

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Land sharing versus land sparing to protect water from pesticide pollution?

Sophie LEGRAS, Elsa MARTIN, Virginie PIGUET

CESAER
UMR 1041 of INRA and AgroSup Dijon

Address : 26 Boulevard Dr Petitjean, BP 87999, 21079 Dijon, France.
Tel. +33(0)3 80 77 26 91, Fax. +33(0) 3 80 77 25 71
E-mail: elsa.martin@dijon.inra.fr

*Selected Poster prepared for presentation at the
2015 Agricultural & Applied Economics Association and Western Agricultural Economic
Association Joint Annual Meeting, San Francisco, CA, July 26-28.*

*Copyright 2015 by [Legras S., Martin E., Piguet V.]. All rights reserved. Readers may make
verbatim copies of this document for non-commercial purposes by any means, provided that
this copyright notice appears on all such copies.*

INTRODUCTION

Increasing pesticide use
→ pollution of water bodies

Hascic and Wu, 06:
land use affects the
level of water
pollution.

2 main strategies can be implemented to achieve
water quality goals:

- **Land sharing strategy:** implementing economic instruments to guide farmers towards integrated pest management strategies.
- **Land sparing strategy:** purchasing and excluding from agricultural production the lands with the highest risk of pesticide contamination.

OBJECTIVES

- What is the best strategy to implement?
- Should land sharing and land sparing strategies be considered separately or in a combined way?
- Do the answers depend on the land-planner's objectives?
- Three possible assumptions on land-planner's objectives:
 - A1: pure economic objective.
 - A2: pure environmental objective.
 - A3: environmental economic objective.
- How to answer those questions *ex ante*, before the implementation of the strategies?

Method based on Babcock et al., 96
who value a land sharing strategy ex post

METHODS

- **A1: pure economic objective**

$$\max_{x_{h,i}, x_{p,i}} \sum_{i=1}^I x_{h,i} + \sum_{i=1}^I x_{p,i}$$

$$\text{s.t.} \begin{cases} \sum_{i=1}^I x_{h,i} \cdot c_{h,i} + \sum_{i=1}^I x_{p,i} \cdot c_{p,i} \leq B \\ x_{h,i} + x_{p,i} \leq s_i \end{cases}$$

Ranking of lands according to the minimum cost
between both strategies.

- **A2: pure environmental objective**

$$\max_{x_{h,i}, x_{p,i}} \sum_{i=1}^I x_{h,i} \cdot b_{h,i} + \sum_{i=1}^I x_{p,i} \cdot b_{p,i}$$

$$\text{s.t.} \begin{cases} \sum_{i=1}^I x_{h,i} + \sum_{i=1}^I x_{p,i} \leq A \\ x_{h,i} + x_{p,i} \leq s_i \end{cases}$$

Ranking of lands according to the maximum
environmental benefit between both strategies.

- **A3: environmental economic objective**

$$\max_{x_{h,i}, x_{p,i}} \sum_{i=1}^I x_{h,i} \cdot b_{h,i} + \sum_{i=1}^I x_{p,i} \cdot b_{p,i}$$

$$\text{s.t.} \begin{cases} \sum_{i=1}^I x_{h,i} \cdot c_{h,i} + \sum_{i=1}^I x_{p,i} \cdot c_{p,i} \leq B \\ x_{h,i} + x_{p,i} \leq s_i \end{cases}$$

Ranking of lands according to the maximum
benefit to cost ratio between both strategies. To be
selected, each land must satisfy:

$$\max \left(\frac{b_{h,i}}{c_{h,i}}, \frac{b_{p,i}}{c_{p,i}} \right) < \max \left(\frac{b_{s2,j} - b_{s1,j}}{c_{s2,j} - c_{s1,j}} \right)_{j < i}$$

Otherwise, j switches from s1 to s2.

Ex ante computation of costs and benefits:

- c_h computed from field survey and experts knowledge about semi-net margins;
- c_p computed from econometric estimation of purchase cost (hedonic price method);
- b_h and b_p computed from a predictive indicator that assesses the risk of pesticide contamination of water

Table 1: Descriptive statistics of land costs and benefits.

	Mean	Standard Deviation	Minimum	Maximum
c_h	1,809	2,750	0.95	38,896
c_p	11,410	14,570	115	112,359
b_h	2.89	0.62	0.065	3.83
b_p	8.98	0.79	4.98	9.99
b_p/c_p	0.005	0.008	0.00007	0.083
b_h/c_h	0.029	0.103	0.00003	1.773

RESULTS AND DISCUSSION

Table 2: Total cost and environmental benefit for separated strategies.

	Cost (€)	Env. Gain		
	Sparing	Sharing	Sparing	Sharing
A1	200,000	200,000	138	631
A2 (A1)	651,346	569,917	6,481	4,020
A3	200,000	200,000	3,198	3,012

Table 3: Surface and mean size of parcels selected for separated strategies.

	Surface (ha)	Mean size		
	Sparing	Sharing	Sparing	Sharing
A1	157	1,140	10.47	3.23
A2 (A1)	157	1,140	0.22	0.84
A3	43.5	472	0.12	0.45

Table 4: Total cost and environmental benefit for combined strategies.

	Cost (€)	Env. Gain		
	Sparing	Sharing	Sparing	Sharing
A1	-	200,000	-	640
A2 (A1)	3,644,718	-	12,398	-
A3	126,444	73,556	2,319	1,508

The combination of strategies increases environmental gain (3,827) with respect to a pure land sharing strategy, without altering the cost of land planning (200,000€).

CONCLUSION

- Importance of considering the possibility to implement a mix of strategies when comparing targeting options for the preservation of water
- Ranking procedure for each land planning program, useful to implement.

ACKNOWLEDGEMENT

This work was funded by the French Environmental Ministry within the framework of the national research program named GESSOL 3.

REFERENCES

- Babcock B.A., P. Lakshminarayan, J. Wu, D. Zilberman (1996) The economics of a public fund for environmental amenities: A study of CRP contracts, American Journal of Agricultural Economics 78, 961–971
- Hascic I., J. Wu (2006) Land use and watershed health in the United States, Land Economics 82(2), 214-239