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Abstract

Individuals derive benefits from their connections, but these may, at the same

time, transmit external threats. Individuals therefore invest in security to protect

themselves. However, the incentives to invest in security depend on their network

exposures. We study the problem of designing a network that provides the right

individual incentives.

Motivated by cybersecurity, we first study the situation where the threat to

the network comes from an intelligent adversary. We show that, by choosing the

right topology, the designer can bound the welfare costs of decentralized protection.

Both over-investment as well as under-investment can occur depending on the costs

of security. At low costs, over-protection is important: this is addressed by discon-

necting the network into two unequal components and sacrificing some nodes. At

high costs, under-protection becomes salient: it is addressed by disconnecting the

network into equal components.

Motivated by epidemiology, we then turn to the study of random attacks. The

over-protection problem is no longer present, whereas under-protection problems

is mitigated in a diametrically opposite way: namely, by creating dense networks

that expose the individuals to the risk of contagion.
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1 Introduction

Individuals derive benefits from being connected to others. These connections may, at the

same time, transmit external threats. The internet reflects this tension:1 connectivity

facilitates communication but is also used by hackers, hostile governments and firms

and ‘botnet’ herders to spread viruses and worms which compromise user privacy and

jeopardize the functioning of the entire system.2 Individuals are aware of these dangers

and invest in security software. The incentives to invest in protection depend on exposure

in the network and will generally depart from what is collectively desirable.

In this paper, our goal is to examine how network design can mitigate inefficiencies

in protection.

There are (n+ 2) ‘players’. The designer first chooses the network over the n nodes.

Given this network, each of the n nodes (simultaneously) chooses whether to protect or

not; protection carries a fixed cost. Finally, the adversary chooses a node to attack. If

the attacked node is protected, then all nodes survive the attack. If the attacked node

is not protected, then this node and all nodes with a path to the attacked node through

unprotected nodes are eliminated. Nodes are assumed to derive benefits from their con-

nectivity: the payoff of a node is increasing in the size of its surviving component. A

node’s net payoffs are equal to its connectivity payoffs less the amount spent on pro-

tection. The designer is utilitarian: he seeks to maximize the sum of nodes’ payoffs.

The adversary is intelligent, purposefully choosing the attacked node so as to minimize

connectivity-related payoffs.

We start with a study of the first best design and defence profile. We show that for

low protection costs, all nodes should be protected and any connected network is optimal.

For intermediate costs of protection, the designer chooses a star network and protects its

center only. The adversary then eliminates a single spoke of the star. If protection costs

are high, the designer splits the network into equal size components and leaves all nodes

unprotected. The adversary eliminates one of these components.

This sets the stage for the study of decentralized protection. We show that if defence

is sufficiently expensive (so that no protection is first best), no protection is the unique

equilibrium defence of any first best network. At the other extreme, if protection is

sufficiently cheap (so that full protection is first best), there exist networks that implement

the first best in every equilibrium. Departures from first best welfare will therefore arise

only for intermediate costs of protection; that is, when a center protected star is optimal.

The designer cannot attain first best payoffs in equilibrium, as the only equilibria on star

networks are those where either all or no node protects. In our main result (Theorem 1),

1In the United States, the Department of Homeland Security (DHS) is responsible for cybersecurity.

Its mission statement reads,“Our daily life, economic vitality, and national security depend on a stable,

safe, and resilient cyberspace. We rely on this vast array of networks to communicate and travel, power

our homes, run our economy, and provide government services.”
2Moore et al. (2009) estimate that in 2009, roughly 10 million computers were infected with malware

designed to steal online credentials. The annual damages caused by malware are very large: in the

US the annual costs of identity theft are estimated at 2.8 billion USD. These large costs have led to

the emergence of a large software security sector. Intel bought McAfee in 2010, for 7.68 billion USD

(bbc.co.uk; 19 August 2010).
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we show that the designer can bound the welfare costs of decentralization by choosing

the right topology.

We then consider the optimal design problem in more detail. When a center pro-

tected star is first best but all nodes protect in equilibrium, protection decisions involve

negative externalities and exhibit strategic complementarities. Nodes have incentives to

protect and divert the adversary’s attack to other parts of the network. How can the

designer induce some nodes to be eliminated in equilibrium? We show that connected

networks are suboptimal to address the over-protection problem. When a connected net-

work has an equilibrium achieving higher welfare than full protection, there always exists

a disconnected network that welfare-dominates it. Thus, if the designer is to avoid the

over-protection problem, he must disconnect the network and sacrifice some nodes.

The analysis summarized so far assumes that individual coordinate on equilibria that

achieve maximum equilibrium welfare. In general, however, some of these networks may

feature multiple equilibria that achieve vastly different welfare levels. How can the de-

signer tackle potential coordination problems? To illustrate the issue, suppose that the

costs of protection are such that maximum equilibrium welfare is achieved via full pro-

tection on a connected network. The network where nodes are arranged on a cycle has

a full protection equilibrium. However, if the cost of protection outweighs the benefits

of surviving in isolation, there is another equilibrium on this network where no node

protects and the adversary brings down the entire network. We provide a necessary and

a sufficient condition for a network to induce full protection in any equilibrium. Such

networks are sparse in the following sense: they must feature a node that can block the

adversary’s attack, thus saving a large part of the network.

Epidemics of diseases such as influenza, AIDS and tuberculosis, have enormous costs

in terms of human suffering.3 In the case of diseases, it is more natural to suppose that

‘attack’ on the social network is random. We show that in the first best scenario, op-

timal network structures do not change with the nature of the external threat if some

level of protection is optimal. That is, the designer chooses either a connected network

with all nodes protected (if security is sufficiently cheap), or a center-protected star (for

intermediate values of protection costs). When protection is expensive, the optimal un-

protected network depends on the value of connectivity. For very convex value functions,

the designer may ‘risk it’ by creating a very large component, an option that is obviously

suboptimal under intelligent threats.

The solution to the design problem with decentralized security stands in sharp contrast

with the case of intelligent attack. First, the over-protection problem is no longer present.

Secondly, the under-protection problem may need to be addressed in a diametrically op-

posite way. Facing an intelligent adversary, security choices exhibit complementarities,

and to avoid an equilibrium where nobody protects the designer must choose relatively

sparse networks. Under random attack, security choices feature both strategic comple-

3There are 3 to 5 million cases of acute influenza and between 250,000 and 500,000 deaths are at-

tributed to this infection, annually. In 2012, over 8.5 million people were infected with tuberculosis and

1.3 million deaths were attributed to it. In the same year, 2.3 million new cases of AIDS were reported

and over 1.5 million people died due to the disease; over 36 million people have died due to HIV/AIDS

so far (WHO (2013, 2014a, 2014b)).
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mentarities (due to the value of being connected to surviving individuals) and substitutes

– a node will simply not protect unless it is sufficiently exposed to the risk of contagion.

Since a node must be exposed to potential contagion in order to protect, the designer

may need to choose dense networks to induce protection.

The contribution of the paper lies at the intersection of economics and computer sci-

ence literature. For an early contribution in the study of decentralized defence, see Kun-

reuther and Heal (2003). Aspnes et al. (2006) studies security choices by nodes in a fixed

network when nodes only care about their own survival, attack is random, and both pro-

tection as well as contagion are perfect. The focus is on computing the Nash equilibria of

the game. They provide approximation algorithms for finding the equilibria. In a recent

paper, Acemoglu et al. (2013) study the incentives for protection in a setting when both

defence and contagion are imperfect.4 The present paper provides, to the best of our

knowledge, the first systematic study of the problem of optimal network design when the

nodes invest to protect themselves against attacks.

Our paper is related to a recent literature on network design. Goyal and Vigier (2014)

study the problem of security in a setting where security and network design are both

chosen by a single player. The results in the present paper highlight the large effects of

decentralized defence for optimal design. In Goyal and Vigier (2014) the optimal design

is a star network and optimal allocation of resources is exclusively on the central node.

By contrast, when individual nodes choose security, the optimal design has to address

problems of too much as well as too little protection. This best way to tackle over-

protection is by disconnecting the network and sacrificing some nodes. Potential under-

protection problems are addressed by creating equal components. Finally, coordination

problems in security are mitigated through the creation of ‘sparse’ networks that contain

critical nodes.5

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

presents the first best solution. Section 4 presents our main result on the welfare costs of

decentralization. Section 5 discusses optimal design. In Section 6 we consider the case of

random attack. We conclude in Section 7. All proofs are in the Appendix.

2 The model

Let N = {1, . . . , n}, n ≥ 2, be the finite set of nodes. A link is a two-element subset of

N . A network G is a set of links, G ⊆ {ij : i, j ∈ N, i 6= j}, where ij is short for {i, j}.
The set of all networks over the set of nodes N is denoted by G(N). Given a set of nodes

U ⊆ N , G[U ] = {ij ∈ G : i, j ∈ U} is the subnetwork of G induced by U . Additionally,

given a set of nodes X ⊆ N , G − X = G[N \ X] is the network obtained from G by

removing all nodes from X together with the adjacent links. A path in G between nodes

4There is also a very active research programme in financial contagion, see e.g., Blume et al. (2013),

Acemoglu et al. (2015), Cabrales et al. (2013), and Elliot et al. (2014)).
5Baccara and Bar-Isaac (2008) study the optimal cross-holding of incriminating information in a

criminal organization, exploring the tradeoff between cooperation enforcement and potential detection

by an external authority. However, no protection technology is available to agents; the choice of security

is central to our study.
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i, j ∈ N is a sequence of nodes i0, . . . , im ∈ N such that i0 = i, im = j, m ≥ 2, and

ik−1ik ∈ G for all k = 1, . . . ,m. Node j is reachable from node i in G if i = j or there is

a path between them in G. We denote this fact by i
G←→j. A component is a maximal set

of nodes C ⊆ N such that for all i, j ∈ C, i 6= j, we have i
G←→j. The set of components

of G is denoted by C(G). We will abuse the terminology and use the term ‘component’

to refer to the subnetwork G[C] induced by a component C, as well. Given network G

and node i ∈ N , Ci(G) denotes the component C ∈ C(G) such that i ∈ C. Network G is

connected if |C(G)| = 1.

A network value function (NVF) is a function that reflects how good the network is

in the given context. We consider the following network value function:

Φ(G) =
∑

C∈C(G)

f(|C|),

where f : R → R is strictly increasing, strictly convex, and f(0) = 0. This form of

network value functions is in line with Metcalfe’s law, where the value of a connected

network over x nodes is equal to x2, as well as Reed’s law, where the value of a connected

network over x nodes is of exponential order with respect to the number of nodes (e.g.

2x − 1). It reflects the idea that each node derives additional utility from every node it

can reach in the network.

Players. There are (n + 2) players: the designer (D), the n nodes, and the adversary

(A).

The timing. There are three rounds of the game:

1. D chooses the network G ∈ G(N).

2. Nodes from N observe G and choose, simultaneously and independently, whether

to protect (1) or not (0). This determines the set of protected nodes ∆.

3. A observes the protected network (G,∆) and chooses node x ∈ N to infect. The

infection eliminates all the unprotected nodes reachable from x in G − ∆. Thus

the set of eliminated nodes is Ex(G|∆) = {i ∈ N : x
G−∆←−→ i}, if x /∈ ∆, and

Ex(G|∆) = ∅, otherwise. This leads to the residual network G− Ex(G|∆).

Payoffs. Payoffs to the players are based on the value of the residual network and costs

of defence. The gross payoff to node i ∈ N in network G is equal to f(|Ci(G)|)/|Ci(G)|,
i.e. each node gets the equal share of the value of its component. The net payoff of a node

is equal to the gross payoff minus defence spending. The protection has costs c ∈ R++.

A removed node gets payoff 0. Node i’s payoff in network G with defended nodes ∆ and

attack x is then equal to:

U i(G,∆, x) =


f(|Ci(G−Ex(G|∆))|)
|Ci(G−Ex(G|∆))| − c if i ∈ ∆

0 if i ∈ Ex(G|∆) \∆
f(|Ci(G−Ex(G|∆))|)
|Ci(G−Ex(G|∆))| otherwise.

(1)
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The designer aims to maximize social welfare, i.e. the sum of nodes’ utilities, which is

equal to the value of the residual network minus total costs of defence. Formally, the

designer’s payoffs are equal to:

UD(G,∆, x) = W (G,∆, x) =
∑
i∈V

U i(G,∆, x) =

 ∑
C∈C(G−Ex(G|∆))

f(|C|)

− |∆|c. (2)

The adversary is intelligent and aims to minimize gross welfare, i.e. the sum of nodes’

gross payoffs, equal to the value of the residual network:

UA(G,∆, x) = −
∑

C∈C(g−Ex(g|∆))

f(|C|). (3)

The game. The model described above leads to game Γ = 〈P, (%i)i∈P , (Si)i∈P 〉. The set

of players is P = N ∪{D,A}. The set of strategies of player D is SD = G(N). A strategy

of each node i is a function δi : G(N)→ {0, 1} which, given network G ∈ G(N), provides

the protection decision δi(G) of the node. The set of strategies of each node i ∈ N is

Si = 2G(N). A profile of individual strategies of the nodes determine, given a network G,

the set of defended nodes ∆(G) = {i ∈ N : δi(G) = 1}. The set of strategies of player A

is a function x : G(N) × 2N → N which, given network G ∈ G(N) and set of protected

nodes ∆ ⊆ N , provides the attacked node x(G,∆). The set of strategies of player A is

SA = NG(N)×2N . A strategy profile is a tuple (G,∆, x) with the strategy choices of each

of the players.6 The outcome of strategy profile (G,∆, x) is (G,∆(G), x(G,∆(G))). The

preferences of players D and A are determined by their utilities from the outcomes of

strategy profiles. In the case of nodes we make an additional tie breaking assumption

that in the case of utilities being equal, each node prefers to stay uninfected.

Equilibrium. We are interested in subgame perfect equilibria of game Γ, called equi-

libria, for short. Throughout the paper we will also refer to the subgame ensuing after

network G is chosen. We will denote this subgame by Γ(G). We will abuse the notation

by using the same letters to denote the strategies in Γ(G) and in Γ (we will indicate

whenever it is not clear from the context which game is considered).

It is important to note that, for the problem to be well defined, for any network G

the subgame Γ(G) must have an equilibrium. This is established by the following lemma.

Lemma 1. For any network G ∈ G(N), Γ(G) has an equilibrium.

An immediate corollary of Lemma 1 is that the game Γ has an equilibrium.

3 First best outcomes

We start the analysis by characterizing the optimal choice if the designer can choose the

protection profile as well as the network. Before we state the proposition characterizing

6We will represent the strategies of the nodes with the function providing the set of defended nodes,

for short.
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the first best, we define the following set. Given n ∈ N, let

Q∗(n) = arg maxq∈{1,...,n}(q − 2)f

(⌊
n

q − 1

⌋)
+ f(n mod (q − 1)). (4)

As will be clear in the next result, for sufficiently high protection cost the first best

involves no protection. For a given network value function, elements in the set Q∗(n) are

related to the maximum number of components in the optimal unprotected network.

Proposition 1. Suppose the designer chooses protection and design. Then

(1) if c ≤ min{c1(n), c2(n)}, the network is connected and all nodes are protected,

(2) if c1(n) < c ≤ c3(n), the network is a star and only the centre is protected,

(3) if c > max(c2(n), c3(n)), the network is unprotected and has q− 1 components of size

b n
q−1
c and one component of size n mod (q − 1) (if n mod (q − 1) > 0),

where

c1(n) =
f(n)− f(n− 1)

n− 1
, (5)

c2(n) =
f(n)− (q − 2)f

(⌊
n
q−1

⌋)
− f(n mod (q − 1))

n
, (6)

c3(n) = f(n− 1)− (q − 2)f

(⌊
n

q − 1

⌋)
− f(n mod (q − 1)), (7)

with q ∈ Q∗(n).

The response of the adversary to each of these networks and defence profiles is as

follows. The adversary attacks any node in case (1), eliminates a spoke in case (2), and

targets a node in a component of size b n
q−1
c in case (3).

When defence is sufficiently cheap all nodes will be protected, and the maximum gross

payoff of f(n) will be achieved through any connected network. For intermediate values

of c, protecting all nodes is too costly but the damage caused by the adversary can be

brought to a minimum with a center-protected star. When the cost of protection is large,

no node is protected and an undefended network is optimal.

Consider, for example, the case of Metcalfe’s Law (i.e. f(y) = y2) with n = 30 nodes.

If c ≤ 2.03, first best is achieved through a connected and fully protected network. If

2.03 < c ≤ 616, then a centre protected star is optimal. Finally, if c > 616, then the

designer chooses a network consisting of two components of 15 nodes.7

7The optimal number of components of an undefended network depends on the convexity of the

value function. For f(y) = y2 and n /∈ {9, 15}, it consists of two large equal-size components and (if

n is odd) an isolated node. For n = 9, the network with three equal-size components is the unique

optimal undefended network; for n = 15, there are two optimal undefended networks: three equal-size

components, and two size-7 components and an isolated node. Formally, we have that under this network

value function Q∗(9) = {4}, Q∗(15) = {3, 4}, and Q∗(n) = {3} for any n /∈ {9, 15}.

7



4 The price of decentralization

What are the welfare implications of decentralized protection decisions? We will use two

measures: the price of stability and the price of anarchy.

The price of stability is defined as the fraction of payoff to the designer in the first

best over the maximal payoff to the designer that can be attained in equilibrium of Γ (for

the given costs of protection c):

PoS(n, c) =
W (Gfb,∆fb, xfb)

max(G,∆,x)∈E(c) W (G,∆(G), x(G,∆(G)))
, (8)

where (Gfb,∆fb) is a first best network and defence profile and xfb is a best response

to it by the adversary. The price of anarchy is defined as the fraction of payoff to the

designer in the first best over the minimal payoff to the designer that can be attained in

equilibrium of Γ (for the given costs of protection c):

PoA(n, c) =
W (Gfb,∆fb, xfb)

min(G,∆,x)∈E(c) W (G,∆(G), x(G,∆(G)))
. (9)

It is easy to see that these measures provide, respectively, lower and upper bounds on

the welfare costs of decentralization.

The following additional quantity will be used in the analysis of decentralized equi-

libria:

c0(n) =
f(n− 1)

n− 1
. (10)

We start by noting that there is no cost of decentralization if protection is sufficiently

expensive or sufficiently cheap.

Lemma 2. If c ≤ min {c0(n), c1(n), c2(n)} or c > max {c2(n), c3(n)}, then there exists

network G such that the designer attains first best payoffs in every equilibrium of Γ(G).

Suppose that c > max{c2(n), c3(n)}, so that the first best consists of an unpro-

tected network G with the largest components being of size
⌊

n
q−1

⌋
, where q ∈ Q∗(n).

If protection is costly enough for the first best to be an optimal undefended network

G, then in such a network any potential gains from connectivity are outweighed by the

cost of protection.8 No protection is the unique equilibrium defence profile of Γ(G). If

c ≤ min{c1(n), c2(n)}, the first best consists of a connected network G with all nodes

protected. If, in addition, c ≤ c0(n), then while there exist connected networks with

equilibria involving less than full protection, there always exist networks such that all

nodes protect in every equilibrium.

Lemma 2 therefore establishes that departures from first best may arise for two differ-

ent reasons. Firstly, if the cost of protection is such that c0(n) < c ≤ min{c1(n), c2(n)}.
In this case, first best welfare is attained through full protection, but any network has

an equilibrium where no node protects. Such a situation may only arise if the network

8Formally, we have that c3(n) >
f(b n

q−1c)
b n

q−1c
.
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value function features exponential growth, since c0(n) < c1(n) requires that the value

of a network over n nodes is at least twice as large as the value of a network over n− 1

nodes.

Secondly, there will be departures from first best if the latter consists of a centre-

protected star. This requires that the network value function f and the network size n

be such that c1(n) < c3(n).9 Then, for c1(n) < c ≤ c3(n) first best is a centre-protected

star, but this cannot be attained in equilibrium, as the only equilibria on star networks

are those where either all or no node protects.

Lemma 3. Let G be a star network. In any equilibrium of Γ(G), either all nodes protect

or no node protects.

For large n, decentralization of protection cannot be problematic if limy→∞
f(y)−f(y−1)

y−1
=

+∞. In this case, for sufficiently large n, c < min{c0(n), c1(n)} and therefore the price

of anarchy equals one.10 If, on the other hand, limy→∞
f(y)−f(y−1)

y−1
is bounded, then the

wedge between first best and decentralized welfare will not vanish as n increases. Our

main finding is that, for any network value function, the ability to choose the network

topology allows to bound the welfare costs of decentralization. This is summarized by

the theorem below.

Theorem 1. For cost of protection c and network size n:

(1) If c < min(c0(n), c1(n), c2(n)) or c > max(c2(n), c3(n)), then PoA(n, c) = PoS(n, c) = 1.

(2) Suppose that c1(n) is bounded and min(c0(n), c1(n), c2(n)) < c < max(c2(n), c3(n)). Then:

(a) limn→∞ PoA(n, c) = limn→∞ PoS(n, c) = 1, if f(n)
n is unbounded.

(b) limn→∞ PoA(n, c), limn→∞ PoS(n, c) ≤ p
p−c , if limn→∞

f(n)
n = p < +∞ with p > c.

(c) limn→∞ PoA(n, c), limn→∞ PoS(n, c) ≤ p
f(1) , if limn→∞

f(n)
n = p ≥ c.

To gain intuition for point 2 in Theorem 1, it is useful to consider examples. Suppose

that f(y) = y2. Note that c1(n) is bounded, limn→∞ c1(n) = 2. Moreover, f(n)
n

is

unbounded. Hence, this network value function corresponds to case 2a. Since f(n)
n

is

unbounded, for any cost c there exists a network size n such that f(n−1)
n−1

≥ c. In this case,

the designer can enforce full protection by choosing the right topology. Moreover, since

f(n) grows faster than n, the welfare implications of over-protection by (n−1) nodes are

negligible compared to connectivity payoffs.

In cases 2b and 2c, f(n)
n

is bounded. The value of connections becomes approximately

linear as the network size increases. Consider, for example, f(y) = y − ln(y + 1), so that

limn→∞
f(n)
n

= 1. If c < 1, then for sufficiently large n the designer can choose a connected

network where all nodes protect. The average payoff across nodes in the first best is

9Note, for example, that c1(n) > c3(n) for any n if f(y) = yy.
10This follows from the fact that if c0(n) is bounded then c1(n) is bounded. The condition

limy→∞
f(y)−f(y−1)

y−1 = +∞ is satisfied, e.g., for f(y) = yα and α > 2, or f(y) = αy− 1 and α > 1. These

functions are sufficiently convex so that, for any finite protection cost, there exist a sufficiently large n

such that a connected fully protected network is first best and there exist networks with full protection

in any equilibrium.
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f(n−1)
n
− c

n
→ 1, while in decentralized equilibrium with overprotection f(n)

n
− c→ 1− c.

Hence the price of anarchy is bounded above by 1
1−c . If c ≥ 1, then the designer can

choose the empty network, and the price of decentralization is at most f(n−1)−c
(n−1)f(1)

→ 1
f(1)

.

5 Decentralized security and optimal design

Our main result (Theorem 1) states that the welfare implications of decentralization can

be bounded by choosing the network topology. In this section we turn the attention to

the optimal design problem.

When protection decisions are decentralized, inefficiencies stem from two distinct

sources: pure-externality problems and coordination problems. To illustrate the inef-

ficiencies associated with pure-externality problems, let f(y) = y2. Suppose that the

first best is a centre-protected star (i.e. c1(n) < c ≤ c3(n)). If c > (n−1)2

n−1
and no spoke

protects, the centre of the star strictly prefers not to protect. This is the underprotection

problem due to positive externalities. If c < n − 1, there is a unique equilibrium where

all nodes protect. This is the overprotection problem due to negative externalities.

The second source of inefficiencies are coordination problems. Let f(y) = y2, and sup-

pose that the first best is a connected and fully protected network (i.e. c ≤ min{c1(n), c2(n)}).
Consider a clique, i.e. a network where there is a link between any pair of nodes. There

are two possible equilibrium outcomes. One where all nodes protect (attaining the social

optimum), and another one where no node protects. The latter is due to the fact that it

is not profitable for a node to protect if no other node survives in the network. Protection

in this setting has features of threshold public goods: it is only profitable for the nodes

to protect if there are sufficiently many other nodes protecting in the network.

In this section we analyze how the designer can mitigate the decentralization problems

by choosing the right network topology. Given that, depending on the network, the

subgame Γ(G) may feature multiple equilibria, we will consider two polar cases. For

any network G, the equilibrium of the subgame Γ(G) that will be selected will be either

welfare-maximising or welfare-minimising. Formally, for a given network G ∈ G(N), let

E(c|G) denote the set of all equilibria of Γ(G) under costs of protection c. An equilibrium

(∆, x) is welfare-maximising if

(∆, x) ∈ arg max(∆′,x′)∈E(c|G)W (G,∆, x(∆)). (11)

An equilibrium (∆, x) is welfare-minimising if

(∆, x) ∈ arg min(∆′,x′)∈E(c|G)W (G,∆, x(∆)). (12)

Let E(c) denote the set of equilibria of the game Γ. An equilibrium (G,∆, x) ∈ E(c) is

welfare maximising if

(G,∆, x) ∈ arg max(G,∆′,x′)∈E(c)W (G,∆(G), x(G,∆)), (13)

and welfare minimising if

(G,∆, x) ∈ arg min(G,∆′,x′)∈E(c)W (G,∆(G), x(G,∆)). (14)
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Consider potential differences between design under centralized and decentralized pro-

tection. Any discrepancy between first best design and design under welfare maximising

equilibria will reflect a pure-externality problem. Differences between design under wel-

fare maximising and welfare minimising equilibria reflect coordination problems.

5.1 Metcalfe’s Law

In this section we present the characterization of optimal networks for the case of Met-

calfe’s Law, that is, when f(y) = y2. This functional form can be motivated, for example,

by assuming that each individual in a component of size y has a piece of information that

has a value of 1 to everyone (including herself). Thus, every node in a surviving com-

ponent of size y receives a gross payoff of y, and the designer’s gross payoff from this

component is equal to y2.

We find that three classes of networks are optimal under Metcalfe’s law in a welfare

maximising equilibrium. When protection costs are low, the designer keeps the network

connected, and in the welfare maximizing equilibrium all nodes protect. As protection

costs increase, the designer needs to construct a network such that not all nodes protect.

To do so, s/he finds it optimal to save on protection at the expense of connectivity.

In particular, by creating a relatively large star component, and a smaller component.

In equilibrium, only the center of the star protects and the smaller component remains

unprotected and is eliminated. For large protection costs, the designer chooses the optimal

unprotected network, where in decentralized equilibrium no node protects.

The following two quantities correspond to the sizes of the star and unprotected

component of the network with partial protection:

s(n) =
⌊
(n+ 1)−

√
2n
⌋
,

u(n) =

{
n− s(n)− 1 if (n− s(n)− 1)2 ≥ 2s(n)− 1

n− s(n) otherwise
.

Proposition 2. Assume f(y) = y2 and n ≥ 20. If (G,∆, x) is a welfare maximising

equilibrium, then

(1) if 0 < c ≤ min{cD(n), cU(n)} or s(n) < c ≤ cU(n), G is connected and all nodes

protect,

(2) if cD(n) < c ≤ s(n), G features a star of size s(n) and a component of size u(n), and

only the hub of the star protects,

(3) if c > max{cU(n), s(n)}, G features two components of size bn/2c and no node pro-

tects,

where

cU(n) =
n2 − [bn/2c2 + n mod 2]

n
,

cD(n) =
n2 − [s2(n) + (n− s(n)− u(n))]

n− 1
.

11
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Figure 1: Optimal design as a function of protection cost c: f(y) = y2 and n = 30.

The response of the adversary to each of these networks and defence profiles is as

follows. The adversary attacks any node in (1), eliminates u(n) nodes in case (2), and

eliminates a component of size bn/2c in case (3).11

Figure 1 illustrates the result for n = 30. If c ≤ 2.03, full protection in a connected

network is first best, and this can be attained in equilibrium on any such network. If the

cost of protection is between c = 2.03 and c = 616, a center-protected star is first best.

However, only two equilibria are possible on a star network: full protection (if c ≤ 30)

and no protection (if c > 29). Since no network can induce protection for costs above 30,

the interest is in what the designer should choose if c ∈ (2.03, 30].

If 2.03 < c ≤ 13, over protection implies a departure from first best but the designer

finds it optimal to keep the network connected and have all nodes protect in equilibrium.

For c > 13, the welfare costs of over-protection are severe enough to merit disconnecting

the network to avoid it. The optimal network consists of a star of size 23 and a component

of size 7. In equilibrium, only the center of the star protects and the adversary eliminates

the component of size 7. While several nodes are compromised, many more save on

protection.

For c > 23, however, the center of the star no longer finds it profitable to protect.

Therefore, if c ∈ (23, 30] the designer faces two options: either connecting all nodes

and inducing full protection, or splitting the network and inducing no protection. De-

fence is sufficiently costly for the designer to prefer splitting the network into equal-size

components and losing half of the nodes to the attack.

What networks are optimal if, for any network, a welfare minimizing equilibrium is

11The condition n ≥ 20 is sufficient for the adversary not to attack a partially protected component in

equilibrium. Within the finite number of cases not covered (i.e. for n < 20), we could not find a network

such that this takes place on the equilibrium path.
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chosen? Consider again the case with n = 30 nodes. For costs of protection above 23,

the designer chooses the optimal unprotected network that consists of two components

of size 15. Since c > 23 > 15, not to protect is a strictly dominant strategy for any node.

Clearly, all equilibria on this network achieve the same level of welfare. Thus, in this case

the set of optimal networks under welfare minimizing equilibria is the same as the one

under welfare maximizing equilibria.

A similar argument extends to the case where c ∈ [13, 23]. That is, the optimal

network under welfare maximizing equilibria attains the same welfare in any equilibrium.

To see this, note first that a node in the small component of size 7 < c would never

protect. Furthermore, if the center of the star does not protect, then the adversary would

attack it, even if all spokes of the star protect. By eliminating the center of the star,

the adversary causes a damage of at least 232 − 22 · 1.12 This is vastly larger than the

damage of 72 caused by attacking the unprotected component. Therefore, the center of

the star protects in every equilibrium, and the adversary prefers to attack the unprotected

component to eliminating an unprotected spoke.

Finally, if c ≤ 13, the optimal network under welfare minimizing equilibria is con-

nected and fully protected. In this range of costs, any connected network has a full

protection equilibrium, but some of them have equilibria where not all nodes protect.

However, for any c ≤ 13 the designer can always choose a network that secures full pro-

tection in every equilibrium. This can be achieved, for example, by choosing the star

network.

Formally, for a set of nodes N and a cost of protection c, let us denote with Gfull(N, c)
the set of connected networks such that all nodes protect in any equilibrium. That is,

Gfull(N, c) = {G ∈ G(N) : G is connected and ∆ = N for any (∆, x) ∈ E(c|G)}.

The following result establishes that this set of networks is not empty when in the welfare

maximizing case the designer prefers full protection.13

Lemma 4. Assume f(y) = y2 and n ≥ 4. If c ≤ cU(n), then there exists a network

where all nodes protect in every equilibrium.

It follows from this result that, by choosing the right topology, in the welfare min-

imizing case the designer can avoid coordination problems and attain the same payoffs

as in the welfare maximizing case. In terms of the price of decentralization, this means

that the price of anarchy is equal to the price of stability. We summarize the welfare

minimizing case in the following proposition.14

Proposition 3. Assume f(y) = y2 and n ≥ 4. If (G,∆, x) is a welfare minimizing

equilibrium, then

12Formally, if y nodes protect in a star of size s, then the damage caused by eliminating the center

equals f(s)− yf(1). This is minimal for y = s− 1.
13If n ∈ {2, 3} and c ∈ (n−1, cU (n)), the designer would like to induce full protection but any network

has an equilibrium with no protection.
14In the next section we provide a necessary and a sufficient condition for a network to be in Gfull(N, c)

for general network value functions.
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(1) if 0 < c ≤ min{ĉD(n), cU(n)} or ŝ(n) < c ≤ cU(n), G is in Gfull(N, c) and all nodes

protect,

(2) if ĉD(n) < c ≤ ŝ(n), G features a star of size ŝ(n) and a component of size u(n), and

only the hub of the star protects,

(3) if c > max{cU(n), ŝ(n)}, G features two components of size bn/2c and no node pro-

tects,

where

ŝ(n) =

{
s(n) if 2s(n)− 1 < u(n)

s(n)− 1 otherwise
,

ĉD(n) =
n2 − [ŝ2(n) + (n− ŝ(n)− u(n))]

n− 1
.

Note that the size of the star, ŝ(n), in the optimal network with partial protection

may differ from the one the designer chooses under welfare maximising equilibria. This

stems from the fact that, facing a given network and defence profile, different strategies

of the adversary can be equilibrium strategies. Specifically, how the adversary decides,

when indifferent between two attacks, can exacerbate the over-protection problem. For

example, if f(y) = y2 and there are n = 32 nodes, then the optimal partially protected

network under welfare maximizing equilibria consists of a star of size 25 and a component

of size 7. If only the center of the star protects, the adversary is indifferent between

eliminating the small component (producing a gross welfare of 252 = 625) and targeting

a spoke of the star (yielding gross welfare of 242 + 72 = 625). Two equilibrium outcomes

are therefore possible: either all spokes protect, or no spoke protects (with the adversary

attacking the small component in both cases). Clearly the former equilibrium is worse,

and the designer responds to this by isolating a spoke of the star and thus reducing the

size of the star to 24 nodes.

Figure 2 contrasts design under first best with design under decentralized protection

for f(y) = y2, as a function of the size of the network, n, and the protection cost, c.

The parameter space (n, c) is partitioned into five regions. In region I, the first best is a

connected network with all nodes protected. By choosing the right topology, the designer

can attain first best payoffs. In regions II, III, and IV, the first best is a center-protected

star. However, in a decentralized equilibrium either all nodes protect or no node protects

in the star.

Facing this problem, the designer must choose to either keep the network connected, in

which case all nodes must protect, or save on protection at the expense of connectivity. In

region II, s/he opts for choosing a connected network. In turn, in region III a disconnected

network with a center-protected star of size ŝ(n) is optimal. It is important to note that,

while this topology and protection profile can get the designer higher payoffs than both a

fully protected connected network and an unprotected disconnected network, it may not

be implementable in equilibrium. If c > ŝ(n) the center of the star would not protect, and

so the designer will choose either a connected network where all nodes protect (region

II), or the optimal unprotected network that has two components of size bn/2c (region

IV).
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Figure 2: Optimal architecture if f(y) = y2, as a function of network size n (horizontal

axis) and protection cost c (vertical axis).

Finally, in region V the first best involves no protection, and this is implementable in

equilibrium.

5.2 General network value function

The discussion of Section 4 established that departures from first best welfare arise if full

protection is first best but is not implementable in equilibrium, and because the center

protected star is not an equilibrium. If the first problem arises, its solution is simple:

the designer will respond to it by choosing an optimal unprotected network. The second

problem, on the other hand, is more challenging.

By Lemma 3, there are two equilibrium defence profiles on the star network. No

protection is an equilibrium profile of the star if c > f(n − 1)/(n − 1), whereas full

protection is an equilibrium profile if c ≤ f(n)/n. Note that for any c > f(n)/n, no

network has protection in equilibrium, and thus the designer chooses in this case the

optimal unprotected network. The non-trivial situation is therefore when c ≤ f(n)/n and

in the best equilibria of the star all nodes protect. In the case of Metcalfe’s Law explored

above, we have seen that this is achieved by fragmenting the network and sacrificing

a relatively small component. Here we show that this feature holds for any network

value function, in the following sense. Specifically, we show that if the designer chooses

a connected network, it must be that all nodes protect. The intuition is the following.

Note that any connected network that has a partial protection equilibrium, also has a

full protection equilibrium. If the benefits from connectivity are ‘weak’ enough for full

protection to be worse than partial protection, then the designer can attain the same
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gross welfare (but with less protection) by luring the adversary with a relatively small

component. Let us state the result and then provide an intuition for the formal proof.

Proposition 4. Let G be an optimal network in a welfare maximising equilibrium of Γ.

If some but not all nodes protect, then G is not connected.

To illustrate the proof of the result, let us consider the following example. Suppose

that there are n = 20 nodes, the cost of protection is c = 0.8, and the network value

function is f(y) = y − ln(y + 1). The payoff to the designer under full protection is

f(20) − 20 · c = 0.95. This is clearly an equilibrium on any connected network, since

c < f(20)/20. Suppose that the designer chooses a connected network where some nodes

are eliminated in equilibrium. Consider, for example, the network depicted in panel (a) of

Figure 3. The defence profile ∆∗ is depicted such that protected nodes are surrounded by

a square. Facing ∆∗, gross welfare is smaller if the adversary targets node i (f(17) = 14.1)

than if s/he targets node k (f(4) + f(15) = 14.6). Note that if node i protected it would

successfully divert the attack towards node k, since the gross welfare after attacking

an unprotected neighbour of i is f(18) = 15 > 14.6. Consider then the strategy of

the adversary that specifies attacking node i if nodes choose defence ∆∗, and attacking

node k if nodes choose defence profile ∆∗ ∪ {i}. Then ∆∗ is an equilibrium defence. In

particular, note that node i does not wish to protect, since in that case its payoffs are of

f(4)/4− c < 0.

This network thus avoids the over-protection problem, and achieves strictly higher

welfare than a fully protected connected network (f(17)− 2 · c = 15.7 > 0.95). Consider,

however, re-designing the network into a star of 17 nodes and a cycle of 3 nodes, as shown

in panel (b) of Figure 3. There is an equilibrium in this modified network where only

the hub of the star protects and the adversary targets the unprotected cycle.15 While

gross welfare is f(17) in both networks, the modified network features lower protection

spending. This example points to the sub-optimality of partially protected connected

networks. When they achieve higher welfare than the fully protected connected network,

they are in turn dominated by a network which achieves the same gross welfare with

lower spending on protection.

It follows from Proposition 4 that if the designer were to choose a network where

some but not all nodes protect, then this network must be disconnected. This opens

up two possibilities for the adversary’s attack on the equilibrium path: either (i) s/he

attacks an unprotected component, or (ii) s/he targets a partially protected component.

While Case (ii) is the one that we have not been able to rule out for general network

value functions, Case (i) is certainly a possibility, as shown above for the case of f(y) =

y2. It is important to note, however, that the option given by Case (i) of sacrificing a

relatively small component to save on protection in a larger component, which works

under Metcalfe’s Law, cannot work for some value functions.

15Facing this defence profile, the adversary prefers to attack the cycle (producing gross welfare of

f(17) = 14.1) to eliminating a spoke of the star (gross welfare of f(3) + f(16) = 14.8). A node in the

cycle could protect and thus divert the attack towards a spoke of the star. But this is not profitable,

since f(3)/3− c < 0.
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Figure 3: Addressing overprotection: n = 20 and c = 0.8, with f(y) = y− ln(y+ 1). The

network in panel (a) has an equilibrium where some but not all nodes protect. Panel (b)

shows a disconnected network which achieves higher welfare.

To see this, consider any value function such that f(y) > 2f(y− 1) (e.g. Reed’s Law,

f(y) = 2y − 1). Let X be an unprotected attacked component, and Y an unattacked

protected component, |Y | > |X|. As shown in the Appendix, if the network is discon-

nected no component is fully protected. Therefore, there is at least one node in Y that

the adversary could eliminate. Since |X| ≤ |Y | − 1, we have that f(|X|) ≤ f(|Y | − 1) <

f(|Y |)− f(|Y | − 1), and so the adversary strictly prefers eliminating a single node of the

largest component to eliminating all nodes in X, a contradiction. The intuition is simple:

since f(y) > 2f(y − 1), a single extra node in the largest component generates at least

twice the value as the entire smaller component. Therefore, the designer will never be

able to satisfy the ‘appetite’ of the adversary with a smaller component.

Let us next consider the problem of optimal design when, for every network, nodes and

adversary coordinate on a welfare minimising equilibrium. How can the over-protection

problem be addressed in these circumstances?

Observe first that, under welfare minimizing equilibria, if the optimal network is

connected it must be that all nodes are protected. The intuition is as follows. Consider

a connected network G which has a (welfare minimizing) equilibrium defence ∆ where

some but not all nodes protect. Even though the adversary is eliminating at least one

node, the net payoff of nodes that protect is non-negative. It follows that network G must

have another equilibrium defence where all nodes protect. Furthermore, by definition of

∆, the equilibrium with full protection cannot be worse. If ∆ attains the same level of

welfare as full protection, then the tie breaking assumption that nodes prefer to remain

uninfected implies that full protection must be preferred by the designer as well. But

then the designer can be better off by choosing a star network, as in any equilibrium of

the star all nodes will protect.

The upshot of Proposition 4 therefore extends to welfare-minimizing equilibria (albeit

for different reasons): the designer must disconnect the network if s/he is to avoid the over-

protection problem. As stated above, if the network is disconnected then two things may
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happen on the equilibrium path. Either the adversary attacks an unprotected component

(denoted as Case (i)), or s/he attacks a partially protected component (Case (ii)). Case

(ii) can be ruled out if the network value function satisfies the following property.

Property 1. f(1)y < f(y + 1)− f(y) for any y ≥ 0.

Property 1 is a condition on the convexity of the network value function. Functions

that satisfy this property include, for example, Reed’s Law (f(y) = 2y − 1), and poly-

nomial functions with exponent greater than or equal to 2 (i.e. f(y) = yα, α ≥ 2). We

make the following remark.

Proposition 5. Suppose f satisfies Property 1. Let (G,∆, x) be a welfare minimizing

equilibrium of Γ. If G is not connected, then the adversary attacks an unprotected com-

ponent.

The proof works by contradiction. Suppose that in a welfare minimizing equilibrium

the network is disconnected but the adversary attacks a component where some nodes

protect. Let us denote this component by P . Clearly, P cannot be fully protected. If P

was fully protected and the adversary attacks it, then it must be that all components are

fully protected, and the designer can be better off by choosing a connected star where

all nodes protect in any equilibrium. Thus, P is not fully protected and the adversary

eliminates at least one node of P .

Let us say that a component is ‘large’ if its size is such that f(|C|)
|C| ≥ c, and that it

is ‘small’ otherwise. Clearly, if a small component exists then eliminating it is always

feasible for the adversary, since any node in a small component does not protect in any

equilibrium. Moreover, there must exist one such small component if the optimal network

is disconnected. Otherwise the defence profile where all nodes protect is an equilibrium

defence, which, by definition, cannot be worse. But then the designer can attain strictly

higher payoffs by choosing a connected star where all nodes protect in any equilibrium.

We next observe that if P has only one unit of protection, then the adversary must

strictly prefer an attack on P to attacking a small component. To see this, note first

that P must have the structure shown in Figure 4. The adversary eliminates the set X

of nodes, and if a node in X protects then the adversary attacks a node in Y . For an

eliminated node i who has a protected neighbour, not to protect is a best response only

if the adversary disconnects protected nodes in P if i protects. Otherwise node i could

get at least the same payoffs of protected nodes of P by protecting. Note, in particular,

that component P has at least two units of protection and the adversary weakly prefers

an attack on X or Y to an attack on any other component. Clearly, if P had only one

unit of protection the adversary would strictly prefer an attack on P than an attack on

any other component.

The proof is finalized with the following step. We show that it must be possible to

construct another equilibrium defence, ∆′, where in any ‘large’ component some but not

all nodes protect, and the adversary attacks a ‘small’ component. By definition of ∆

being a welfare minimizing equilibrium, the new equilibrium with defence ∆′ cannot be

worse. Moreover, by the observation of the previous paragraph, under ∆′ there must be

at least two protected nodes in component P . But then the designer can modify the
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original network by changing all components into stars. If Property 1 holds, then in any

equilibrium on the modified network only the centres of the large components protect

and the adversary eliminates a small component.16 This attains the same gross welfare

as ∆′ does in the original network, but with strictly less protection spending. Hence the

original network G cannot be optimal.
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Figure 4: The structure of the partially protected and attacked component

As a corollary of Proposition 5, we have the characterization of the optimal net-

works under welfare minimizing equilibria for any network value function that satisfies

Property 1. In equilibrium, if the network is connected then all nodes protect. If it is

disconnected and some nodes protect, then it consists of large centrally protected stars

and small unprotected components, with the adversary eliminating a small component.

If it is disconnected and unprotected, it is the optimal unprotected network.

Consider, for example, the case of Reed’s Law, f(y) = 2y− 1. Since, as argued above,

under Reed’s Law the option of luring the adversary with a small component cannot

work, optimal design under welfare minimizing equilibria is as follows.

Corollary 1. Assume f(y) = 2y − 1. Let (G,∆, x) be a welfare minimizing equilibrium.

(1) If c ≤ 2n−1−1
n−1

, G is connected and all nodes protect.

(2) If c > 2n−1−1
n−1

, G features two components of size bn/2c and no node protects.

Theorem 1 states that if c < min{c0(n), c1(n), c2(n)}, then the price of anarchy equals

one. That is, first best involves full protection and there exist networks that attain full

protection in every equilibrium. What is the structure of these networks?

Let us start by observing that if the cost of protection is very low, c ≤ f(1), then any

node that is attacked is better off by protecting, regardless of the protection decisions of

other nodes. Therefore, in any equilibrium outcome all nodes are protected. Since f(1) <

min{c0(n), c1(n), c2(n)}, c ≤ f(1) implies that the first best is a connected and fully

protected network. The designer can attain first best payoffs in decentralized equilibrium

by choosing any connected network.

16If Property 1 holds, an equilibrium where the large components are periphery-protected stars may

be possible.
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What if costs of protection are low (so that first best involves full protection) but

not very low: f(1) < c ≤ min{c0(n), c1(n), c2(n)}? As we discussed already, there are

connected networks were inefficient equilibrium outcomes are possible, as nodes may

fail to coordinate on the efficient equilibria (e.g. no protection on the cycle, when full

protection is the first best). However, this problem can be solved by choosing the right

topology of the network. Below we provide a necessary condition and a sufficient condition

for a connected network to have full protection in any equilibrium outcome under costs

of protection c ≤ f(n−1)
n−1

.17

Definition 1 (k-critical node). Node i ∈ N is k-critical in connected network G if the

largest component in G− {i} is of size k.

Loosely speaking, the importance of a node as a barrier against contagion due to an

intelligent attack is decreasing in its criticality. For example, any node in a complete

network is (n− 1)-critical.18 On the other hand, the centre of a star is 1-critical.

Proposition 6. Consider a network G, and let k be such that f(n−k)
(n−k)

≥ c.

(1) If all nodes protect in every equilibrium of Γ(G), then G has a k-critical node.

(2) If for all i ∈ N , i is k-critical or has a link to a k-critical node, then all nodes protect

in every equilibrium of Γ(G).

In essence, the presence of a k-critical node, with f(n−k)
n−k ≥ c, rules out equilibrium

outcomes where no node protects: each k-critical node has incentives to protect if no

other node protects. However, it is not sufficient for having full defence in any equilibrium

outcome. Consider the network depicted in Figure 5a. Let f(y) = y3 and c ∈ (81, 100].

The largest component in G−{i} is of size 9, and so i is 9-critical. Note that with k = 9,
f(n−k)
n−k = 100 ≥ c. Consider the defence profile shown in the figure. Facing this defence

profile, the adversary generates a loss of 193 − (19 − 8)3 = 5, 528 if node j is targeted,

and a loss of 193 − (93 + 93) = 5, 401 if node i is attacked. Hence the best response of

the adversary eliminates node j, which thus earns payoff 0. If j chooses to protect, then

the adversary can generate a loss of only 193 − (19− 7)3 = 5, 131 if s/he attacks a node

of the clique to which j belongs, and therefore prefers to attack node i when j protects.

Thus, if it deviates to protection, payoffs of j are of 92 − c < 0. Additionally, since each

of the protected nodes earns positive payoff, none of them is better off by choosing no

protection, as in any best response of the adversary they would be eliminated. Thus, the

defence profile shown is indeed an equilibrium profile.

Note that a k-critical node cannot be eliminated in equilibrium, or otherwise it would

profitably deviate by protecting. It follows from this observation that if G has a k-critical

node and there exist unprotected nodes in an equilibrium of Γ(G), then none of the nodes

who are eliminated in equilibrium can have a link to a k-critical node. Thus, a sufficient

17If c > f(n−1)
n−1 , then every network has an equilibrium with no protection.

18In fact, any node in a d-connected network, d ≥ 2, is (n − 1)-critical. A network is d-connected if

there is no set of l < d nodes whose removal disconnects the network and the network can be disconnected

by removing a set of d nodes (see e.g. Bollobás (1998)).

20



ij

(a)

  

i

(b)

  

i

(c)

Figure 5: Networks over n = 19 nodes with a k-critical node, k ≤ 9.

condition for full protection to be the unique equilibrium outcome on a network is that

every node is k-critical or has a link to a k-critical node. Figure 5b provides an example

where the sufficient condition stated in the second part of Proposition 6 holds. Node i

is 3-critical, and has links to all other nodes. Thus if f(y) = y3 and c ∈ (0, 162), any

equilibrium of Γ(G) has all nodes protected. This condition is not necessary, as illustrated

in Figure 5c. When f(y) = y3 and c ∈ (0, 132), in any equilibrium outcome all nodes

protect.

6 Random attack

To understand the effect of adversarial intelligence on the problem faced by the designer,

in this section we consider the case where the identity of the node attacked is independent

of its position in the network and protection status. In particular, the attack studied

in this section is random in the following sense: a randomly picked node i ∈ N is

targeted. The payoffs of nodes and designer are modified in obvious ways to reflect

21



expected utilities.19

6.1 First best outcome

We start the analysis by characterizing the first best. The following definitions will be

used. For B(n) = {b ∈ Nn : b1 ≥ . . . ≥ bn ≥ 0 and
∑

i bi = n}, let

B∗(n) = arg maxb∈B(n)

n∑
i=1

f(bi)(n− bi).

For b ∈ B∗(n), we will let K(b) denote the maximum i such that bi is strictly positive.

Moreover, let

ĉ1(n) =
f(n)− f(n− 1)

n
, (15)

ĉ2(n) =
f(n)− 1

n

∑n
i=1 f(bi)(n− bi)
n

, (16)

ĉ3(n) =
f(n) + (n− 1)f(n− 1)

n
−

n∑
i=1

f(bi)(n− bi), (17)

where b ∈ B∗(n).

Proposition 7. Suppose the attack is random and the designer chooses protection as well

as design. Then

(1) If c ≤ min{ĉ1(n), ĉ2(n)}, the network is connected and all nodes are protected.

(2) If ĉ1(n) < c ≤ ĉ3(n), the network is a star and only the centre is protected.

(3) If c > max{ĉ2(n), ĉ3(n)}, the network is unprotected and has K(b) components, of

sizes b1, . . . , bK(b).

When the first best involves protection, the topologies that are optimal are the same

as under intelligent attack. The novel aspect is the structure of the optimal unprotected

network. Facing an intelligent threat, there is no point in choosing an unprotected net-

work with a unique largest component; the adversary would remove such a component.

Under random attack, the designer may choose an unprotected network with a very large

component if the network value function is sufficiently convex. For example, if f(y) = αy,

α ≥ e,20 then the optimal unprotected network consists of a component of size (n − 1)

and an isolated node.

19This model of random attack is the appropriate benchmark to study the effects of the adversary

purposefully choosing one node to attack. An alternative model of random attack consists of assuming

that every node fails independently with probability 1/n. To see that the two specifications of random

attack are different in a meaningful way, suppose that f(y) = y2, n = 4, and c > f(4) = 16 so

that investing in protection cannot be optimal for the designer. If every node fails independently with

probability 1/4, then a connected network achieves the highest welfare, of
(
1− 1

4

)4 · f(4) = 5.0625.

Clearly, a connected network cannot be optimal if a randomly picked node is attacked, as it yields zero

welfare.
20Where e is the base of the natural logarithm.
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Figure 6: Networks over n = 6 nodes. In the network of Figure 6a, the unprotected nodes

{4, 5, 6} expose the other nodes to the possibility of contagion, but an attack on any of

them neither spreads nor disconnects the network if all other nodes protect. Figure 6b

presents an example with only one unprotected node.

6.2 Metcalfe’s Law

In this section we present the characterization of optimal networks under random attack

when f(y) = y2. As shown in the Appendix, for this value function the optimal unpro-

tected network consists of two components, of sizes dn/2e and bn/2c. The differences

in the first best between intelligent and random attack are thus minor in the case of

Metcalfe’s Law.21

Before we state the next result, we need to define the following sets of networks over

n nodes:

Gn−u(N) = {G ∈ G(N) : exists U ⊆ N such that |U | = u,

G− {i} is connected for all i ∈ U , and ij ∈ G for i ∈ U iff j /∈ U}

for u = 1, . . . , n − 1. For u = 0, let Gn(N) denote the set of connected networks. To

illustrate, suppose that there are n = 6 nodes. Figure 6a shows a network in G3(N).

Note that, e.g., the set of nodes U = {4, 5, 6} satisfy the conditions required: they are

not linked among themselves, but have links to all other nodes. Moreover, their removal

does not disconnect the network. The network in Figure 6a is in G5(N). In this case,

U = {6}.

Proposition 8. Assume f(y) = y2, and suppose the attack is random. If (G,∆) is a

welfare maximising equilibrium, then

21The minor differences stem, first, from the fact that if n is odd then the optimal unprotected network

features a component of size (n+ 1)/2 and another of size (n− 1)/2. Secondly, under random attack the

hub of the center-protected star is attacked with positive probability. This makes the star more attractive,

and therefore the threshold for the star to be better than a fully protected network is ĉ1(n) = 2n−1
n under

random attack, which is smaller than the threshold c1(n) = 2n−1
n−1 under intelligent attack. Naturally,

this extra benefit of the star under random attack vanishes as n grows.
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Figure 7: Let f(x) = x2. Network 7a features strategic complements: node j protecting

increases incentives for node i to protect. Network 7b features strategic substitutes: node

j protecting decreases incentives for node i to protect.

(1) If c ≤ 1, G is connected and all nodes protect.

(2) If 1 < c ≤ ĉ1(n), G is in Gn−1(N) and all but one nodes protect.

(3) If ĉ1(n) < c ≤ (n− 1) + 1/n, G is a star and only the centre protects.

(4) If c > (n − 1) + 1/n, G is unprotected and has two components, of sizes dn/2e and

bn/2c.

Under random failure, investments in security always exhibit positive externalities.

Additionally, protection decisions may be strategic substitutes, as well as strategic com-

plements (c.f. Figure 7). The latter possibility is due to the fact that nodes care not

only for staying uninfected but also for the benefits they derive from being in the net-

work. Either way, the positive externalities effect always prevails and the over-protection

problem is no longer present if the external threat is unintelligent. In effect, the de-

signer will disconnect the network in decentralized equilibrium only for reasons related

to under-protection.

Interestingly, when the designer decides to keep the network connected, s/he will not

choose any such network (even if nodes coordinate on welfare maximising equilibria!).

This also stands in sharp contrast with the case of intelligent attack, where under welfare

maximising equilibria the designer could choose any connected network to enforce full

protection. For relatively small protection costs, the intelligence of the adversary works

for the designer’s advantage. Under random attack, the designer needs to choose the

network more carefully. In particular, networks that satisfy the properties to belong in

Gn−1(N) have equilibria where a subset of nodes are sufficiently exposed so as to secure

maximum protection spending in equilibrium.

To illustrate point (2) in Proposition 8, suppose there are n = 19 nodes, and that

c = 1.5 ∈ (1, ĉ1(n)). Since c ≤ ĉ1(n), first best is full protection in a connected network.

Note, however, that in any equilibrium of a connected network there will be at least
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Figure 8: Two equilibria on the wheel network over n = 19 nodes.

one unprotected node. If all other nodes protect, the individual gain from protection

is 1
n
n − c < 0. Maximum equilibrium welfare will therefore be achieved if there is a

single unprotected node that elimination neither spreads nor disconnects the network.

Figure 8a presents the wheel network as an example. Note that protected nodes do not

wish to unprotect, for the gain from protection is 2
n
n− c > 0.

Given that multiple protection profiles can be equilibria in a given network, the op-

timality of the networks presented in Proposition 8 may rely on nodes coordinating on

the right equilibrium. If the cost of protection is c ≤ 1, a node will choose to protect on

any network (since 1
n
n − c ≥ 0). Moreover, if ĉ1(n) < c ≤ (n − 1) + 1/n, then centre

protection is the unique equilibrium of the star network.

What if the cost of protection is small (c ≤ ĉ1(n)), but not too small (c > 1)? We show

that in this case a network G attains maximum equilibrium welfare in every equilibrium

if and only if G is the complete network. To illustrate this, Figure 8b shows another

equilibrium on the wheel network where more than one node is unprotected. The next

result characterizes the optimal network under welfare minimizing equilibria.

Proposition 9. Assume f(y) = y2, and suppose the attack is random. If (G,∆) is a

welfare minimizing equilibrium, then

(1) If c ≤ 1, G is connected and all nodes protect.

(2) If 1 < c ≤ ĉ1(n), G is the complete network and all but one nodes protect.

(3) If ĉ1(n) < c ≤ (n− 1) + 1/n, G is a star and only the centre protects.

(4) If c > (n − 1) + 1/n, G is unprotected and has two components, of sizes dn/2e and

bn/2c.

The key point is to note that potential coordination problems among nodes are ad-

dressed in fundamentally different ways depending on the nature of the attack. Under

both intelligent and random attack, the set of networks chosen bearing in mind coordi-

nation failures is a strict subset of the possible designs when coordination problems are
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absent.22 The reason is that, in both cases, the designer can prevent coordination failures

by appropriately choosing the network. However, when the adversary is intelligent, full

protection is secured by choosing networks that are sparse: there must exist a sufficiently

important node that can block the adversary’s attack and thus be willing to protect. On

the contrary, under random attack maximal protection is achieved by choosing networks

that are dense: a node must be exposed to an unprotected node, or otherwise it would not

have enough incentives to protect; maximal protection in every equilibrium is achieved

through maximal exposure, i.e. by designing a complete network.

6.3 General network value function

In this section we discuss in what ways the intuitions brought forward by the case of

Metcalfe’s Law generalize to other network value functions. Before we state the propo-

sition characterizing welfare maximising equilibria, we need to introduce the following

quantities. Let

t0(n) = 0,

tu(n) =
f(n)

n2
+ (u− 1)

f(n− 1)

n(n− 1)
, for u = 1, . . . , n.

Proposition 10. Suppose the attack is random, and let (G,∆) be a welfare maximising

equilibrium of Γ. Then

(1) G is in Gn−u(N) and exactly u nodes do not protect, if tu(n) < c ≤ min {tu+1(n), ĉ1(n), ĉ2(n)},
for u = 0, . . . , n− 1.

(2) G is a star and only the centre protects, if ĉ1(n) < c ≤ min {ĉ3(n), tn(n)}.

(3) G is an optimal unprotected network, if c > min {tn(n),max {ĉ2(n), ĉ3(n)}}.

Recall that under Metcalfe’s Law, if full protection is first best (c ≤ {ĉ1(n), ĉ2(n)})
then either all (if c ≤ t1(n)) or all except one (if t1(n) < c ≤ t2(n)) nodes protect in

equilibrium. The generalization of Proposition 10 shows that this depends on the specific

network value function.

Suppose, for example, that there are n = 6 nodes and consider again Reed’s Law, i.e.

f(y) = 2y − 1. The optimal unprotected network consists of two components, of sizes 4

and 2. From this observation, it is straightforward to see that full protection is first best

if c ≤ 5.3 (as min{ĉ1(n), ĉ2(n)} = ĉ1(n) = 5.3). Simple calculations indicate that in this

case t4(n) < 5.3 < t5(n). Therefore, when first best is full protection, up to 4 nodes may

be unprotected in equilibrium if the cost of protection is large enough. If t4(n) < c < 5.3,

in decentralized equilibrium of any network there will be at least 4 unprotected nodes.

Equilibrium welfare is therefore bounded above by the case where there are exactly 4

22When the aversary is intelligent, we know that the network must be connected and contain a k-

critical node with k < n− c, and this class of networks is a strict subset of the set of connected networks.

Under random attack, the complete network is a strict subset of Gn−1(N).
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unprotected nodes such that an attack on any of them neither spreads nor disconnects

the network, and this is only attained by networks in G2(N).

As we discussed for the case of Metcalfe’s Law, the optimality of the networks that

attain maximum equilibrium protection may depend on nodes coordinating on the best

equilibrium. For the network value function f(y) = y2 the welfare costs of coordination

problems could be avoided by choosing the right topology. We conclude this section with

a discussion on whether this finding generalizes to other network value function.

For sufficiently small protection costs, first best networks attain first best payoffs in

every decentralized equilibrium for any network value functions.

Fact 1. Suppose the attack is random and first best involves full protection. If 0 < c ≤
t1(n) and G is connected, the unique equilibrium of Γ(G) attains first best payoffs.

If costs of protection are low (so that full defence is first best) but not too low,

then every equilibrium on any network features some unprotected nodes. The designer’s

optimal choice is a network with an equilibrium where the number of unprotected nodes

is as small as possible. Suppose t1(n) < c ≤ t2(n). In the welfare maximising case, the

designer chooses a network G with a node l who has a link to all other nodes, and G−{l}
is connected. There is an equilibrium on such a network where l is the only unprotected

node. Notice that the complete network satisfies these properties – l can be any node

i ∈ N . The next result states that for any network different from the complete network,

a worse equilibrium exists (i.e. one where more than one node does not protect). Thus,

the only hope if the designer wants to achieve maximum equilibrium payoffs in every

equilibrium is the complete network. However, whether the complete network has only

one unprotected node in every equilibrium depends on the network value function.

Fact 2. Suppose the attack is random, first best involves full protection, and t1(n) < c ≤
t2(n).

(1) If G is not the complete network, there exists an equilibrium of Γ(G) which does not

attain maximum equilibrium welfare.

(2) The complete network Gc attains maximum equilibrium welfare in every equilibrium

of Γ(Gc) for any c ≤ t2(n) if f(n−1)
(n−1)

≤ uf(n−u)
n−u for any u = 1, . . . , n− 1.

The intuition for this observation is as follows. Since t1(n) < c ≤ t2(n), by Proposi-

tion 10 we know that there are at least one unprotected node in every equilibrium. This

is true because for c > t1(n) any node who has all its neighbours protected prefers not to

protect. For any network that is not the complete network, we can construct an worse

equilibrium, where there are two unprotected nodes. This is what is established in point

(1) of Fact 2.

By creating maximal exposure, there are no equilibria in the complete network where

exactly two nodes do not protect. But nodes may ‘get stuck’ in worse equilibria in the

complete network, and whether this is possible depends on the network value function.

Increasing the probability of contagion by creating exposure taps the substitutes aspect

of protection decisions. But nodes value being connected to surviving individuals – this
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is the complements aspect of protection decisions. Thus, if few nodes are protected it

may not pay off to protect. Consider, for example, f(y) = 2y − 1 with n = 6 nodes, and

suppose that c = 2.6 ∈ (t1(n), t2(n)). By Proposition 10, the complete network has an

equilibrium with full protection. It also has, however, an equilibrium with no protection.23

The condition in point (2) of Fact 2 bounds the convexity of the value function, and

thus bounds the strength of complementarities in protection. This condition holds, for

example, if f(y) = ya, a ≤ 2.

7 Concluding remarks

In this paper we studied the problem of mitigating inefficiencies resulting from protection

decentralization by appropriate network design.

Motivated by the example of cybersecurity, we first took up the case of an intelligent

threat. An efficient equilibrium may exhibit too much or too little investment in security.

The problem of over-protection problem arises for intermediate costs of protection, and

is best addressed by disconnecting the network into unequal components, and sacrificing

some nodes. The problem of under-protection is more standard and reflects the public

good aspect of security. It arises at larger costs of security and is addressed by creating

networks with equal components. Finally, inefficient equilibria arise due to strategic

complementarity in security. They are addressed by creating networks that are ‘sparse’

and contain ‘critical’ nodes. This sparseness gives rise to nodes that can prevent attacks

from spreading, and thus save large parts of the network. Although the first best cannot

be attained when over-protection pressures prevail, network design puts a bound on the

welfare costs of decentralization.

Finally, motivated by problems in epidemiology, we studied optimal design in the

face of random attack. The over-protection problem is no longer present, whereas under-

protection problems may be mitigated in a diametrically opposite way: namely, by cre-

ating dense networks that expose the individuals to the risk of contagion.

23 If no other node protects in the complete network, then a node’s gain from protecting equals
1
n
f(n)
n + n−1

n f(1)− c = 2.58− c < 0. Therefore, no protection is an equilibrium. In fact, if no protection

is an equilibrium defence on the complete network, then it is an equilibrium defence on any d-connected

network, d ≥ 2. The optimal network in these case must therefore be 1-connected.
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A Equilibrium existence

Proof of Lemma 1. Let x be a strategy of A in Γ(G) such that for all ∆ ⊆ N , x(∆) is a

best response to ∆. Network G and strategy x define game Γ(G, x) with set of players

N such that, given defence ∆ induced by a strategy profile of the nodes (δ1, . . . , δn), the

utility of player i is ũi(∆) = U i(G,∆, x(∆)).

We will show that Γ(G, x) has a Nash equilibrium. To show that we will construct a set

of defended nodes, ∆∗, such that the corresponding strategy profile of the nodes is Nash

equilibrium of Γ(G, x).

There are two cases possible. First, suppose that for all components C ∈ C(G), f(|C|)
|C| ≥ c.

I this case ∆∗ = N is an equilibrium of Γ(G, x), as any node that would deviate and drop

protection, would obtain payoff 0 ≤ f(|C|)
|C| − c.

Second, suppose that there exists C ∈ C(G) such that f(|C|)
|C| < c. Let A(G|c) = {C ∈

C(G) : f(|C|)/|C| < c} be the set of all such components. We construct ∆∗ using the

following algorithm.

• ∆∗ := N \
⋃
A(G|c), i.e. ∆∗ protects all the nodes in components where protection

yields non-negative payoffs to the protected nodes; for any C ∈ A(G|c), C∩∆∗ = ∅;

note that x(∆∗) removes C ∈ A(G|c) of maximal size.

• While there exists i ∈ ∆∗ such that x(∆∗ \ {i}) ∈ A(G|c) do

– ∆∗ := ∆∗ \ {i}.

Clearly the algorithm stops, as in every step at least one node is removed from ∆∗.

Moreover, x(∆∗) removes C ∈ A(G|c) of maximal size and no node in C has incentive

to protect. The algorithm ensures that no node in ∆∗ has incentive to drop protection

either. Hence ∆∗ is an equilibrium protection of Γ(G, x) and (∆∗, x) is an equilibrium of

Γ(G).
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B The First Best Outcome

Proof of Proposition 1. Let (G,∆) be a first best protected network. Three cases are

possible.

Case (i). ∆ = N Clearly in this case G must be a connected network.

Case (ii). ∅ ( ∆ ( N In this case A removes at least one node from G and so gross

welfare is bounded from above by f(n − 1). Star network is the unique network that

attains this upper bound by using only one unit of protection. This is the lowest possible

number of protected nodes possible in Case (ii). Thus G is a star and ∆ = {i}, where i

is is the centre of G.

Case (iii). ∆ = ∅ As long as n > 1, any disconnected G yields higher welfare than a

connected network in this case. Moreover, there are at most two sizes of components in

C(G). For assume otherwise and let C1, C2, C3 ∈ C(G) be such that |C1| > |C2| > |C3|.
Then, since f is strictly increasing and strictly convex, D is better of by moving a node

from C3 to C2. Lastly, if C1 is the component of maximal size in C(G), then there is

at most one component C ∈ C(G) with |C| < |C1|. If there was another component

C ′ ∈ C(G) with |C ′| = |C|, then, since f is strictly increasing and strictly convex, D

would be better off by moving a anode from C ′ to C. It is straightforward to see that

the number and the sizes of the components are as stated in the proposition.

Comparing the payoffs of (i)-(iii) yields the desired result.
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C The price of decentralization

To prove Lemma 2, we will use the following two results. Let Gfull(N, c) denote the set

of connected networks such that all nodes protect in any equilibrium. That is,

Gfull(N, c) = {G ∈ G(N) : G is connected and ∆(G) = N for any (∆, x) ∈ E(c|G)}.

Lemma 5. Gfull(N, c) 6= ∅ if and only if c ≤ c0(n).

Proof. For left to right implication, note that if c > c0(n) = f(n−1)
n−1

, then any node

strictly prefers to protect only if all other nodes survive. Therefore, for any network G,

the strategy profile where no node protects is an equilibrium of Γ(G).

For right to left implication, suppose that c ≤ c0(n) = f(n−1)
n−1

and let G be a star network

and i be the centre of G. Take any equilibrium (∆, x) of Γ(G). It must be that i ∈ ∆

as otherwise i would be removed by A obtaining payoff 0 instead of f(n−1)
n−1

− c ≥ 0.

Similarly, if there is j ∈ N \ {i} such that j /∈ ∆, then k = x(∆) /∈ ∆ and k is better off

by protecting, which yields payoff at least f(n−1)
n−1

− c ≥ 0.

Fact 3. For all q ∈ Q∗(n),
f(b n

q−1c)
b n

q−1c
< c3(n).

Proof of Lemma 2. Consider first c ≤ min {c0(n), c1(n), c2(n)}. Since c ≤ min {c1(n), c2(n)},
first best is attained through full protection in a connected network. Since c ≤ c0(n), by

Lemma 5 there exists connected G such that ∆ = N in every equilibrium of Γ(G).

Consider next c > max {c2(n), c3(n)}. By Fact 3, this implies that c >
f(b n

q−1c)
b n

q−1c
. There-

fore, if c > max {c2(n), c3(n)} and G is a first best network, ∆ = ∅ in every equilibrium

of Γ(G).

Proof of Lemma 3. Let G be a star network. For a contradiction, suppose there is an

equilibrium (∆, x) on G with ∆ ( N .

Suppose that f(n−1)
n−1

< c. In this case any protected node i ∈ ∆ would be better off by

deviating to no protection, as A removes at least one node from G and so the payoff to

i, U i(G,∆, x(∆)) ≤ f(n−1)
n−1

− c < 0.

Suppose that f(n−1)
n−1

≥ c and let i be the centre of star G. If i protects, it obtains at least

the payoff of f(n−1)
n−1

− c ≥ 0. Hence i prefers to protect, regardless of protection decisions

of other nodes. Let j = x(∆) be the node attacked by A. As in the case of i, j prefers to

protect, a contradiction with the assumption that (∆, x) is an equilibrium.

Proof of Theorem 1. Point 1 follows directly from the discussion in the main text. For

point 2 notice that, by Lemma 5, D can enforce full protection by choosing the right

connected network if and only if f(n−1)
n−1

≥ c.

Since f(y)
y

is increasing, either f(n−1)
n−1

≥ c for sufficiently large n, or f(n−1)
n−1

< c for all

n ≥ 1.

Consider the former case. Then, for sufficiently large n, D could choose a connected

network where all nodes protect in every equilibrium. This attains a welfare of f(n)−nc.
Thus

lim
n→∞

PoA(c, n) ≤ lim
n→∞

f(n− 1)− c
f(n)− nc

= lim
n→∞

1− n
f(n)

f(n)−f(n−1)
n

− c
f(n)

1− n
f(n)

c
. (18)
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Suppose that f(n)
n

is unbounded, i.e. limn→∞
f(n)
n

= +∞. Then, by the fact that
f(y)−f(y−1)

y−1
is bounded,

lim
n→∞

1− n
f(n)

f(n)−f(n−1)
n

− c
f(n)

1− n
f(n)

c
= 1. (19)

Suppose now that limn→∞
f(n)
n

= p < +∞. In this case limn→∞
f(n)−f(n−1)

n−1
= 0 and

lim
n→∞

1− n
f(n)

f(n)−f(n−1)
n

− c
f(n)

1− n
f(n)

c
=

p

p− c
. (20)

Assume now that f(n−1)
n−1

< c, for all n ≥ 2. If D chooses the fully disconnected network,

then

lim
n→∞

PoA(c, n) ≤ lim
n→∞

f(n− 1)− c
(n− 1)f(1)

=
p

f(1)
. (21)

This completes the proof.
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D Decentralized security and optimal design

We structure the proofs of optimal design in the following way. Results that are for

general network value function are shown first. Based on these results, we then show the

results for specific functional forms. We start with welfare maximising equilibria, and

then move to welfare minimizing equilibria.

D.1 Welfare maximising equilibria

To prove Proposition 4, we need a couple of intermediate results and some notation.

Given a network G ∈ G(N) and a set of nodes U ⊆ N , the neighbourhood of U in G

is the set of nodes ∂G(U) = {j ∈ N \ U : ∃i ∈ U. ij ∈ E}. In the case of a singleton

set {i}, its neighbourhood in G is the set of neighbours of i in G. In this case we omit

the curly brackets and write ∂G(i) rather than ∂G({i}). Given network G and set of

protected nodes ∆, we will say that a component C ∈ C(G) is partially protected under

∆ if C ∩∆ 6= ∅ and C \∆ = ∅.

Lemma 6. Let G ∈ G(N). In every equilibrium (∆, x) of Γ(G), if two protected nodes are

connected in network G, then they are connected in the residual network G−Ex(G,∆(G))(G|∆).

Proof. Assume otherwise and let i, j ∈ ∆ be connected in G and disconnected in G −
Ex(∆)(G|∆). Then, under defence ∆ all paths between i and j go through Ex(∆)(G|∆).

Pick l ∈ Ex(∆)(G|∆) such that l is on a path from i to j in G and is a neighbour of

Ci(G[∆(G)]). Let ∆′ = ∆ ∪ {l}.
It must be that x(∆′) ∈ Ci(G) or l is strictly better off by getting positive payoff (it gets

higher payoff than its protected neighbour gets under ∆). Thus, there must be at least

another unprotected node, l′ ∈ Ci(G). There are two cases possible:

Case (i). x(∆′) is reachable from l in G−∆. In this case Ex(∆′)(G|∆′) ⊆ Ex(∆)(G|∆)

and l gets strictly higher payoffs than its protected neighbour did under original strategy

profile; thus l is strictly better off with payoff > 0 (a contradiction).

Case (ii). x(∆′) is not reachable from l in G−∆. In this case, i and j are connected

in G − Ex(∆′)(G|∆′). Suppose that x(∆′) /∈ Ci(G − Ex(∆)(G|∆)) (the case with Cj is

analogous). Then |Ci(G − Ex(∆′)(G|∆′))| > |Ci(G − Ex(∆)(G|∆))| (the component gets

extended by node j, at least). Since l ∈ Ci(G−Ex(∆′)(G|∆′)) so l is strictly better off (a

contradiction).

The next lemma characterizes the structure that a partially protected component

must have for it to be attacked in equilibrium.

Lemma 7. Suppose that (G,∆, x) is a welfare maximising equilibrium of Γ. Let ∆∗ =

∆(G), x∗ = x(G,∆∗) and X∗ = Ex∗(G|∆∗). If x attacks a partially protected component

P ∈ C(G∗), then there exists a unique set of nodes Y 6= ∅ such that

1. G[Y ] is connected.
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2. ∆∗ ∩ P = ∂G(Y ), i.e. the neighbourhood of Y is the set of protected nodes in P .

3. |C(G[P ]− Y )| = |∆∗ ∩ P | ≥ 2 and for each C ∈ C(G[P ]− Y ), |C ∩∆∗| = 1.

Moreover, for all i ∈ ∂G(∆∗) ∩X∗, x(G,∆∗ ∪ {i}) ∈ Y .

Proof. Let P be a partially protected components attacked by x, as stated in the lemma.

Let ∆i = ∆∗ ∪ {i}, xi = x(G,∆i) be equilibrium response of A to G and defence ∆

extended with a node i ∈ N , and let X i = Exi(G|∆i) be the set of nodes eliminated by

xi. We prove the lemma in the following three steps.

Step 1. For all i ∈ ∂G(∆) ∩ X, |C(G[P ] − X i)| ≥ 2. By Lemma 6, the residual

component G[P ]−X is connected and its value is f(|P | − |X|). Let i ∈ ∂G(∆)∩X be a

node removed by attack x and neighbouring a protected node. Suppose, to the contrary,

that |C(G−X i)| ≤ |C(G)|, that is component G[P ] does not get disconnected by X i. If

so, then |X i| ≤ |X| (as otherwise xi would be a better response to (G,∆∗) than x) and so

the value of residual component G[P ]−X i, f(|P | − |X i|) ≥ f(|P | − |X|). Payoff to i in

G[P ]−X i, when it protects, is f(|P |−|X i|)/(|P |−|X i|)−c ≥ f(|P |−|X|)/(|P |−|X|)−c
(as f is increasing and convex). Since f(|P | − |X|)/(|P | − |X|) − c ≥ 0 (as there are

protected nodes in P ∩∆∗ that get exactly this payoff) so i is better off. Thus G[P ] must

get disconnected by X i, i.e. |C(G[P ]−X i)| ≥ 2.

Step 2. For all i ∈ ∂G(∆∗) ∩X∗ and any C ∈ C(G[P ] −X i), |C ∩∆∗| = 1. Pick any

i ∈ ∂G(∆∗) ∩ X∗ and any C ∈ C(G[P ] − X i). Clearly it must be that |C ∩ ∆| ≥ 1, as

otherwise C would be removed by xi. Let j ∈ ∂G(X i) ∩ C (any node in ∂G(X i) must be

protected). Let G′ = (N,E ′) be a network obtained from G by removing all links to nodes

from C\{j} and linking these nodes to j only, i.e. E ′ = (E\E[C\{j}])∪{jl : l ∈ C\{j}};
additionally, in the case of j ∈ ∂G(i), all nodes from X∗ are linked to form a clique, i.e.

E ′ = (E \ E[C \ {j}]) ∪ {jl : l ∈ C \ {j}} ∪ {lr : l, r ∈ X, l 6= r}.
Consider a strategy profile (∆′, x′) in Γ(G′) such that

• ∆′ = (∆∗ \ C) ∪ {j}.

• x′(∆′) = x∗.

• For all l ∈ ∆′, x′(∆′ \ {l}) = x(G,∆′ \ {l}).

• For all l ∈ P \ (∆′ ∪ C), x′(∆′ ∪ {l}) = x(G,∆ ∪ {l}) (note that P \ (∆′ ∪ C) =

P \ (∆ ∪ C)).

• For all l ∈ (C \ {j}), x′(∆′ ∪ {l}) = x∗.

The strategy profile (∆′, x′) is an equilibrium of Γ(G′). The responses of A to ∆′ and

any single node deviations from ∆′ are best responses, because they are best responses

to (G,∆) and any single node deviations from ∆′ ⊆ ∆∗. None of the nodes is better off

by deviating from its strategy, as they obtain the same payoffs as under (∆∗, x(G, ·)) in

the game Γ(G).
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Since (∆′, x′) is an equilibrium of Γ(g′) and it yields a better welfare than (∆∗, x(G, ·)) in

Γ(G) (as less defence resources are used), so we get a contradiction with the assumption

that (G,∆, x) is an equilibrium. Hence it must be that |C ∩∆| = 1.

Step 3. The structure of G[P ]. Clearly G[X i] is connected. Moreover, since for any

component C ∈ C(G[P ]−X i), |C ∩∆∗| = 1, so ∆∗∩P = ∂G(X i), i.e. the neighbourhood

of X i is the set of protected nodes. Additionally, by Step 1, C(G[P ] − X i) ≥ 2. Thus

taking Y = X i we have a set of nodes that satisfies points 1 – 3 stated in the lemma.

It remains to be shown that it is unique such set of nodes. Assume to the contrary

that there is a set of node Y ′ 6= Y that satisfies points 1 – 3 as well. It cannot be that

Y ′ ∩ Y 6= ∅, because ∂G(Y ′) would contain unprotected nodes from Y (which violates

point 2 for Y ′). But then, by point 2 for Y ′, G[∆∗ ∩ P ]− Y is connected, which violates

point 3 for Y .

Uniqueness of Y together with points 1 – 3 and Step 1 imply that for all i ∈ ∂G(∆∗)∩X,

x(G,∆ ∪ {i}) ∈ Y .

Let (G,∆, x), ∆∗ = ∆(G), x∗ = x(G,∆∗), P ∈ C(G), and X∗ = Ex∗(G|∆∗) be as

defined in Lemma 7. Let Y be the set of nodes satisfying points 1 – 3 of Lemma 7. Suppose

that ∆∗ ∩ P = {j0, . . . , jd} with j0 ∈ ∂G(X∗). Let C(G[P ] − Y ) = {Z0 ∪X,Z1, . . . , Zd}
with ji ∈ Zi, for all i ∈ {1, . . . , d} (by Lemma 7 this is possible; in the component of

G[P ] − Y containing j0 we distinguish two subsets: X and the remaining set of nodes

Z0). The structure of G[P ] is illustrated in Figure 4.

The components of G can be divided into three disjoint sets (some of them possibly

empty): {P}, D = {C ∈ C(G) : C ∩ x∗ = ∅ and C ∩∆∗ 6= ∅} (the set of not attacked

components, protected under ∆∗), and U = {C ∈ C(G) : C ∩ (x∗ ∪∆∗) = ∅} (the set of

not attacked components not protected under ∆∗).

In the following lemmas we establish further properties of network G and subnetwork

G[P ].

Lemma 8.

f(|X|) ≥ f(|P | − |X|)− f(|P | − |X| − 1). (22)

Proof. Assume to the contrary that

f(|X|) < f(|P | − |X|)− f(|P | − |X| − 1). (23)

Since each node ji, with i ∈ {1, . . . , d} is protected, so if the node would not protect, the

adversary would remove it. Thus for all i ∈ {1, . . . , d},

f(|P |)− f(|X|+ |Z0|)−
d∑

i=1,i 6=q

f(|Zi|) > f(|P |)− f(|Z0|+ |Y |+
d∑
i=1

|Zi|) (24)

which implies

f(|X|+ |Z0|) < f(|Z0|+ |Y |+
d∑
i=1

|Zi|)−
d∑

i=1,i 6=p

f(|Zi|) (25)
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and further

f(|X|+ |Z0|) < f(|Z0|+ |Y |+
d∑
i=1

|Zi|). (26)

By the fact that f is strictly increasing, it follows that

|X| < |Y |+
d∑
i=1

|Zi|. (27)

On the other hand, since removing the nodes from X is better than attacking a node in

Y and disconnecting the component, we have

f(|P |)− f(|Z0|+ |Y |+
d∑
i=1

|Zi|) > f(|P |)− f(|X|+ |Z0|)−
d∑
i=1

f(|Zi|), (28)

which implies

f(|X|+ |Z0|) +
d∑
i=1

f(|Zi|) > f(|Z0|+ |Y |+
d∑
i=1

|Zi|). (29)

Since |P | = |X|+ |Z0|+ |Y |+
∑d

i=1 |Zi|, so Equation (23) implies

f(|Z0|+ |Y |+
d∑
i=1

|Zi|) > f(|X|) + f(|Z0|+ |Y | − 1 +
d∑
i=1

|Zi|). (30)

This, together with Equation (29) implies

f(|X|+ |Z0|) +
d∑
i=1

f(|Zi|) > f(|X|) + f(|Z0|+ |Y | − 1 +
d∑
i=1

|Zi|), (31)

from which we get

f(|X|+ |Z0|)− f(|X|) > f(|Z0|+ |Y | − 1 +
d∑
i=1

|Zi|)−
d∑
i=1

f(|Zi|) (32)

and further, by convexity of f ,

f(|X|+ |Z0|)− f(|X|) > f(|Z0|+ |Y | − 1 +
d∑
i=1

|Zi|)− f(
d∑
i=1

|Zi|). (33)

and

f(|X|+ |Z0|)− f(|X|) > f(|Z0|+ |Y | − 1 +
d∑
i=1

|Zi|)− f(|Y | − 1 +
d∑
i=1

|Zi|), (34)

as f is strictly increasing and |Y | ≥ 1. Since f is strictly increasing and strictly convex,

this yields

|X| > |Y | − 1 +
d∑
i=1

|Zi| (35)
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and further, by the fact that |X|, |Y | and |Z1|, . . . , |Zd| are integers,

|X| ≥ |Y |+
d∑
i=1

|Zi|, (36)

a contradiction with Equation (27). Thus we have shown that it must be that f(|X|) ≥
f(|P | − |X|)− f(|P | − |X| − 1).

Fact 4.
f(|X|+ |Z0|)
|X|+ |Z0|

≤ c ≤ f(|P | − |X|)
|P | − |X|

. (37)

Proof. If it was f(|X| + |Z0|)/(|X| + |Z0|) > c, then it would be profitable for a node

i ∈ ∂g∗(j0) ∩ X to protect. If it was c > f(|P |−|X|)
|P |−|X| , then it would be profitable for any

node i ∈ P ∩∆ not to protect.

Corollary 2.

2|X|+ |Z0| ≤ |P |. (38)

Proof. Since f(y) is strictly increasing and strictly convex, so f(y)/y is strictly increasing.

Thus, by Equation (37), |X|+ |Z0| ≤ |P | − |X| and Equation (38) follows.

As a corollary from Lemma 8, Fact 4 and Corollary 2 we get that G must have at

least one not attacked component, which implies Proposition 4.

Proof of Proposition 4. We prove the proposition by showing that D ∪ U 6= ∅.

Assume, to the contrary, that C(G) = {P}. Let G′ be a network consisting of two

components, a clique over the set of nodes X and a star over the set of nodes V \
X, with centre i. Consider the strategy profile (∆′, x′) of the game Γ(G′) with ∆′ =

{i}, x′(G′,∆′) ∈ X and x′(G′,∆′′) being a best response to (G′,∆′′), for ∆′′ 6= ∆′.

Strategy profile (∆′, x′) is an equilibrium of game Γ(G′): by Equation (22), x′(G′,∆′)

is a best response to (G′,∆′); by Equation (37), none of the nodes in X can be better

off by choosing protection, while being protected in P \ X yields non-negative payoff;

by Equation (38, A would attack G[P \ X] if i did not protect (recall that |Z0| ≥ 1 as

j0 ∈ Z0).

Since (∆′, x′) is an equilibrium of Γ(G′) so G′ yields a strictly better payoff to D than G,

a contradiction with the assumption that (G,∆, x) is a welfare maximising equilibrium.

Thus it must be that D ∪ U 6= ∅.

To prove Proposition 2, we need three intermediate steps. Lemma 9 shows that, for

any f , if the network is not connected in a welfare maximising equilibrium, then there is

no fully protected component. Lemma 10 shows for f(y) = y2 that if G is not connected

and the adversary attacks a protected component, then there exists another protected

component in G. Based on this intermediate result, Lemma 11 shows that if G is not

connected the adversary does not attack a protected component.

Lemma 9. Let (G,∆, x) be a welfare maximising equilibrium. If G is not connected,

then there is no fully protected component.
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Proof. Suppose G is not connected, and there exists component X ∈ C(G) such that

X ⊆ ∆. Clearly, X must be the only fully protected component, or otherwise D would

be strictly better off by merging all fully protected components.

We compare two modifications to G. Network G′ is obtained by attaching another com-

ponent Y ∈ C(G) to X, where x(G,∆) /∈ Y if possible. We present the case where

x(G,∆) /∈ Y ; if G has only two components the proof is analogous. First, note that there

exists an equilibrium of Γ(G′) were all nodes in X ∪ Y protect and A attacks the same

unprotected node or attacks a protected node in X ∪ Y . For G to be optimal, it must be

that G′ does not attain higher welfare. Let |X| = |X ′′|+ |Y |, and denote with pY < |Y |
the number of nodes protected in Y . Then,

f(|X ′′|+ 2|Y |)− (|X ′′|+ 2|Y |)c ≤ f(|X ′′|+ |Y |) + f(|Y |)− (|X ′′|+ |Y |+ pY )c

⇔ c(|Y | − pY ) ≥ f(|X ′′|+ 2|Y |)− f(|X ′′|+ |Y |)− f(|Y |). (39)

The second modification consists of network G′′, formed from network G as follows.

Change X into a star, and detach |Y | spokes from it to form a copy of Y . The nodes that

have not been detached from X form a component X ′′. Let ∆′′ denote the equilibrium

defence profile in Γ(G′′).

Case (i). X ′′ ⊆ ∆ For G to be optimal, it must be that

f(|X ′′|) + 2f(|Y |)− (2pY + |X ′′|)c ≤ f(|X ′′|+ |Y |) + f(|Y |)− (pY + |X ′′|+ |Y |)c
⇔ c(|Y | − pY ) ≤ f(|X ′′|+ |Y |)− f(|X ′′|)− f(|Y |).

Combining this condition with (39), we have that f(|X ′′| + 2|Y |) − f(|X ′′| + |Y |) ≤
f(|X ′′|+ |Y |)− f(|X ′′|), which contradicts f being convex.

Case (ii). X ′′ ( ∆ and x(G′′,∆′′) /∈ X ′′ Following the same steps as in Case (i) leads

to a contradiction.

Case (iii). X ′′ ∩∆ = ∅ and x(G′′,∆′′) /∈ X ′′ Following the same steps as in Case (i)

leads to a contradiction.

Case (iv). X ′′∩∆ = ∅ and x(G′′,∆′′) ∈ X ′′ Since nodes in X ′′ are eliminated, it must

be that c > f(|X′′|)
|X′′| , or

|X ′′|c > f(|X ′′|). (40)

Let Z denote the component attacked in equilibrium (G,∆, x). By Lemma 6, the payoff

to the designer from this component in the original network is f(|Z| − |Ex(G|∆)(G|∆)|).
Then, for G to be optimal, it must be that

f(|X ′′|+ |Y |) + f(|Z| − |Ex(G|∆)(G|∆)|)− (|X ′′|+ |Y |)c ≥ f(|Y |) + f(|Z|)− pY c,

or, equivalently,

|X ′′|c+ (|Y | − p)c ≤ f(|X ′′|+ |Y |)− f(|Y |)− [f(|Z|)− f(|Z| − |Ex(G|∆)(G|∆)|)].
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We can combine this condition with (40) to obtain:

f(|X ′′|) + (|Y | − pY )c < f(|X ′′|+ |Y |)− f(|Y |)− [f(|Z|)− f(|Z| − |Ex(G|∆)(G|∆)|)].

Rearranging yields:

(|Y | − pY )c < f(|X ′′|+ |Y |)− f(|X ′′|)− f(|Y |)− [f(|Z|)− f(|Z| − |Ex(G|∆)(G|∆)|)].(41)

For G to be optimal, c must be such that (39) and (41) holds. Thus, it must be that

f(|X ′′|+ 2|Y |)− f(|X ′′|+ |Y |) < f(|X ′′|+ |Y |)− f(|X ′′|)
−[f(|Z|)− f(|Z| − |Ex(G|∆)(G|∆)|)]

≤ f(|X ′′|+ |Y |)− f(|X ′′|),

which contradicts f being convex.

Lemma 10. Assume f(x) = x2. Let G be a network chosen in welfare maximizing

equilibrium. If G is not connected and the adversary attacks a protected component, then

there exists another protected component in G.

Proof. Assume otherwise. Let (G,∆∗, A∗) be a welfare maximizing equilibrium. Since

the adversary attacks a protected component, there must be unprotected nodes there

and the adversary removes some of them. We know that if (G,∆∗, A∗) is an equilibrium,

then A∗(G,∆∗(G)) does not disconnect the protected nodes. Let P be the protected

component and p = |P | be its size, x be the number of unprotected nodes removed, and

u1, . . . , uk be the sizes of the remaining, unprotected, components U1, . . . , Uk of g, such

that u1 ≥ . . . ≥ uk. We will construct a sequence of strategy profiles (gi,∆i, Ai)0≤i≤l (not

necessarily equilibria) such that:

1. l ≥ 1

2. (g0,∆0, A0) = (G,∆∗, A∗),

3. (gl,∆l, Al) is an equilibrium.

4. If i′ < i, then W (gi
′
,∆i′ , Ai

′
) < W (gi,∆i, Ai).

The points above contradict the assumption that (G,∆∗, A∗) is a welfare maximizing

equilibrium. In each strategy profile (gi,∆i, Ai), ∆i differs from ∆∗ on network gi only,

and Ai differs from A∗ on (gi,∆i(gi)) only. Describing the strategy profiles we will focus

on the arguments on which the strategies of the players are different to (G, δ∗, A∗).

Let (g1,∆1, A1) be defined as follows. Component P is replaced with two components:

P 1
1 of size p1

1 = p− x′, and P 1
2 of size p1

2 = x′. Here, x′ = minY (x), where Y (x) = {1 ≤
y ≤ x : f(y) ≥ f(p − y) − f(p − y − 1)}. The subnetwork of g1 over P 1

1 is a star and

the subnetwork of g1 over P 1
2 is a clique. Let ∆1(g1) = {m}, where m ∈ P 1

1 is the centre

of the star over P 1
1 . Let A1(g1,∆1(g1)) ∈ P 1

2 . The construction above is valid as long

as x′ is well defined, i.e. as long as Y (x) 6= ∅. This is the case because, by Lemma 8,

x ∈ Y (x).
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Given i ≥ 2, the network (gi,∆i, Ai) is defined on the basis of (gi−1,∆i−1, Ai−1). Each

such network has at least two components: P i
1, of size pi1, P i

2, of size pi2. The subnetwork

over P i
1 is a star and the subnetwork over the remaining components are cliques. Defence

∆i(gi) = {m}, where m ∈ P i
1 is the centre of the star over P i

1. Attack Ai(gi,∆i(gi)) ∈ P i
2,

removes all the component P i
2. The set of the remaining components is denoted by U i.

The construction ends on minimal i such that for all U ∈ U i, |U | < |P i
2|.

Let ti = max{s ∈ N : f(pi−1
2 ) − f(1) ≥ f(pi−1

1 + s) − f(pi−1
1 + s − 1)}. In other words

ti is maximal such that removing all but one node from a component of size pi−1
2 + 1 is

preferred by the adversary to removing a single node from a component of size pi−1
1 + ti.

Network (gi,∆i, Ai) is obtained from (gi−1,∆i−1, Ai−1) as follows:

1. Pick the largest component U i−1 from U i−1. Let ui−1 = |U i−1| (note that ui−1 ≥ pi−1
2

as otherwise the algorithm would stop before reaching this point).

2. Move di = min(ti, pi−1
2 − 1) nodes from U i−1 to P i−1

1 adding them as spokes of the

star over P i−1
1 , thus obtaining the component P i

1.

3. Move 1 node from U i−1 to P i−1
2 , thus obtaining component P i

2, and form a clique

over P i
2.

Clearly, if l ≥ 2, the nodes-adversary subgame in the last strategy profile in the sequence,

(gl,∆l, Al), is an equilibrium, as, by the construction, attacking P l
2 is preferred to attack-

ing P l
1 and none of the components in U l is larger than pl2 − 1. If the protected node

in P l
1 chose no protection, it would be removed by the adversary. Moreover, no node in

P l
2 is better off by choosing protection. This is because, by the construction, even if one

node protects in P l
2, the adversary still prefers to attack this component to attacking any

other component (note that the components in U are all strictly smaller than P l
2).

To see why the nodes-adversary subgame in the last strategy profile in the sequence,

(gl,∆l, Al), is an equilibrium in the case of l = 1, notice that no node in P l
2 is better

off by deviating and choosing protection. This is because |P l
2| = x′ ≤ x and if this is

profitable for a node to protect in P l
2, then it must be profitable to protect for any of the

removed nodes neighbouring a protected node in the attacked component P in G (if such

a node protects, then the adversary switches his attack and the component of that node

in the residual network is of size ≥ x + 1). This would contradict the assumption that

(G,∆∗, A∗) is an equilibrium.

Now, it is enough to show that W (G,∆∗, A∗) < W (gl,∆l, Al). To show this we will show,

for all i ∈ [1, l], that

W (gi,∆i, Ai) > W (gi−1,∆i−1, Ai−1). (42)

Clearly for i = 1 this is the case, as there are less units of defence used and the number

of nodes removed by the adversary is the same or less. For i ≥ 2 the equation above

reduces to

f(pi−1
1 + di) + f(ui−1 − di − 1) > f(pi−1

1 ) + f(ui−1). (43)

For f(x) = x2 this is equivalent to (substituting, for clarity of presentation, d ← di,

p1 ← pi−1
1 , p2 ← pi−1

2 , u← ui−1)

(p1 + d)2 + (u− d− 1)2 > p2
1 + u2. (44)
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We show first that p1 > u. To show that it is enough to show that p− x > u1 in g0 = G,

as in the subsequent networks pj1 grows and the sizes of components in U j (weakly)

decrease, i.e. p1 ≥ p − x and u ≤ u1. Since in (G,∆∗, A∗), the Adversary prefers to

attack component P to attacking U1, so it must be that the residual network with x

nodes removed from P has at most the value of the residual network with component

U1 fully removed. Consider network g′ obtained from G by re-designing P into a star

with centre m ∈ P . Consider the strategy profile (g′,∆′, A′) where ∆′(g′) = {m} and

A′(g′,∆′(g′)) ⊆ U1. If the adversary prefers A′ to attacking a spoke of P . This profile

cannot be an equilibrium, or otherwise G is not optimal for the designer. Thus it must

be that the Adversary prefers to attack a spoke of P to attacking a node in U1, that is

p2 − (p− 1)2 ≥ (u1)2 (45)

which yields

2(p− x) + 2x− 1 ≥ (u1)2. (46)

Notice that it must be that x ≤ u1. This is because otherwise the designer would be

better off by disconnecting x nodes from P , forming a clique out of them, and changing

P into centrally protected star. By Lemma 8, Equation (22), there is an equilibrium in

the changed network subgame where the adversary attacks the clique of size x and no

node protects in the clique (if a node protected, the adversary would attack the remaining

nodes in the clique). Thus the new network yields a better payoff to the designer, as the

loss is the same, but less protection is used.

Since x ≤ u1 and p1 ≥ p− x, so (46) implies

2p1 + 2u1 − 1 ≥ (u1)2. (47)

which gives

u1 ≤
√

2p1 + 1. (48)

Since for p ≥ 4 (and we know that p ≥ 4 by the structure of the subnetwork of G over

P ), p1 >
√

2p1 + 1, so u1 < p1.

Now, to show (44), we consider two cases separately: (i) d = p2−1 and (ii) d = ti < p2−1.

For case (i), we rewrite (44) as

(p1 + p2 − 1)2 + (u− p2)2 > p2
1 + u2 (49)

which reduces to

(p2)2 + (p2 − 1)2 > 2(p2 − 1)(u− p1) + 2u. (50)

Since (p2)2 ≥ (p1)2 − (p1 − 1)2 (as removing P i−1
2 yields better payoff than removing a

spoke of the star over P i−1
1 ), so

(p2)2 + (p2 − 1)2 ≥ 2p1 − 1 + (p2 − 1)2. (51)

Since p1 > u, so

2p1 − 1 + (p2 − 1)2 > 2(p2 − 1)(u− p1) + 2u, (52)

which implies (44).
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For case (ii), Equation (44) can be rewritten as

2p1d+ d2 > 2u(d+ 1)− (d+ 1)2 (53)

and further to

2(p1 − 1)d+ d2 > 2ud+ d2 − 2(d2 − u)− 1. (54)

Now we can show that Equation (54) holds. Since

(p2 − 1)2 − 1 ≥ (p1)2 − (p1 − 1)2 (55)

so

p2 ≥
√

2p1 + 1. (56)

Moreover, since

(p2)2 − 1 < (p1 + d+ 1)2 − (p1 + d)2 (57)

(as d is maximal such that attacking P i
2 is preferred to attacking P i

1) so

d >
(p2)2

2
− p1 − 1 (58)

and, by (56),

d >
√

2p1 −
1

2
. (59)

By this

d2 − u > 2p1 −
√

2p1 +
1

4
− u > 0, (60)

as p1 − 1 ≥ u and p1 + 1 >
√

2p1. Consequently, (54) holds.

By Equation (54), W (gi,∆i, Ai) > W (gi−1,∆i−1, Ai−1). Thus we have shown that

(G,∆∗, A∗) cannot be an equilibrium, as the designer could choose gl instead. This

completes the proof.

Lemma 11. Assume f(x) = x2, and n ≥ 20. Let (G,∆, x) be a welfare maximising equi-

librium of Γ. If G is not connected, the adversary does not attack a protected component.

Proof. For a contradiction, suppose that x(G,∆(G)) ∈ C1(G), where C1(G)∩∆ 6= ∅. Let

e = |Ex(G,∆(G))(G|∆)| denote the number of eliminated nodes, and |C1(G)| = y+e be the

size of the attacked component. By Lemma 6, the attack does not disconnect protected

nodes that are connected in G, and so the loss due to attack equals (e+ y)2 − y2.

Pick node i such that i ∈ Ex(G,∆(G))(G|∆) and Ni(G) ∩ ∆ 6= ∅. That is, node i is

eliminated under attack x(G,∆(G)) and has a protected neighbour. For (G,∆, x) to be

an equilibrium, it must be that x(G,∆(G) ∪ {i}) attacks a node in C1(G) disconnecting

protected nodes.24 It follows that there are at least two protected nodes in C1(G), i.e.

|C1(G)∩∆| ≥ 2. Moreover, e ≥ 2, or otherwise the adversary would strictly prefer attack

24If x(G,∆(G) ∪ {i}) /∈ C1(G), then node i would earn strictly larger payoffs by protecting than the

payoffs of its protected neighbour when i does not protect. If x(G,∆(G) ∪ {i}) ∈ C1(G) but the attack

does not disconnect protected nodes in C1(G), then node i would earn at least as much as its protected

neighbour does when i does not protect. By the tie breaking assumption that a node prefers not to be

eliminated, node i would protect.
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x(G,∆(G) ∪ {i}) to attack x(G,∆(G)) under (G,∆(G)). This implies that G cannot

feature two isolated nodes; the designer would be strictly better off by connecting them.

By Lemma 11, there exists another component C2(G) 6= C1(G) with protected nodes,

C2(G)∩∆ 6= ∅. Without loss of generality, let C2(G) denote the largest such component.

If C2(G) is not a star, then it can be redesigned as a star, and in this new network there is

an equilibrium where only the hub of the star protects, and all other nodes not in C2(G)

choose the same strategy as in the original equilibrium. Moreover, the attack x(G,∆(G))

is still optimal for the adversary. Since this attains the same gross payoffs with minimal

protection spending, let us assume that C2(G) is a star. Let z = |C2(G)| denote the size

of this component.

We will construct a series of strategy profiles (Gi,∆i, xi)0≤i≤l such that:

1. l ≥ 1.

2. (G0,∆0, x0) = (G,∆, x).

3. xi(Gi,∆i) is a best response of the adversary to defence ∆i in subgame Γ(Gi).

4. If i′ < i, then W (Gi′ ,∆i′ , xi
′
) < W (Gi,∆i, xi).

5. W (Gl,∆l, xl) < s2(n) + (n− s(n)− u(n)).

In each strategy profile (Gi,∆i, xi), ∆i differs from ∆ on network Gi only, and xi dif-

fers from x on (Gi,∆i(Gi)) only. Describing the strategy profiles we will focus on the

arguments on which the strategies of the players are different to (G,∆, x). The points

above contradict the assumption that (G,∆, x) is a welfare maximising equilibrium. If

the designer could control protection, then s/he would choose (Gl,∆l) over (Gi,∆i) for

any i < l. S/he does not do so because ∆i is not an equilibrium defence profile. But

the network with a star of size s(n), a clique of size u(n) and (possibly) an isolated node

achieves strictly higher welfare in equilibrium.

Let (G1,∆1, x1) be defined as follows. Recall that |C1(G)| = y + e. Take y nodes of

P1(G) are arrange them in a star. Take the remaining e nodes of C1(G), arrange them

in a clique, and link all of the nodes in this clique to the centre of the star of size y. This

yields a new component C1
1(G1). Let ∆1(G1)∩C1

1(G1) = {m}, where m is the node that

is linked to all other nodes. x1(G1,∆1) eliminates the e unprotected nodes attached to

m. Note that by construction x1(G1,∆1) is a best response of the adversary to defence

∆1 in sub-game Γ(G1).

Given i ≥ 2, the network (Gi,∆i, xi) is defined on the basis of (Gi−1,∆i−1, xi−1). Each

such network has at least two components: Ci
1(Gi), of size y + ei, and Ci

2(Gi), which is

a star of size zi. Defence of these components is ∆i(Gi) ∩ C1
i (Gi) = {m}, and ∆i(Gi) ∩

C2
i (Gi) = {h}, where h is the centre of Ci

2(Gi). Attack xi(Gi,∆i(Gi)) ∈ Ci
1(Gi) removes

ei nodes from Ci
1(Gi).

For 2 ≤ i ≤ l − 1, (Gi,∆i, xi) is obtained from (Gi−1,∆i−1, xi−1) as follows:

1. Pick a component Ci−1
j (Gi−1), j /∈ {1, 2}, with si−1

j = |Ci−1
j (Gi−1)| ≥ 2. If such a

component does not exist, the algorithm stops.
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2. Move ti = min{y + ei−1, si−1
j − 1} nodes from Ci−1

j to Ci−1
2 adding them as spokes

of the star over Ci−1
2 , thus obtaining component Ci

2.

3. Move 1 node from Ci−1
j to Ci−1

1 adding it to the clique of ei−1 nodes to be eliminated,

thus obtaining component Ci
1.

4. If, after these changes, there are two isolated nodes, create a component with them.

The construction ends on minimal i such that |N \ {Ci
1(G) ∪Ci

2(G)}| ∈ {0, 1}, i.e. there

is at most one node not included in Ci
1(G) or Ci

2(G).

By construction, xi(Gi,∆i) is a best response of the adversary to defence ∆i in sub-game

Γ(Gi). In particular, for every i we have that f(zi) − f(zi − 1) ≤ f(y + ei) − f(y). To

see this, first note that it holds for i = 1. Then suppose that it holds for i− 1:

f(zi−1)f(zi−1 − 1) ≤ f(y + ei−1)− f(y). (61)

Next note that

f(zi)− f(zi − 1) = f(zi−1 + ti)− f(zi−1 + ti − 1)

≤ f(zi−1 + y + ei−1)− f(zi−1 + y + ei−1 − 1)

= f(zi−1)− f(zi−1 − 1) + 2(y + ei−1)

≤ f(y + ei−1)− f(y) + 2(y + ei−1)

< f(y + ei−1)− f(y) + 2(y + ei−1) + 1

= f(y + ei−1 + 1)− f(y)

= f(y + ei)− f(y).

Thus, if it holds for i− 1, it holds for i. By induction, it holds for all i.

It remains to show that after every application of steps 1-4, the designer is strictly better

off. Suppose that ti = y + ei−1. The gain in gross payoffs is bounded below by the case

where Ci−1
j is of the same size zi−1 as Ci−1

2 , and zi−1 is smallest, i.e. zi−1 = ti + 1. The

gain in this case is of {[(ti + 1) + ti]2 − (ti + 1)2}− [(ti+1)2−0] = 2(ti)2−1 > 0. Suppose

next ti = si−1
j −1. The gain in gross welfare is of

{
[zi−1 + (si−1

j − 1)]2 − (zi−1)2
}
−[(si−1

j −
1)2 − 0], which is greater than zero if and only if si−1

j > 1
2

2zi−1−1
zi−1−1

. Since 1
2

2zi−1−1
zi−1−1

< 3/2

and si−1
j ≥ 2, the result follows.

Finally, (Gl,∆l, xl) is obtained from (Gl−1,∆l−1, xl−1) as follows. Take the largest number

tl spokes away from C l−1
1 and move them as spokes of C l−1

2 such that

f(zl)− f(zl − 1) ≤ f(yl + el)− f(yl), and (62)

f(zl + 1)− f(zl) > f(yl − 1 + el)− f(yl − 1). (63)

(62) implies that the adversary’s original attack is optimal, whereas (63) implies that if

further spokes are moved from C l−1
1 to C l−1

2 then the adversary would prefer to attack a

spoke of C l−1
2 . Henceforth, let us denote z ← zl, y ← yl, e← el.

Let s(n) = b(n+1)−
√

2nc and u(n) denote the size of the center-protected star and clique,

respectively, of the optimal network with at most three components when the adversary
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attacks an unprotected component. Note that e < u(n) (or otherwise the adversary

would attack the clique of size e if it was disconnected), and z < s(n) (or otherwise the

adversary would prefer to attack a spoke of the size-z star to eliminating the e nodes

attached to the star of size y). We can then consider the following modification to Gl.

Out of the y surviving nodes of the attacked component, leave y − (s(n) − z) nodes as

unprotected neighbors of the eliminated nodes, and attach the remaining (s(n)−z) nodes

as spokes of the other star. The net gain in gross welfare is equal to

s2(n)− (z2 + y2) = s2(n)− z2 − [(u(n)− e) + (s(n)− z)]2 = 2δz(z − δe)− δ2
e ,(64)

where δz ≡ (s(n) − z) and δe ≡ (u(n) − e). From (62), we have that [(u(n) − δe) +

(δe + δz)]
2 − (δe + δz)

2 > 2z − 1, or

δ2
e + 2δzδe − [u2(n)− (2z − 1) + 2u(n)δz] < 0.

Since z < s(n), it is easy to see that u2(n) − (2z − 1) > 0: the adversary prefers to

eliminate a clique of size u(n) than a spoke of a star of size z. Thus, this polynomial in

δe has a negative and a positive root. We then have that

δe < δ̄e ≡ −δz +
√
δ2
z + u2(n)− (2z − 1) + 2u(n)δz

δ̄e is increasing in u(n). Note, however, that (u(n)− 1)2 < 2s(n)− 1, i.e., the adversary

prefers to eliminate a spoke of a star of size s(n) to eliminating a clique of (u(n) − 1)

nodes. This implies that u(n) < 1 +
√

2s(n)− 1, so that

δe < −δz +

√
δ2
z + 4δz + 1 + 2(1 + δz)

√
2s(n)− 1.

Combining this result with (64) yields

s2(n)− (z2 + y2) > δz(2z − 4)− 2(1 + δz)
√

2s(n)− 1− 1

≥ δz(2z − 4)− 2(1 + δz)u(n)− 1

= 2δz(δz + [z − (u(n) + 2)])− 2δ2
z − 2u(n)− 1 (65)

where the second inequality uses
√

2s(n)− 1 ≤ u(n). Recall that δz ≥ 1. The proof

is completed with with following two steps. First, let us show that z ≥ u(n) + 2, so

that the right-hand side of (65) is minimized at δz = 1. Suppose, for a contradiction,

that z ≤ u(n) + 1. It is straightforward to verify that u(n)+1
n
≤ 0.4 for any n ≥ 15.

Thus, for n ≥ 15 we have that z
n
≤ 0.4. On the other hand, note that y < z/2. To see

this, note that (63) can be written as y <
z− 1

2
(e−1)2

e
< z/2, where the second inequality

uses e ≥ 2. Moreover, x < z (or otherwise the adversary would attack a disconnected

clique of size x rather than a spoke a star of size z). Therefore, z/n = z/(x + y + z) >

z/(z + z/2 + z) = 0.4, a contradiction. Second, substituting δz = 1 in (65), we obtain

s2(n)−(z2 +y2) > 2s(n)−4u(n)−7, where the right-hand side is positive for n ≥ 20.

Lemma 12. Assume f(y) = y2. If G is not connected, x(G,∆) ∈ Cj where Cj ∩∆ = ∅,

and ∆ 6= ∅, then:

46



(a) |∆| = 1, i.e. there is only one protected node.

(b) There are at most two unprotected components.

(c) If there are two unprotected components, one of them is of size 1.

Proof. Let P1, . . . , Pl denote components with at least one protected node, and C1, . . . , Cr
denote unprotected components. Component labels are such that |P1| ≥ |P2| ≥, . . . ,≥
|Pl| and |C1| ≥ |C2| ≥, . . . ,≥ |Cr|.
By Lemma 9, there is no fully protected component. Therefore, if Pi is not a star, the

designer can re-design it as a star, and the profile where only the centre protects is an

equilibrium profile. Since this achieves the same connectivity with minimal protection,

the designer is not worse off. We can then assume that Pi is a star for all i. Let |P1| = s

and |C1| = u denote the sizes of the largest star and the largest unprotected component,

respectively. For the adversary to attack C1 in equilibrium, it must be that u2 ≥ 2s−1 if

c > u, or u2−1 ≥ 2s−1 if c ≤ u. Since u2−1 ≥ 2s−1 implies u2 ≥ 2s−1, let us assume

the more restrictive case where u is the smallest integer such that u2 − 1 ≥ 2s− 1.

Specifically, let u be the smallest integer such that 2s− 1 ≤ u2− 1 < 2s+ 1. If n = s+ u

or n = s+u+ 1, then (a), (b) and (c) hold. We will show that if n > s+u+ 1, i.e. there

are at least two other nodes in the network, then G cannot be optimal.

Note that if the designer adds an additional node in N/(P1 ∪C1) to C1, she could attach

a maximum of S(u) additional spokes to P1 such that the adversary would still strictly

prefer to attack the unprotected component, where

S(u) =

{
u if u is even

u+ 1 if u is odd
. (66)

Further note that u ≥ 2: if u = 1 then eliminating the spoke of a star will always be

preferred. It follows that, if the size of the clique is increased by 1, then the size of the

center-protected star can be increased by at least 1 and the adversary’s original attack

will remain optimal.

Recall that n > s + u + 1. If all other components in G are of size 1, then consider

the following modifications to G yielding a network G′. Create a clique including all

nodes originally in C1 and one additional node who was isolated in G, and add a spoke

to P1. By (66), the adversary attacks the clique of G′ of size (u + 1). Since s ≥ 2,

(s + 1)2 − (s2 + 2) > 0, and gross welfare is strictly higher under G′ than under G.

Since protection spending does not change, G′ achieves strictly higher welfare than G, a

contradiction.

Suppose finally that there is a component K of size k, 1 < k ≤ s. Then gain in welfare by

re-allocating nodes in K to components C1 and P1 is bounded below by the case where

k = 2: only one spoke can be added to P1 after adding one node to C1. Consider then

network G′′, obtained from G by creating a clique including all nodes originally in C1

and one of the nodes of K, and adding the remaining node of K as a spoke of P1. By

(66), the adversary attacks the clique of G′′ of size (u+ 1). Gross gain in welfare is equal

to (s + 1)2 − (s2 + 4) > 0. Since protection spending remains constant or decreases, G′′

achieves strictly higher welfare than G, a contradiction.
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It follows from Lemma 12 that if the adversary attacks an unprotected component,

then G consists of a star of size s(n) and a component of size u(n), and ∆ = {m}, where

{m} is the centre of the star.

Proof of Proposition 2. By Proposition 4 and Lemmas 11-12, three architectures and de-

fence profiles are possible under welfare minimizing equilibria: a connected network where

all nodes protect, a disconnected network as described in point (2) of the proposition,

and a disconnected network as described in point (3) of the proposition. Comparing wel-

fare attained in (1)-(3) yields the thresholds cD(n) and cU(n). In particular, the network

and defence profile achieving highest welfare is (1) if 0 < c ≤ min{cD(n), cU(n)}, (2) if

cD(n) < c < cU(n), and (3) if c ≥ max{cD(n), cU(n)}. However, defence profile in (2) is

equilibrium defence profile if and only if c ≤ f(s(n))
s(n)

= s(n) (so that the centre protects).

Considering this yields the desired result.

D.2 Welfare minimizing equilibria

As in the proof of existence (Lemma 1), given network G and costs c, we will use A(G|c)
to denote the set of components in G were it is not individually rational to protect under

any attack strategy. That is, for any C ∈ A(G|c), f(|C|)/|C| < c. The following fact will

be used to prove some of the results.

Fact 5. Let (G∗,∆, x) be a welfare minimizing equilibrium. If G∗ is disconnected, then

A(G∗|c) 6= ∅.

Proof. Suppose there is no such component. Let ∆∗ = ∆(G∗) and x∗ = x(G∗, ·). By the

construction used in proof of Lemma 1, there exists an equilibrium of Γ(G∗), such that

all nodes protect. Since (∆∗, x∗) is welfare minimizing, this equilibrium is not worse for

D. Let G′ be a star over all nodes from N . Since f(n−1)/(n−1) ≥ c, in any equilibrium

(∆′, x′) of Γ(G′), ∆′ = N and no node is infected by x′(∆′). Moreover, by convexity of

f , D is strictly better off than under G∗, a contradiction with our assumptions. Thus it

must be that there exists X ∈ C(G∗) such that f(|X|)/|X| < c.

We start by showing that, in a welfare minimizing equilibrium, there cannot be a fully

protected component.

Lemma 13. Let (G∗,∆, x) be a welfare minimizing equilibrium. If G∗ is disconnected,

then there is no fully protected component.

Proof. Assume, to the contrary, that there exists C ∈ C(G∗) such that C ⊆ ∆. Let

∆∗ = ∆(G∗) and x∗ = x(G∗, ·). As in the proof of existence (Lemma 1), given network

G and costs c, we will use A(G|c) to denote the set of components in G were it is not

individually rational to protect under any attack strategy. By Fact 5, A(G∗|c) 6= ∅.

Moreover, in any equilibrium of Γ(G∗) and for any C ∈ A(G∗|c), no node protects in C

under ∆̃.

Let G′ be a network defined as follows. The sets of components of G′ and G∗ are the

same, C(G′) = C(G∗), and for each X ∈ C(G′), G′[X] is a star. We will show that either

G′ yields higher payoff than G∗ under welfare minimizing equilibria to D, or there exists
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G′′ that does. This will contradict our assumptions and complete the proof. The proof

goes by steps.

Let ∆ex be an equilibrium defence of Γ(G∗), constructed as in proof of equilibrium exis-

tence (Lemma 1).

Step 1. In any equilibrium (∆′, x′) of Γ(G′), for any X ∈ C(g) \ A(G′|c), X ∩∆′ 6= ∅.

For assume otherwise. Then there exists X ∈ C(G) \ A(G′|c) such that X ∩ ∆′ = ∅.

Clearly A attacks one such X of maximal size. It must be that x′(∆′ ∪ {i}) ∈ X \ {i},
where i is the centre of G′[X], for otherwise it would be profitable for the centre of

X to protect (because f(|X|)/|X| ≥ c and every node prefers outcomes where it stays

uninfected). Similarly, it must be that f(|X| − 1)/(|X| − 1) < c, as otherwise deviation

to protection would be profitable to i. But then X is a component in C(G′) \ A(G′|c) of

minimal size (if it had one node less, it would be in A(G′|c)). Notice also that it must

be that X ⊆ ∆ex, for otherwise it would mean that A prefers attacking a component in

A(G∗|c) than removing a node in X (removing a node is the smallest possible damage

that A can cause to X when X is not fully protected). Furthermore, since X is of minimal

size to be in C(G′)\A(G′|c), it must be that all nodes in N \A(G∗|c) are protected under

∆ex. Clearly, this means that X is the unique component in C(G′)\A(G′|c), or otherwise

a network G′′ that merges all components in C(G′) \ A(G′|c) into a single star attains

(by convexity of f) strictly higher payoffs than G to D in any equilibrium, for in any

equilibrium of Γ(G′′) all nodes in the star protect.

Note that there must exist at least two components in A(G′|c), for otherwise the unique

unprotected components, Z, yields zero payoffs to D, and D is strictly better off by

choosing a star network where all nodes protect in any equilibrium. The payoffs of nodes

in X increase, as well as the payoffs of nodes in Z.

Consider then the following two modifications to G′. Network Ĝ is obtained by attaching

component Y to X and forming a star component, where x(G′,∆ex) /∈ Y (such an

unattacked component exists because of the argument in the preceding paragraph). In any

equilibrium of Ĝ all nodes in the star component protect. Let |X| = |X̃|+|Y |. For this not

to be profitable, it must be that c|Y | ≥ f(|X̃|+2|Y |)−f(|X̃|+|Y |)−f(|Y |). Network G̃ is

formed by creating a star out of X and detaching |Y | spokes to form a copy of Y . Since X

was of minimal size for it to be individually rational to protect, clearly no node protects in

any equilibrium of Γ(G̃). Two cases are possible. If A does not attack X̃, then this is not

a profitable modification to D iff (|X̃|+|Y |)c ≤ f(|X̃|+|Y |)−f(|X̃|)−f(|Y |). Combining

with the condition that states that Ĝ is not profitable yields f(|X̃|+2|Y |)−f(|X̃|+|Y |) ≤
f(|X̃| + |Y |) − f(|X̃|), a contradiction with f being convex. If A attacks X̃, then this

is not a profitable modification to D iff (|X̃| + |Y |)c ≤ f(|X̃| + |Y |) − f(|Y |) − f(|Z|),
where Z is the originally attacked component. Since it is not individually rational to

protect in X̃, X̃c > f(|X̃|), so that f(|X̃|) + |Y |c < f(|X̃| + |Y |) − f(|Y |) − f(|Z|), or

|Y |c < f(|X̃| + |Y |) − f(|X̃|) − f(|Y |) − f(|Z|). Combining with condition for Ĝ not

to be profitable yields f(|X̃|+ 2|Y |)− f(|X̃|+ |Y |) < f(|X̃|+ |Y |)− f(|X̃|)− f(|Z|) <
f(|X̃|+ |Y |)−f(|X̃|), a contradiction with f being convex. Therefore, in any equilibrium

either Ĝ or G̃ attain strictly higher welfare than G′ does under ∆ex, a contradiction with

G′ being optimal under welfare minimizing equilibrium.
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Step 2. In any equilibrium (∆′, x′) of Γ(G′), for any X ∈ C(G)\A(G′|c), either X ⊆ ∆′

or X ∩∆ = {i}, where i is the centre of G′[X].

Notice first that there exists a component X ∈ C(G∗)\A(G∗|c) such that X ⊆ ∆′. To see

this take any X ∈ C(G∗) \A(G∗|c) such that X ⊆ ∆∗ (as we assumed, such a component

exists). It must be that removing a single node from X is preferred by A to attacking a

largest component in A(G∗|c), for such an attack is available to A under ∆∗ on G∗ and

yet all nodes in X protect under ∆∗. Since this is the case in G′ as well, so either none

or all nodes protect in X under ∆′. We ruled out the former in Step 2. Hence it must be

that X ⊆ ∆′.

Now, suppose, to the contrary of the statement in Step 3, that there exists X ∈ C(g) \
A(G′|c) such that neither X ⊆ ∆′ nor X ∩∆′ = {i}. Since X ∩∆′ = ∅ is ruled out by

Step 2, it must be that 2 ≤ |X ∩∆′| < |N |.
As the first case, suppose that X \ {i} ⊆ ∆′, where i is the centre of G′[X]. In other

words, all spokes of G[X] protect and its centre does not. Let |Y | be the the component

in A(G|c) attacked by x′(∆′) and Z be a largest component fully protected under ∆′.

Since attacking Y is preferred to attacking the centre of X, so

f(|Y |) ≥ f(|X|)− (|X| − 1)f(1). (67)

On the other hand, since Z is fully protected, so

f(|Z|)− f(|Z| − 1) ≥ f(|Y |). (68)

Thus

f(|Z|)− f(|Z| − 1) ≥ f(|X|)− (|X| − 1)f(1), (69)

and, by convexity of f ,

f(|Z|+ 1)− f(|Z|) > f(|X|)− (|X| − 1)f(1), (70)

so

f(|Z|+ 1) + (|Z| − 1)f(1) > f(|X|) + f(|Z|). (71)

Consider network G′′ obtained from G′ by disconnecting G′[X] and attaching one node

from X to G[Z] as a spoke. In any equilibrium on G′′, the extended Z ′ fully protects

and none of the remaining nodes from X protect. Moreover, any welfare minimizing

equilibrium on G′′ translates to a welfare minimizing equilibrium on G′, where the same

nodes protect apart from those in X∪Z. The same operation may be applied to get rid of

all components which have spokes-only-protect equilibria on G′. By (71), the value of the

network is strictly increasing between G′ and G′′. Now, all fully protected components

under ∆∗ are also fully protected under ∆ex and in any equilibrium on G′ and G′′. All

the other protected components are replaced with centrally protected stars in G′′ or are

profitably merged with fully protected components (and during this merging the number

of protected nodes between ∆ex and any equilibrium on G′′ does not increase). Hence G′′

is strictly better to G∗ under welfare minimizing equilibria.

Steps 1-2 establish that, in any equilibrium of Γ(G′), there is a unique fully protected

component X, and all other components in C(G) \ A(G′|c) are centre protected stars.
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Note that under equilibrium defence ∆ex in Γ(G′), D attains the same gross welfare with

at least the same protection spending. For, by construction, X ⊆ ∆ex and all other

components in C(G) \ A(G′|c) have at least one unit of protection. Therefore, we have

that UD(G∗,∆∗, x∗(∆∗)) ≤ UD(G∗,∆ex, x∗(∆ex)) ≤ UD(G′,∆′, x′(∆′)).

Note that there must exist at least two components in G′, for otherwise attaching the

attacked nodes as spokes of X would make D strictly better off. Thus, there exists an

unattacked component Y 6= X. The proof is completed by considering two different mod-

ifications, yielding to networks Ĝ and G̃. Network Ĝ is obtained by attaching component

Y to X and forming a star component. Network G̃ is formed by creating a star out of

X and detaching |Y | spokes to form a copy of Y . Following analogous steps as in the

proof of Lemma 9 shows that under welfare minimizing equilibria either Ĝ or G̃ make D

strictly better off than under G′, contradicting G∗ being optimal.

Proof of Proposition 5. For a contradiction, let (G∗,∆, x) be a welfare minimizing equi-

librium where, for P ∈ C(G), x(G,∆(G)) ∈ P and P ∩∆(G) 6= ∅. Let ∆∗ = ∆(G∗) and

x∗ = x(G∗, ·). Clearly, P 6⊆ ∆∗. For otherwise the adversary does not eliminate a single

node, and it must be that ∆∗ = N . But then a connected star network attains strictly

higher payoffs to D in any equilibrium, as all nodes protect as well but (due to convexity

of f) gross payoffs are higher. Thus, P 6⊆ ∆∗ and A eliminates at least one node in P .

Moreover, by Fact 5, A(G∗, c) 6= ∅.

Let X denote the set of eliminated nodes in equilibrium (G∗,∆, x), i.e. X = Ex(G
∗|∆).

Moreover, let ∆i = ∆∗ ∪ {i}, xi = x(G∗,∆i) be equilibrium response of A to G∗ and

defence ∆i, and let X i = Exi(G
∗|∆i) be the set of nodes eliminated by xi.

Step 1. For any i ∈ ∂G(∆∗)∩X, |C(G[P ]−X i)| ≥ 2. That is, if an eliminated node with

a protected neighbor protects, the best response of A results in the residual network over

P having at least two components. Suppose, to the contrary, that component G[P ] does

not get disconnected by xi. It must be that X i ⊆ P and X i 6⊆ X. If X i 6⊆ P , then node

i would prefer to protect, since f(|P |)/|P | − c > f(|P | − |X|)/(|P | − |X|)− c ≥ 0, where

the first inequality if by f increasing and convex and f(0) = 0, and the second inequality

by the fact that there are protected nodes in P in equilibrium (G∗,∆, x). If X i ⊆ X,

then by protecting node i gets a payoff of at least f(|P | − |X|+ 1)/(|P | − |X|+ 1)− c >
f(|P | − |X|)/(|P | − |X|) − c ≥ 0. Moreover, |X i| ≤ |X| (as otherwise xi would be a

better response to (G,∆∗) than x) and so payoff to i in G[P ] −X i, when it protects, is

f(|P | − |X i|)/(|P | − |X i|)− c ≥ f(|P | − |X|)/(|P | − |X|)− c ≥ 0, so i is better off. Thus

G[P ] must get disconnected by xi, i.e. |C(G[P ]−X i)| ≥ 2.

Step 2. For any ∆̃ such that |∆̃ ∩ P | ≤ 1, x(G∗, ∆̃) /∈ C for any C ∈ A(G∗, c). If |∆̃ ∩
P | = 0, then P /∈ A(G∗, c) implies that A must strictly prefer eliminating P to eliminating

C ∈ A(G∗, c). Suppose then |∆̃∩P | = 1. As in the previous paragraph, letX = Ex(G
∗|∆)

denote the set of eliminated nodes in equilibrium (G∗,∆, x), and X i = Exi(G
∗|∆i) the

set of nodes eliminated if node i ∈ X protects. Let U denote the largest component

in A(G∗, c). Note that eliminating a component C ∈ A(G∗, c) is available to A under
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(G∗,∆∗). x∗ /∈ A(G∗, c) implies that f(|U |) ≤ f(|P |)− f(|P | − |X|) (the damage caused

by attacking X is at least as large as that of attacking U). X i ⊆ P and X i 6⊆ X implies

that, for any i ∈ X, f(|U |) ≤ f(|P |)− f(|X ∪ ∂G(X)|)−
∑

C∈C(G[P ]−Xi)\(X∪∂G(X)) f(|C|)
(the damage caused by attacking X i is at least as large as that of attacking U). Moreover,

|C(G[P ] − X i)| ≥ 2 (by Step 1) implies that, for any i ∈ X, C ∈ C(G[P ] − X i) \ (X ∪
∂G(X)) 6= ∅ and thus the last term

∑
C∈C(G[P ]−Xi)\(X∪∂G(X)) f(|C|) > 0. There are two

cases to consider. Case (i): ∆̃ ∩ P ⊆ X ∪ ∂G(X), i.e. the protected node in P is a node

in X or has a neighbor in X. Pick any i ∈ X, and consider an attack on node j ∈ X i.

Damage caused by A bounded below by case where ∆̃∩P = ∂G(X), in which case it is of

f(|P |)− f(|X ∪ ∂G(X)|) > f(|P |)− f(|X ∪ ∂G(X)|)−
∑

C∈C(G[P ]−Xi)\(X∪∂G(X)) f(|C|) ≥
f(|U |). Hence A strictly prefers an attack on j ∈ X i to an attack on U , and therefore,

x(G∗, ∆̃) /∈ C for any C ∈ A(G∗, c). Case (ii): ∆̃∩P 6⊆ X∪∂G(X). Damage caused by an

attack on any i ∈ X is of at least f(|P |)−f(|P |−|X|−1) > f(|P |)−f(|P |−|X|) ≥ f(|U |).
Hence A strictly prefers an attack on i ∈ X to an attack on U , and therefore, x(G∗, ∆̃) /∈ C
for any C ∈ A(G∗, c).

Step 3. G∗ is not optimal. The proof is finalized with the following arguments. Let

∆ex be an equilibrium defence of Γ(G∗), constructed as in proof of equilibrium existence

(Lemma 1). Since A(G∗, c) 6= ∅, x(G∗,∆ex) ∈ C, where C ∈ A(G∗, c), i.e. in equilibrium

A eliminates a component in A(G∗, c). Note that, since (∆, x) is welfare minimizing on

G∗, UD(G∗,∆∗, x∗(∆∗)) ≤ UD(G∗,∆ex, x∗(∆ex)). Two cases must be considered.

Case (a). There exists Z ∈ C(G∗) such that Z ⊆ ∆ex. Then note that there must

exist at least two components in G∗, for otherwise a connected star attains strictly higher

payoffs to D in any equilibrium. Thus, there exists an unattacked component Z ′ 6= Z.

Consider then two different modifications, yielding to networks Ĝ and G̃. Network Ĝ is

obtained by attaching component Z ′ to Z and forming a star component. Network G̃

is formed by creating a star out of Z and detaching |Z ′| spokes to form a copy of Z ′.

Following analogous steps as in the proof of Lemma 9 shows that under welfare minimizing

equilibria either Ĝ or G̃ make D strictly better off than under G′, contradicting G∗ being

optimal.

Case (b). There is no fully protected component under ∆ex. By construction of ∆ex,

there is at least one protected node in every component C ∈ G∗\A(G, c). Moreover, since

x(G∗,∆ex) ∈ C for some C ∈ A(G∗, c), by Step 2 above it must be that |∆ex ∩ P | ≥ 2.

Consider then network G′, obtained from G∗ as follows. The sets of components of G′ and

G∗ are the same, C(G′) = C(G∗), and for eachX ∈ C(G′), G′[X] is a star. Consider defence

profile ∆′ where, for each C ∈ C ′(G′) \ A(G′, c), ∆′ ∩ C = {i} where i is the centre of C.

This defence profile is the unique equilibrium defence of Γ(G′). For any node in eliminated

component U ∈ A(G′, c), not to protect is a strictly dominant strategy. Consider next

any of the stars P ′ /∈ A(G′, c). Even if all spokes protect, A prefers to attack the centre

of the star to attacking a component any C ∈ A(G′, c). To see this, note that convexity

of f and f(|U |)
|U | < c ≤ f(|P ′|)

|P ′| imply that |U | ≤ |P ′| − 1, and so f(|U |) ≤ f(|P ′| − 1).

Next node that, by Property 1, f(|P ′| − 1) < f(|P ′|) − (|P ′| − 1)f(1). Combining, we
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have that f(|U |) < f(|P ′|)− (|P ′| − 1)f(1), which implies that A would strictly prefer to

attack the centre of the star of size |P ′| to attacking the unprotected component of size

|U | even if all spokes of P ′ protect. Hence, the centre of P ′ protects in any equilibrium.

If the centre of the star protects, then spokes do not protect, as A prefers attack of U

to eliminating a single node of P ′ that does not disconnect P ′. The proof is finalized

by noting that (G′,∆′, x(G′,∆′)) achieves the same gross welfare than (G,∆ex, x∗) but

with strictly smaller protection spending, since |∆′ ∩ P | = 1 < 2 ≤ |∆ex ∩ P |. Thus,

UA(G′,∆′, x(G′,∆′)) > UA(G∗,∆ex, x∗) ≥ UA(G∗,∆∗, x∗), and so G∗ cannot be optimal.

We can now use the results derived for general network value function to obtain

Proposition 3 and Corollary 1.

Proof of Lemma 4. For n ≥ 4, cU(n) ≤ n − 1. Therefore, c ≤ cU(n) implies c ≤ n − 1,

and D can choose the star network G where ∆(G) = N in any equilibrium (∆, x) of

Γ(G).

Proof of Proposition 3. Let (G,∆, x) be a welfare minimizing equilibrium. By Lemma 13

and Proposition 5, if G is disconnected but ∆(G) 6= ∅, then there is no fully protected

component and A attacks an unprotected component. By Lemma 12, in this case G has

only one protected node. Clearly, the protected component must be a star of maximal

size, ŝ(n), such that A strictly prefers to attack the unprotected component.

Thus, three architectures can be optimal. If G is connected then ∆(G) = N . If G is

disconnected but ∆(G) 6= ∅, then G features a star of size ŝ(n) and an unprotected

component of size u(n). If G is disconnected and ∆(G) = ∅, then G is the optimal

unprotected network. Comparing payoffs yields thresholds ĉD(n) and cU(n).

To see that defence profiles are equilibrium profiles, first note that if c ≤ min{ĉD(n)cU(n)}
then by Lemma 4 there exists G such that ∆(G) = N in any equilibrium of Γ(G).

Furthermore, if c > max{cU(n), ŝ(n)} then c > f (bn/2c) / (bn/2c), and so if G is the

optimal unprotected network then ∆(G) = ∅ in any equilibrium of Γ(G). Finally, if

u(n) < cD(n) implies that if cD(n) < c ≤ ŝ(n) then in any equilibrium of Γ(G) only the

centre of the star protects and A eliminates unprotected component of size u(n).

Proof of Corollary 1. Let (G,∆, x) be a welfare minimizing equilibrium. We first show

that if G is disconnected then ∆(G) = ∅. By Lemma 13 and Proposition 5, if G is

disconnected but ∆(G) 6= ∅, then there is no fully protected component and A attacks

an unprotected component. Let U ∈ C(G) denote the attacked component, and P ∈ C(G)

a partially protected component. If |P | > |U |, then f(y) > 2f(y−1) implies that A must

strictly prefer an attack on an unprotected node in P than eliminating U . Hence it must

be that |P | ≤ |U |. If |P | ≤ |U | and some nodes protect in P , then there exists an

equilibrium (∆′, x′) of Γ(G) where P ∪ U ⊆ ∆′(G). Since (∆, x) is welfare minimizing

on G, D cannot be worse off. But then consider network G′′ where P and U are merged

into a star. All nodes in P ∪ U protect in any equilibrium of Γ(G′′) and, by convexity of

f , D is strictly better off. Therefore, if G is disconnected then ∆(G) = ∅.

We thus have that G is connected and ∆(G) = N , or G is the optimal unprotected

network and ∆(G) = ∅. Comparing payoffs indicates that D prefers full protection if
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c ≤ 2n−2b
n
2 c−n mod 2
n

, and no protection otherwise. However, for c > c(n) every network

has a no protection equilibrium. Since c(n) ≤ 2n−2b
n
2 c−n mod 2
n

(with strict inequality if

n ≥ 3), D chooses connected G such that ∆(G) = N in any equilibrium of Γ(G) if

c ≤ c(n), and the optimal unprotected network otherwise.

D.3 Securing full protection through network design

Proof of Proposition 6. Consider first (1). For a contradiction, suppose there is no k-

critical node with f(n−k)
n−k > c. Consider the strategy profile (∆, x) in which no node

protects. Pick any node i ∈ V . If i does not protect, it gets a payoff 0. If i protects, it

gets a payoff of U i(G,∆, x(∆)) = f(n−ki)
n−ki −c, where ki is the size of the largest component

in G − {i}. Since there is no k-critical node with f(n−k)
n−k ≥ c so U i(G,∆, x(∆)) < 0.

Therefore, the profile in which no node protects is an equilibrium.

Now consider (2). Let (∆, x) be an equilibrium of Γ(G) where not all nodes protect.

Let i ∈ Ex(∆)(G|∆). Since ∆ ( N , Ex(∆)(G|∆) 6= ∅. It cannot be that i is a k-critical

node with f(n−k)
n−k > c, as i would prefer to protect. Suppose that i is not k-critical with

f(n−k)
n−k > c. Then i is connected to a k-critical node j with f(n−k)

n−k > c. If i deviates to

protection, its payoff will be U i(G,∆∪{j}, x(∆∪{j})) ≥ f(n−kj)

n−kj − c, where kj is the size

of the largest component in G−{j}. Since U i(G,∆∪ {j}, x(∆∪ {j})) > 0, so i is better

off by deviating, which contradicts the assumption that (∆, x) is an equilibrium.
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E Proofs for random attack

E.1 First best

Proof of Proposition 7. Let (G,∆) be a first best protected network. Three cases are

possible.

Case (i). ∆ = N Clearly in this case G must be a connected network.

Case (ii). ∅ ( ∆ ( N Then (G,∆) must be a centre-protected star. We prove this in

three steps.

Step 1. G is connected. For a contradiction, suppose G is not connected. Since ∆ 6= ∅,

there exists C(G) ∈ C(g) with a node i ∈ C(G)∩∆. Consider the following modification

to G, which results in network G′. For every node j /∈ C(G), delete all its links and

create a link between j and i. Protection spending remains the same, and gross expected

payoffs from connectivity strictly increase. Hence G cannot be optimal.

Step 2. If k, j /∈ ∆, then kj /∈ G. That is, there are no links between unprotected

nodes. Suppose the contrary. If k and j are not leaf nodes, then consider network G′

which is identical to G except that kj /∈ G′. Gross expected payoffs are strictly greater

under G′ than under G. Suppose that k is a leaf. Let i ∈ ∆ be a protected node. Consider

network G′′ which is identical to G except that kj /∈ G′′ and ki ∈ G′′. Gross expected

payoffs are strictly greater under G′′ than under G.

Step 3. (G,∆) is a centre-protected star. Let s denote the number of protected nodes.

The designer’s payoffs are equal to

n− s
n

f(n− 1) +
s

n
f(n)− sc = f(n− 1) + s

[
f(n)− f(n− 1)

n
− c
]
.

Note that is must be that f(n)−f(n−1)
n

< c, or otherwise it would be optimal to protect all

nodes, a contradiction. The payoff of the designer is therefore maximised at s = 1. That

is, a single node is protected, and thus (G,∆) is a centre-protected star.

Case (iii). ∆ = ∅ Since there are at most n components in the network, the designer

solves

arg maxb∈B(n)

n∑
i=1

bi
n

∑
j 6=i

f(bj) = arg maxb∈B(n)

n∑
i=1

f(bi)(n− bi).

Comparing the payoffs of (i)-(iii) yields the desired result.
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E.2 Welfare-maximising equilibria

For any ∆ ⊆ N , let ∆−i = ∆ \ {i} denote the protection profile where all nodes in ∆

different from node i protect. Furthermore, let

hi(G,∆−i) = U i(G,∆−i ∪ {i})− U i(g,∆−i), (72)

Hi(G,∆−i) = UD(G,∆−i ∪ {i})− UD(g,∆−i). (73)

In words, hi(G,∆−i) and Hi(G,∆−i) are, respectively, the gain of node i and of the

designer from i protecting under network G and defence profile ∆−i. Recall that Ci(G)

denotes the component of G such that i ∈ Ci(G). Thus, Ci(G − ∆−i) denotes the set

of unprotected nodes in G which have a path to i through unprotected nodes. We can

therefore write

hi(G,∆−i) =
1

n

[
f(|Ci(G)|)
|Ci(G)|

− 0

]
+

∑
j∈Ci(G−∆−i)\{i}

1

n

[
f(|Ci(G− Ej(G|∆−i ∪ {i}))|)
|Ci(G− Ej(G|∆−i ∪ {i}))|

− 0

]
− c. (74)

The following lemma establishes that, due to positive externalities, there can never be

over-investment in protection.

Lemma 14. For any G and ∆, Hi(G,∆−i) ≥ hi(G,∆−i), with strict inequality if and

only if |Ci(G)| ≥ 2.

Proof. Note that

Hi(G,∆−i) ≥ 1

n
[f(|Ci(G)|)− 0] +

∑
j∈Ci(G−∆−i)\{i}

1

n

[
f(|Ci(G− Ej(G|∆−i ∪ {i}))|)
|Ci(G− Ej(G|∆−i ∪ {i}))|

− 0

]
− c,

≥ hi(G,∆−i).

This establishes the first statement in the lemma. For the second statement, consider

the direction from right to left. Since f is increasing, the second inequality is strict if

|Ci(G)| ≥ 2. Finally, consider the direction from left to right. If |Ci(G)| = 1, then Ci(G−
∆−i) \ {i} = ∅. In this case, hi(G,∆−i) = 1

n

[
f(1)

1
− 0
]

= 1
n

[f(1)− 0] = Hi(G,∆−i).

As a corollary, we have that if the first best features no protection, then there is no

cost of decentralization.

Corollary 3. Let (G,∆) be first best. If ∆ = ∅, then ∆ is an equilibrium of Γ(G).

Proof. For a contradiction, suppose that in the first best the designer chooses G and

∆ = ∅, but ∆ = ∅ is not an equilibrium of Γ(G). Set ∆−i = ∅. It must be that

hi(G,∆−i) > 0. Since Hi(G,∆−i) ≥ hi(G,∆−i), ∆ = ∅ cannot be first best.

The next lemma shows that if c > tn(n) then D chooses an optimal unprotected

network.

Lemma 15. Let (G,∆) be an equilibrium of Γ. If c > tn(n), then ∆ = ∅ and G is an

optimal unprotected network.
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Proof. It suffices to show that, if c > tn(n), then for any G the unique equilibrium of

Γ(G) is ∆ = ∅. To see this, note that, for any G ∈ G(N) and ∆ ⊆ N , hi(G,∆−i) ≤
f(n)
n2 + (n− 1) 1

n
f(n−1)
(n−1)

− c. Thus, if c > tn(n), then hi(G,∆−i) < 0 for any G and ∆. Not

to protect is a dominant strategy for a node on any network, and so for any G ∈ G(N),

the unique equilibrium of Γ(G) is ∆ = ∅.

We first prove Proposition 10 (for general f), and then prove Proposition 8.

Proof of Proposition 10. We address Cases 1-3 separately.

Case 1. tu(n) < c ≤ min {tu+1(n), ĉ1(n), ĉ2(n)} for some u = 0, . . . , n − 1. Since

c ≤ min {ĉ1(n), ĉ2(n)}, first best is full protection in a connected network. The following

claim states that if c > tu(n) then, for any G, at least u nodes are unprotected in every

equilibrium of Γ(G).

Claim 1. Suppose c > tu(n). For any G, |N \∆| ≥ u in every equilibrium of Γ(G).

Proof. Suppose that c > tu(n) but there exists G such that ∆ is an equilibrium of Γ(G)

and u′ = n− |∆| < u nodes are unprotected. For any protected node i ∈ ∆, note that

hi(G,∆−i) ≤
f(n)

n2
+ u′

f(n− 1)

n(n− 1)
− c < f(n)

n2
+ u′

f(n− 1)

n(n− 1)
− tu(n)

= [u′ − (u− 1)]
f(n− 1)

n(n− 1)
≤ 0.

Therefore, any node i ∈ ∆ would rather unprotect, a contradiction.

Maximum equilibrium welfare is therefore achieved if there are exactly |N \ ∆| = u

unprotected nodes such that if an unprotected i ∈ N \∆ is attacked, the attack neither

spreads nor disconnects G. Equilibrium welfare is therefore bounded above by u
n
f(n−1)+

n−u
n
f(n)− (n−u)c. The following claim establishes that G attains maximum equilibrium

welfare if and only if G ∈ Gn−u(N), and thus completes the proof of Case 1.

Claim 2. Suppose tu(n) < c ≤ tu+1(n). There exists an equilibrium ∆ of Γ(G) such that

UD(G,∆) = u
n
f(n− 1) + n−u

n
f(n)− (n− u)c if and only if G ∈ Gn−u(N).

Proof. For the direction right to left, pick a network G ∈ Gn−u(N). For a set of nodes

U ⊆ N satisfying the conditions for G ∈ Gn−u(N), consider the defence profile ∆ = N \U .

For i ∈ ∆,

hi(G,∆−i) =
f(n)

n2
+ u

f(n− 1)

n(n− 1)
− c ≥ f(n)

n2
+ u

f(n− 1)

n(n− 1)
− tu+1(n) = 0, (75)

and so protected nodes do not wish to deviate. If u = 0, then ∆ is an equilibrium of

Γ(G) and the statement is true. Suppose u ≥ 1. For j ∈ N \∆,

hi(G,∆−i) =
f(n)

n2
− c < f(n)

n2
− tu(n) = (u− 1)

f(n− 1)

n(n− 1)
≤ 0. (76)

Combining (75) and (76), we conclude that ∆ is an equilibrium of Γ(G), and it achieves

welfare UD(G,∆) = u
n
f(n− 1) + n−u

n
f(n)− (n− u)c.
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Consider next the direction left to right. For a contradiction, suppose that there exists

G /∈ Gn−u(N) which achieves maximum equilibrium welfare. If u = 0, then G /∈ Gn−u(N)

means that G is not connected. Since c ≤ t1(n), full protection is the unique equilibrium

on every network. Thus, the designer can be strictly better off by choosing a connected

network, a contradiction.

Suppose then that u ≥ 1. Since G attains maximum equilibrium welfare, there are only

u unprotected nodes whose potential attack neither spreads nor disconnects the network.

Since the attack to i ∈ N \∆ does not to spread, it must be that ij /∈ G for all j ∈ N \∆.

Since the attack to i ∈ N \∆ does not disconnect the network, it must be that G−{i} is

connected. It follows from these two observations that G /∈ Gn−u(V ) implies that there

exists a pair of nodes (i, j), i ∈ N \∆ and j ∈ ∆, such that ij /∈ G. Then, for node j,

hj(G,∆−j) ≤
f(n)

n2
+ (u− 1)

f(n− 1)

n(n− 1)
− c < f(n)

n2
+ (u− 1)

f(n− 1)

n(n− 1)
− tu(n) = 0.

That is, node j would strictly prefer not to protect, a contradiction.

Case 2. ĉ1(n) < c ≤ min {ĉ3(n), tn(n)}. Since ĉ1(n) < c ≤ ĉ3(n), first best payoffs

of the designer are attained by a centre-protected star. It is easy to check that, since

c ≤ tn(n), the centre m of the star protects if no spoke protects. If a spoke finds protection

profitable when m protects, then by Lemma 14 the designer would be strictly better off,

and therefore full protection would be optimal, a contradiction. Hence ∆ = {m} is an

equilibrium of the star and the designer achieves first best payoffs.

Case 3. c ≤ min {tn(n),max {ĉ2(n), ĉ3(n)}}. If c > max {ĉ2(n), ĉ3(n)}, then first best

is an optimal unprotected network. By Corollary 3 this is attainable in equilibrium. If

c > tn(n), then by Lemma 15 D chooses an optimal unprotected network.

Before proving Proposition 8, we show that if f(y) = y2 then the optimal unprotected

network consists of two components, of sizes dn/2e and bn/2c.

Lemma 16. Assume f(y) = y2 and suppose the attack is random. If (G,∆) is first best

and ∆ = ∅, then G consists of two components, of sizes dn/2e and bn/2c.

Proof. Let b∗ be an optimal partition, i.e.

b∗ ∈ arg max
b∈B(n)

n∑
i=1

h(bi),

where h(bi) = (n− bi)b2
i . Note that h′(bi) = 0⇔ bi = 2n

3
, and h′′(bi) = 0⇔ bi = n

3
. That

is, function h(·) has a maximum at 2n
3

, and is convex on
[
0, n

3

]
and concave on

[
n
3
, n
]
.

We show that the optimal partition contains two components, of sizes dn/2e bn/2c, with

the following steps.

Step 1. b1 <
⌈

2n
3

⌉
+ 1. For a contradiction, suppose that b1 ≥

⌈
2n
3

⌉
+ 1. Then

consider the partition which is equal to b except that we isolate one node from b1. Since

h(·) is decreasing on [2n
3
, n] and increasing otherwise, this is a strict improvement, a

contradiction.
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Step 2. There is at most one component of size bi such that 0 < bi <
⌊
n
3

⌋
. Suppose

bi ≤ bj <
⌊
n
3

⌋
. Then consider moving nodes from the subset of size bi to the subset of size

bj, up to the point in which the new size of the larger subset is b′j = min
{⌊

n
3

⌋
, bj + bi

}
.

Since h(·) is convex on
[
0, n

3

]
, this is a strict improvement, a contradiction.

Step 3. If bi, bj ≥
⌈
n
3

⌉
, then |bi − bj| ≤ 1. If |bi − bj| > 1, then move one element

from the larger to the smaller subset. Since h(·) is concave on
[
n
3
, n
]
, this is a strict

improvement, a contradiction.

By steps 1-3, there are two possibilities. The first possibility is that there are only two

non-empty subsets, of sizes bi >
⌊
n
3

⌋
and bj ≤

⌊
n
3

⌋
. It is easy to verify that the optimal

partition into two components is with sizes dn/2e and bn/2c, a contradiction. Since

a = n/3, the second possibility is that there are two subsets of sizes greater than or equal

to
⌊
n
3

⌋
, and possibly one subset of size less than or equal to

⌊
n
3

⌋
. Let x, y, z denote the

sizes of the three components, with x ≥ y ≥ 1/3 ≥ z ≥ 0 and x+ y+ z = n. Abstracting

from integer problems, maximising (n − x)x2 + (n − y)y2 + (n − z)z2 with respect to

these constraints yields two constrained local optima: (x, y, z) = (n/3, n/3, n/3) and

(x, y, z) = (n/2, n/2, 0). It is straightforward to verify that the objective is maximised in

the latter. Hence, the optimal unprotected network has two components, of sizes dn/2e
and bn/2c.

Proof of Proposition 8. It follows from Proposition 10 and Lemma 16.

E.3 Welfare-minimizing equilibria

Proof of Fact 1. Let G be a connected network. Pick any node i ∈ N . For any ∆ ⊆ N ,

note that hi(G,∆−i) ≥ f(n)
n2 − c ≥ 0, where the last equality uses c ≤ t1(n) = f(n)

n2 .

Therefore, the unique equilibrium of Γ(G) is ∆ = N .

Proof of Fact 2. Consider statement (1) first. Suppose G is not complete and attains

maximum equilibrium welfare in every equilibrium of Γ(G). By Proposition 10, every

equilibrium ∆ of Γ(G) must be such that there is exactly one unprotected node l, where

G − {l} is connected. Fix such an equilibrium ∆. Note that li ∈ G for every i 6=
l. Otherwise there would be a node i whose neighbors are all protected in ∆, and so

hi(G,∆−i) = f(n)
n2 − c < 0, a contradiction. Moreover, since G is not the complete

network, there exist nodes u1, u2 such that u1, u2 /∈ G. To complete the proof, we will

show that there is an equilibrium of Γ(G) where nodes u1 and u2 do not protect, and

therefore G does not attain maximum equilibrium welfare in every equilibrium of Γ(G).

We will use the following concepts.

Definition 2. A set of nodes C ⊆ N is a vertex cover (VC) of G if, for all ij ∈ G,

ij ∩ C 6= ∅. A vertex cover C is minimal (MVC) if, for all D ( C, D is not a vertex

cover of G.

Consider the following two steps.
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Step 1. If C is an MVC of G and l ∈ C, then ∆′ = C is an equilibrium of Γ(G). Let C

be an MVC of G, and consider defence profile ∆′ = C. For i /∈ ∆′, note that j ∈ ∆′ for

every j ∈ ∂G(i), or otherwise ∆′ would not be a VC (it would not be covering all links in

G). Therefore, hi(G,∆
′) = f(n)

n2 − c < 0. For j ∈ ∆′, there must exist i ∈ ∂G(j) such that

i /∈ ∆′, or otherwise the VC ∆′ is not minimal. Furthermore, since l ∈ ∆′ and kl ∈ G for

every k, an attack on i does not disconnect G. Therefore, hj(G,∆
′) ≥ f(n)

n2 + f(n−1)
n(n−1)

−c ≥ 0,

where the inequality uses c ≤ t2(n) = f(n)
n2 + f(n−1)

n(n−1)
.

Step 2. There exists an MVC ∆′ such that l ∈ ∆′ and u1, u2 /∈ ∆′. Construct ∆′ as

follows. Start with ∆′0 = N \ {u1, u2}. Since {u1, u2} /∈ G, ∆′0 is a VC. If the VC ∆′0 is

not minimal, remove nodes from ∆′0 until obtaining an MVC. Node l will be in any such

MVC, or otherwise the link lu1 ∈ G would not be covered.

Combining steps 1 and 2 completes the proof of statement (1). Consider next state-

ment (2). Let G be the complete network Gc. For a contradiction, suppose there exists

an equilibrium ∆ of Γ(Gc) where |∆| ≤ n − 2. Let e = |N \∆| ≥ 2 denote the number

of unprotected nodes. For unprotected node i /∈ ∆, hi(G
c,∆) = f(n)

n2 + e−1
n

f(n−e−1)
n−e−1

− c ≥
e−1
n

f(n−e−1)
n−e−1

− f(n−1)
n(n−1)

, where the inequality uses c ≤ t2(n). By the condition given in the

fact, it is straightforward to see that hi(G
c,∆) ≥ 0. That is, an unprotected node would

prefer to protect, a contradiction.

Proof of Proposition 9. By Proposition 7 and Lemma 16, we have that

ĉ1(n) =
2n− 1

n
,

ĉ2(n) =
n2 − (bn/2c2 + n mod 2)

n
,

ĉ3(n) = (n− 1)2 −
(
bn/2c2 + n mod 2

)
,

so that ĉ1(n) < ĉ2(n) < ĉ3(n). By Proposition 7, first best is full protection if c ≤ ĉ1(n),

a centre-protected star if ĉ1(n) < c ≤ ĉ3(n), and the optimal unprotected network if

c > ĉ3(n). Furthermore, t1(n) = 1, t2(n) = 2n−1
n

, and tn(n) = (n − 1) + 1
n
, so that 0 <

t1(n) < ĉ1(n) = t2(n) < tn(n) < ĉ3(n). Let (G,∆) be a welfare minimizing equilibrium.

We consider the different cases.

Case (1). 0 < c ≤ t1(n) Since t1(n) < ĉ1(n), by Fact 1 any connected network G

attains first best welfare in unique equilibrium.

Case (2). t1(n) < c ≤ ĉ1(n) = t2(n) By Fact 2, G must be the complete network.

Case (3). ĉ1(n) = t2(n) < c ≤ tn(n) By Proposition 10, the star network has an

equilibrium where only the centre protects. To see that this equilibrium is unique, note

first that c > ĉ1(n) implies that any other equilibrium must have the centre unprotected.

Let G be the star network, and ∆ be a defence profile where s ∈ {0, . . . , n − 2} spokes

protect. For spoke j /∈ ∆, hj(G,∆) = f(n)
n2 + n−s−1

n
f(1)−c < − s

n
≤ 0, where the inequality

uses c > t2(n). Hence the unique equilibrium of the star is ∆ = {m}, where m is the

centre. D chooses the star and attains first best payoffs.
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Case (4). c > tn(n) By Lemma 15, G is the optimal unprotected network.
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