which the results are used.  A primary 

concern of many studies in the geostatistics literature is with identifying and estimating 

spatial structure of a data set (Anselin, 1988).  In short, geostatistics focuses on producing 

a better map.  Spatial econometrics is concerned with estimating the relationships 

between variables that have spatial structure.  Those estimated relationships are then used 

to calculate outcomes of economic interest (e.g., yields, profits, costs), which are in turn 
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the basis for management decisions.  When the data has spatial structure, spatial 

econometrics can produce more accurate estimates than conventional econometrics. 

Spatial Autocorrelation.  Spatial autocorrelation, or more generally, spatial 

dependence, is the situation where the dependent variable or error term at each location is 

correlated with observations on the dependent variable or values for the error term at 

other locations.  The general case is formally: E[yi yj] ≠ 0, or E[εi εj] ≠ 0 for neighboring 

locations i and j, where i and j refer to individual observations (locations) and yi(j) is the 

value of a random variable of interest at that location. The form of the spatial dependence 

is given structure by means of a spatial weights matrix (W), which reduces the number of 

unknown parameters to one, i.e., the coefficient of spatial association in a spatial 

autoregressive or spatial moving average process (Anselin, 1992). 

Spatial autocorrelation in yield data is present as the coincidence of value similarity 

with location similarity; i.e., high or low values for a random variable tend to be 

surrounded by neighbors with similar values.  Since the values of yield factors at some 

point in the field depend on the values of other points in the field, the data from this field 

will present spatial autocorrelation.  The presence of positive autocorrelation implies that 

a sample contains less information than an uncorrelated one.  To carry out accurate 

statistical inference, this loss of information must be explicitly be taken into account in 

estimation and diagnosis tests.  Therefore, classical statistical tests on spatial series must 

be combined with tests of spatial autocorrelation to assess the validity of drawing 

inferences (Anselin and Bera, 1998). 
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Spatial Regression Models.  Anselin (1999a) outlines two important alternative 

models to deal with autocorrelation: the spatial lag model and the spatial error model.  

Since the estimates from the spatial regression model are going to be used in a decision 

model to measure costs, profits, etc., then accurate estimates are needed.  This is the main 

role of an error model, whereas, in the lag model, the main role is to predict the spatial 

pattern.  The preliminary analyses of the corn yield data point to autocorrelation in the 

variables that are not in the model.  Obviously, there are other variables that influence 

yield, and these are very autocorrelated.  

In the spatial lag model, the spatial autocorrelation pertains to the dependent 

variable, y.  This alternative is formalized in a mixed regressive, spatial autoregressive 

model: y = ρWy+Xβ+ε, where y is the vector of yield points, ρ is the spatial 

autoregressive coefficient, Wy is a spatially lagged dependent variable, X is a matrix with 

observations on the explanatory variables, and β and ε ~ (0, σ2) are, respectively, the 

estimated coefficients and the normally distributed random error terms.   

The spatial error model, or spatial dependence, is expressed by means of a spatial 

process for the error terms, either of an autoregressive or a moving average form.  Such 

an autoregressive process can be expressed as: εβ += Xy .  In the spatial error model, 

µελε += W , where λ is the autoregressive coefficient for the spatial error term Wε.  The 

error term µ is assumed to be normally distributed as N(0,σ2I).   

The consequences of ignoring spatial error dependence are that the OLS estimator 

remains unbiased, but is no longer efficient since it ignores the correlation between error 
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terms.  As a result, inference based on t and F statistics will be misleading, and 

indications of fit based on R2 will be incorrect.  Spatial autocorrelation inflates R2, 

deflates standard errors for slope parameters, and overestimates the t values for inferential 

tests (Anselin, 1992).   

Weights Matrix.  One of the major distinguishing characteristics of spatial regression 

models is that the spatial arrangement of the observations is taken into account.  This is 

formally expressed in a spatial weights matrix, W, with elements wij, where the ij index 

corresponds to each observation pair.  The nonzero elements of the weights matrix reflect 

the potential spatial interaction between two observations.  This may be expressed, for 

instance, as simple contiguity (having a common border), distance contiguity (having 

centroids within a critical distance band), or in function of the inverse distance (Anselin, 

1992). 

DATA 

N response data was collected from strip trials on four farms in the Río Cuarto area, 

Córdoba Province, Argentina, in the 1998-99 crop season.  This paper deals only with the 

yield data (8288 observations) from the farm “Las Rosas” located at 63º 50’ 50” of 

longitude W and 33º 03’ 04” of latitude S (Figure 1).  The experimental design for the 

trials is a complete block strip trial that includes at least three different types of soils in 

terms of landscape (hilltop, slope, and low). 

The complete, forthcoming study is projected for four crop seasons.  Site-specific N 

response functions will be estimated for each farm.  The site-specific N responses will be 
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used to estimate the N application by landscape position that maximizes expected profits.  

Profits will be estimated for uniform application and for VRT N by landscape position. 

The strips are wider or equal to the corn header width, with a zero N control and five 

other rates of elemental N: 29, 53, 66, 106 and 131.5 kg ha-1 of elemental N for the “Las 

Rosas” farm (Figure 2). The N rate is constant for the whole strip.  Since the regression 

estimation procedure is flexible, N rates need not be the same from farm to farm.  The 

highest N rate for each field is higher than the expected yield maximizing level.  Each 

field has at least three blocks.  Within each block, treatments are randomized.  The 

treatments are the same and on the same location each time corn is grown in that field.  

The N source is either urea-ammonium nitrate solution (UAN), or urea.   

Data was collected with a standard Ag Leader yield monitor.  Yield files include data-

point information about yields, latitude, longitude, elevation, and moisture.  Since the raw 

data includes data points that are closer within the same row than between rows, these 

data yield points were averaged for a within-row distance equivalent to the between-rows 

distance, such that a distance weights matrix could be calculated.  This was done in the 

GIS SSToolbox, creating 6.75 x 6.75 m grids over the observations, and rotating them by 

10.5 degrees.  Data points at the extremes were deleted.  Finally, and after averaging the 

data within each grid, the 1772 observations were digitized as polygons (Figure 3).  

METHODOLOGY 

Response function estimation using spatial econometric techniques requires three 

steps: 1) Specification tests and diagnostics for the presence of spatial effects, 2) The 
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formal specification of spatial effects in econometric models, and 3) The estimation of 

models that incorporate spatial effects. 

Response estimates are made for the first year to obtain preliminary results, to show 

how yield data should be handled for economic analysis, and to elicit feedback from 

producers and crop consultants.  After the fourth year’s data is collected, the data will be 

pooled by farm and a single response function will be estimated.  A quadratic response 

function will be tried first in all cases; alternative functional forms will be tested.  The 

data will be analyzed using SpaceStat (Anselin, 1999b) and SSToolbox-GIS. 

The first hypothesis was tested by running a classical OLS regression in SpaceStat 

with diagnostics tests.  The corn response to N was estimated as quadratic for both the 

full pass data set and by landscape position: εααα +++= 2
210 ii NNYield , where: Yield 

= corn yield (from a yield monitor with GPS) and Ni = N rate.  Five different topography 

areas were evaluated through dummy variables as Spatial Regimes in SpaceStat.   

With Spatial Regimes, there is no constant for the general model, but a constant for 

each regression.  In the yield model they are five separate regressions and only one R² for 

the whole model because the R² are computed on the residuals of the model.  SpaceStat 

reports an observed value and a predicted value.  The predicted value is a function of the 

variables and their coefficients in each of the separate regimes, so that the Spatial 

Regimes model works as a system of regressions.  Regression coefficients for the five 

groups are estimated and reported separately.  In the spatial econometric analysis, it is 

assumed that the error term has the same variance everywhere.   
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In the corn yield model under study, contiguity between spatial units is defined as a 

function of the distance that separates them.  The relevant neighborhood is defined as all 

grid center points within 13.6 meters.  The 13.6 meters are measured from the center 

point of the grid.  All points in the neighborhood are of equal weight in the spatial weight 

matrix.  For the estimation of spatial regression models, the spatial weights matrixes are 

row-standardized to yield a meaningful interpretation of the results.  The row 

standardization consists of dividing each element in a row by the corresponding row sum.  

Each element in the new matrix thus becomes: wij / Σj wij.  The resulting distance matrix 

provides more information about the observations, enabling the weights to capture the 

proximity of 11.3 neighbors on average. 

The second hypothesis was tested by the Spatial Chow test –a test for structural 

instability in spatial regimes.  Since the Spatial Regimes specification is treated as a 

standard regression model, the full range of estimation methods and specification 

diagnostics are carried out in SpaceStat.  In addition, a test was implemented on the 

stability of the regression coefficients over the regimes.  This was a test on the null 

hypothesis which states that the coefficients are the same in all regimes, e.g., for the two-

regime case: H0: α1 = α2 and β1 = β2.  This test is implemented for all coefficients jointly, 

as well as for each coefficient separately.  In the classic regression model, this is the 

familiar Chow test on the stability of the regression coefficients.  It has been extended to 

spatial models in SpaceStat in the form of a so-called spatial Chow test, and is based on 

an asymptotic Wald Statistic, distributed as χ² with (M-1)K degrees of freedom (M as the 



 14 

number of regimes).  SpaceStat lists the statistic, its degrees of freedom, and its 

associated probability level, for both the joint tests and the tests on each individual 

coefficient (Anselin, 1992). 

In addition to the Spatial Chow test, a t test (z test in the spatial regression model) 

determined if the landscape and the slope interaction terms are significantly different 

from the mean.  The dummy variable constraint was that the sum of dummy variable 

coefficients is equal to zero.  Thus the coefficients are the difference between the 

intercept or slope for a given landscape position and the average slope or intercept.  The 

coefficients represent differences from the base case, which for this analysis is topography 

zone 1 (Low East).  It should be noted that the conventional 1% and 5% significance 

levels are useful benchmarks, but not magic. 

The third hypothesis was tested by estimating one of the two Spatial Regression 

Models, either the spatial lag model or the spatial error model, taking into account 

heteroskedasticity, according to the interpretation of the diagnostics tests from the first 

hypothesis.  The coefficients estimated through the Spatial Regression Model will be used 

to rank net returns over N fertilizer and VRT application costs for N by landscape 

positions, uniform applications, and other strategies.  N will be optimized by landscape 

position using ordinary calculus (Dillon and Anderson, 1990).  Net returns over fertilizer 

cost, VRT application fee, added non-N fertilizer costs for maintenance, and extra harvest 

and handling costs will be calculated each year.  These are expected returns, so prices and 

costs should be the best estimate of future expected levels; often expected prices are best 

estimated at a three to five year average.  Seed, weed control, and equipment costs are 
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assumed to be the same everywhere in the field, so there is no reason to deduct them.  

The average return for the field will be estimated as the weighted sum of returns in each 

landscape area, where the weights are the proportion of area in that landscape position.  

The returns from site-specific management (SSM) by landscape position will be 

compared to the returns for uniform applications at the level recommended by INTA, at 

the level used by the producer for other fields and at the level recommended by other 

fertilization strategies for the area (e.g., Castillo et al., 1998).  Hypothesis three will be 

supported if the returns for N by landscape position are on average higher than those of 

the commonly used uniform rate strategies.  The economic analysis was performed using 

the partial budgeting tool, which determines whether the added benefits outweigh the 

added variable costs in a typical year. 

RESULTS 

Diagnostics tests for spatial dependence in the OLS model confirm that there is 

spatial autocorrelation in the data and that an error model should be used.  There is also 

some presence of heteroskedasticity.  The LM-error test for “Las Rosas” farm is 2762, 

while the LM-lag is 2380.  The Robust LM-error test is 403, while the Robust LM-lag 

test is 21.  The KB test is 71.7.  All tests are significant at the 1% level.  A higher LM test 

and/or robust LM test value point to the model that should be used.  Therefore, a spatial 

autoregressive error (SAR) model has been used.  It has been estimated by the 

Generalized Method of Moments (GMM), also accounting for groupwise 

heteroskedasticity (Anselin, 1999).  Table 1 reports the regression coefficient estimates 

for the overall pass model (uniform rate) in the second column and then the estimates for 
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each of the different spatial regions in the following columns.  The estimated coefficients 

have the expected signs and maximum physical yields estimated with those coefficients 

are reasonable.  The R2 are quite good for on farm trial data.   

In the SAR model, z-values are reported for the coefficient estimates, rather than t-

values, i.e., in the spatial regression model inference is typically based on a standardized 

z-value.  This is computed by subtracting the theoretical mean and dividing the result by 

the theoretical standard deviation: z = (X - µ) / σ.   

In the SAR model for the “Las Rosas” farm, the z-values for a significant response to 

N are significant at the 1% level for the Full Pass data and for each landscape position.  

The linear coefficient is significant at the 1% level for all estimates.  The quadratic 

coefficient for the Full Pass and Low E are not significantly different from zero at any 

conventional significance level, the coefficients for Slope E and Hilltop are significant at 

the 1% level, and the coefficient for Slope W is significant at the 3% level. 

In general, yields are highest in the Low area, but the response to N is greatest in the 

Hilltop (Figures 4 and 5).  Optimal N rates are higher for Slope W and for Hilltop (Figure 

6).  The highest optimal N rates are for the Slope W (135 Kg ha-1), which may be 

explained by the fact that Slope W is a lower quality soil.  Low E, Slope E and Hilltop are 

type IIIes soils, while Slope W is type IVes.  Soils type IIIes present excessive drainage, 

and are developed from sandy-loam materials.  They have low water holding capacity, 

low structural stability, low organic matter content, important weather limitations, and 

moderate susceptibility to wind erosion.  On the other hand, soils type IVes have even 

higher susceptibility to wind erosion, lower water holding capacity, lower organic matter 
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content, and very low structural stability (Jarsun et al., 1993) characteristics that explain 

the high optimal N rate. 

Given only one year of data, statistical tests are only indicative, but initial results 

indicate that autocorrelation and heteroskedasticity may bias N response, and that it 

differs significantly by landscape position.  The value of the Chow statistic for “Las 

Rosas” is 234 in the OLS model and 153 in the SAR model.  Chow test is significant at 

the 1% level, which indicates that maize N response varies by landscape position, 

therefore rejecting the hypothesis 2, that maize N response does not vary by landscape 

position.  In addition to the Spatial Chow test, a t test (z test in the spatial autoregressive 

model) determined if the landscape and the slope interaction terms are statistically 

significantly different from the mean values (Table 2). 

For the SAR model, all landscape positions are significantly different from the mean 

value (yield at the intercept) at the 2.5% significance level.  The linear term, i.e., the 

marginal response to N, is significantly different from the mean at the 1% significance 

level only at the Low E and at the Hilltop topography zones.  Slope W and Slope E are 

not significantly different from the mean.  The quadratic term is significantly different 

from the mean only for the Low E topography zone at the 2% significance level, while the 

Hilltop is different from the mean only at the 13% significance level.  It should be noted 

that for the OLS model, all landscape positions are significantly different from the mean 

value at the 1% significance level, but the linear and the quadratic terms are not 

significantly different from the mean at any conventional significance value, except for 

the linear term at the Hilltop, which is different at the 9% significance level. 
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Returns to N by landscape position.  The profit maximizing (economic) response to 

N was obtained using a net price of corn of $6.85 per quintal, a cost of elemental N of 

$0.4348 per kg  ($0.4674 per kg with a 15% annual interest rate), and a VRA application 

fee of $6 per hectare.  Yield maximizing N rates, profit maximizing N rates, and profit 

(loss) from profit maximizing N application (compared to the no fertilizer strategy) are 

indicated in Table 3.  Returns from N above fertilizer cost were calculated using marginal 

analysis, which states that when the value of the increased yield from added N equals the 

cost of applying one additional unit, profit is maximized; or when the marginal value 

product equals the marginal factor cost (MVP = MFC).  Profit maximizing N rates were 

considered because it is the approach recommended in the production economics 

literature.  

Returns to Uniform Rate and to Variable Rate N.  Returns from N above 

fertilizer cost were estimated for two uniform application rates and for VRA by landscape 

position (Table 3).  Two uniform rates were used to represent the range of N rates 

currently used in the Río Cuarto area.  The higher uniform N rate was the profit-

maximizing rate for the whole field analysis using the response function estimated with 

the Full Pass data (Table 1).  The lower uniform N rate was 36.8 kg/ha recommended by 

Castillo et al.  (1998).  The estimated VRA assumed that N varied by landscape position 

according to the profit maximizing levels identified in Table 3 for that part of the 

topography.  All three estimates use the response curves by landscape to estimate yield, 

which is weighted by the corresponding topography areas (21%, 20%, 32% & 26%). 
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Returns above fertilizer cost for a uniform rate of N, applied to the whole field 

(traditional fertilizer application), using the N fertilizer rate recommended by Castillo et 

al (1998) were estimated as follows: 

Returns above fertilizer cost ($/ha) = [ ]( )0
2
00

4

1

NPNcNbaP Niiic
i

−++∑
=

 = $399.75/ha 

where: Pc = Price of corn 
 i = Landscape area: 1=Low E, 2= Slope E, 3=Hilltop, 4=Slope W 
 N0 = N rate for the whole field = 36.8 kg/ha (Castillo et al.,1998) 
 PN = Price of N fertilizer, plus interest for 6 months at 15% annual interest rate 

Returns above fertilizer cost for a uniform rate of N, applied to the whole field 

(traditional fertilizer application), using the whole field profit maximizing N rate from 

Table 2, were estimated as follows: 

Returns above fertilizer cost ($/ha) = [ ]( )0
2
00

4

1

NPNcNbaP Niiic
i

−++∑
=

 = $402.17/ha 

where: Pc = Price of corn 
 i = Landscape area: 1=Low E, 2= Slope E, 3=Hilltop, 4=Slope W 
 N0 = Profit maximizing rate of N for the whole field = 46.35 kg/ha. 
 PN = Price of N fertilizer, plus interest for 6 months at 15% annual interest rate 

Returns above fertilizer cost for variable rate (VRA) of N were estimated as: 

Returns above fertilizer cost ($/ha) = [ ]( )VRAiNiiiiic
i

FNPNcNbaP −−++∑
=

*2**
4

1

 = 400.72 

where: Pc = Price of corn 
 i = Landscape area: 1=Low E, 2= Slope E, 3=Hilltop, 4=Slope W 
 Ni

* = Profit maximizing rate of N for each landscape area (see Table 2) 
 PN = Price of N fertilizer, plus interest for 6 months at 15% annual interest rate 
 FVRA = Variable rate application fee 

Table 4 compares the results from using the OLS model and the SAR model.  The 

breakeven for the variable rate fee charged by the service provider more than doubles in 
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the SAR model, rendering it feasible for farmers, because the breakeven VRT fee is $0.97 

higher than the market VRT fee of $6.00. 

Implications.  The spatial component reveals that there are patterns of interaction 

among yield points that are not accounted for in conventional models.  The spatial model 

also shows how OLS estimates may be significantly biased when this interaction is not 

made explicit.  The SAR model provides a better fit, which is important in economic 

analysis because it gives more accurate estimates.  In this case, both models lead to the 

same conclusions, but in some cases OLS could be misleading.  Nevertheless and for this 

specific case, an economic analysis based on OLS would discourage the adoption of VRT 

N fertilization, while a SAR model shows that a VRT fee of $6 is economically feasible. 

CONCLUSIONS 

The “Las Rosas” data for 1999 indicates that N response may differ significantly by 

landscape position, and that VRA for N may be modestly profitable at some fee levels.  

Data is needed for more farms over several years to determine how stable the differences 

in response are by landscape position.  Data from three more farms in the 1998-99 

growing season remain to be analyzed.  Better estimates are needed for the cost of 

providing VRA services in Argentina.  Efforts are ongoing to link the differences in 

response to measurable field characteristics (e.g., organic matter, water holding capacity).   

The present analysis offers some preliminary evidence about the differences in N 

response and the econometric implications of those differences.  It should be noted, 

however, that this is data from one farm for one season.  A more complete analysis would 

pool data over many farms and several years to determine if reliable differences exist in N 
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response by landscape position or other type of management zone.  The study is planned 

for four years.  The idea of this preliminary analysis is not to show conclusive results, but 

rather to show the methodology of how yield monitor data can be used for response 

estimation. 
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APPENDIX I: Figures 

 

Figure 1.  Raw yield data from the farm “Las Rosas”, 1999 harvest season. 
 

N rates in kg ha-1 of elemental N:          
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 Topography 1 (LowE)             
                  
 Topography 2 (Slope E)             
           Topography 3 (Hilltop)   
                  
                  
           Topography 4 (Slope W)  
                  

 
Figure 2.  Diagram of the experimental design for the “Las Rosas” farm. 

 

 

Figure 3. Digitized grids reflecting average yields within each grid. 
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Figure 4.  Crop response functions to N by landscape position, SAR model. 
 

 

 

 

 

 

 

 

Figure 5:  Corn Response to the First Kg of N 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Optimal N Rates by Topography 
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APPENDIX II: Tables 

 
Table 1.  Regression estimates for the OLS and the SAR models for the Las Rosas farm. 

 
OLS Regression Estimates for "Las Rosas"     

Treatments: Full Pass Low East Slope E Hilltop Slope W 
Constant 67.1486 67.1486 60.6389 46.5788 60.1828 
N 0.0873 0.0873 0.1047 0.1487 0.1208 
t value 4.25 4.25 4.54 6.35 6.42 
Probability 0.00 0.00 0.00 0.00 0.00 
N² -0.00026 -0.00026 -0.00041 -0.00043 -0.00033 
t value -1.76 -1.76 -2.50 -2.53 -2.49 
Probability 0.00 0.08 0.01 0.01 0.01 
R² 0.61 0.61 0.61 0.61 0.61 
      
Spatial Error Model Regression Estimates for "Las Rosas"   

Treatments: Full Pass Low East Slope E Hilltop Slope W 
Constant 63.1029 66.7195 60.9124 46.168 59.0072 
N 0.0759 0.0770 0.1029 0.1475 0.1241 
Z value 5.85 5.81 7.66 8.19 9.00 
Probability 0.00 0.00 0.00 0.00 0.00 
N² -7.5E-05 -0.00008 -0.00036 -0.00041 -0.00021 
Z value -0.83 -0.91 -3.77 -3.18 -2.15 
Probability 0.40 0.36 0.00 0.00 0.03 
R² 0.22 0.67 0.67 0.67 0.67 
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Table 2. Regression estimates, standard deviations, t (z) values, and coefficient 
probabilities using differences from the mean for the OLS and the SAR models, 
Las Rosas farm. 

   OLS Model     SAR Model   
VARIABLE COEFF S.D. t-value Prob COEFF S.D. z-value Prob 
Constant 58.6373 0.3072 190.8817 0.0000 59.0662 0.7538 78.3621 0.0000 
N 0.1154 0.0108 10.7160 0.0000 0.1126 0.0071 15.9661 0.0000 
N2 -0.0004 0.0001 -4.6396 0.0000 -0.0003 0.0000 -5.2468 0.0000 
Low E 8.5113 0.5176 16.4431 0.0000 4.0367 0.8611 4.6877 0.0000 
Slope E 2.0016 0.5565 3.5966 0.0003 2.0750 0.6906 3.0045 0.0027 
Hilltop -12.0585 0.5600 -21.5317 0.0000 -4.0874 0.8040 -5.0838 0.0000 
Slope W 1.5455 0.4910 3.1476 0.0017 -2.0243 0.9038 -2.2398 0.0251 
N x Low E -0.0281 0.0181 -1.5512 0.1210 -0.0367 0.0115 -3.1823 0.0015 
N x Slope E -0.0107 0.0195 -0.5455 0.5855 -0.0081 0.0110 -0.7359 0.4618 
N x Hilltop 0.0333 0.0197 1.6871 0.0918 0.0338 0.0138 2.4472 0.0144 
N x Slope W 0.0054 0.0171 0.3156 0.7524 0.0110 0.0116 0.9476 0.3433 
N² x Low E 0.0001 0.0001 0.7768 0.4374 0.0002 0.0001 2.2942 0.0218 
N² x Slope E -0.0001 0.0001 -0.3969 0.6915 -0.0001 0.0001 -1.2793 0.2008 
N² x Hilltop -0.0001 0.0001 -0.4835 0.6288 -0.0001 0.0001 -1.4971 0.1344 
N² x Slope W 0.0000 0.0001 0.1971 0.8438 0.0001 0.0001 0.7435 0.4572 

 
Table 3. Yield maximizing N rates, profit maximizing N rates and profit (loss) from N 

application. 
 

Treatments: Full Low E Slope E Hilltop Slope W 
"Las Rosas" OLS           
Yield max. N rate (kg/ha) 169.54 169.54 126.67 174.36 180.98 
Profit max. N rate (kg/ha) 37.08 37.08 44.15 94.36 78.75 
Profits from N ($/ha) 2.43 2.43 5.52 26.01 14.18 
"Las Rosas" SAR           
Yield max. N rate (kg/ha) 503.13 455.59 143.63 180.98 299.88 
Profit max. N rate (kg/ha) 51.10 51.66 48.37 97.25 134.97 
Profits from N ($/ha) 1.35 1.54 5.74 26.39 25.81 

 

Table 4. Returns above fertilizer cost by treatment and by regression model. 
 

Profits by treatment ($/ha) OLS SAR Difference 
"Las Rosas"       

Uniform profit maximizing N rate $402.74 $399.75 $2.99 
Urea dosis uniforme 80 kg/ha  $402.78 $402.17 $0.61 
Variable rate N $400.93 $400.72 $0.21 
Breakeven VR fee $3.07 $6.97 ($3.90) 

 


