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Structural Models of Area Yield Crop Insurance

Introduction

A dasscissuein agriculturd economicsis the design of schemes that would offer
insurance againg production risksin agriculture. The experience with conventiona crop
insurance has been disappointing asinsurers have struggled to obtain rdiable actuarid
dataon individud yidds (Skees, Black and Barnett). The primary dtraction of areayield
insurance schemesis that insurers do not have to contend with the informationa
problems of mora hazard and adverse selection (Halcrow). These problems can be
dismissed because indemnities and premiums are based not on a producer’ sindividua
yield but rather on the aggregate yield of a sorrounding geographica area. However,
how good are they in reducing the risks faced by producers? What are the structurd
features of yidd risk that determine this effectiveness and are these features important in
design?

The answers provided by the literature build on areduced form linear relationship
between individud yield and areayidd. The key parameter of the reduced form modd is
the beta which is the dope coefficient of the linear model. For an exogenoudy specified
insurance contract, Miranda showed the extent of variance reduction for a producer to be
proportiond to that producer’s beta. Consequently, for producers with large enough
betas, the risk-reduction from area yidd insurance plans may well outweigh the risk
reduction from individua yield plans with large deductibles. Mahul showed that if
insuranceis actuaridly fair, then a producer’ s optimal indemnity schedule contains no
deductible and has dope equal to beta. However, the literature does not discuss, except

asinformal remarks, how the betas are determined. Why do some producers have higher



betas than others? How would it depend on individua production functions? And would
the leve of aggregation matter?

To answer such questions, this paper provides the structure for the reduced form
linear model. The structural modd is a set of assumptions about individud yield
functions. Areayidds are obtained as an aggregate of individua yields. Under some
conditions, individua yields can be expressed as alinear function of areayield. The
paper characterizes the entire class of structurd models that are consstent with the
reduced form modd. The characterization is valuable for severd reasons. Firg, for any
member of the generd class of structural models cons stent with the reduced form, the
betas can be readily computed as a function of structura parameters, which can be
producer and region specific. This provides ingghtsinto the relation between stochatic
technol ogies and producer betas. Second, and as shdl be shown, the structural modd is
useful for analyzing the relation between the leve of aggregation (that determines area
yields) and the risk reduction due to areayield crop insurance. Third, the characterization
points to structural models that are not consistent with reduced form models. Previous
results do not apply to these models. In this paper, we consider optima areayield
insurance for an important class of structural mode s that do not imply, and nor are

implied by, the reduced form modd!.

Literature
Both Miranda and Mahul begin by assuming thet the expectation of individua

yield conditiond on areayidd islinear in areayidd. Thus we have

(@) yy=m+b (y- m+e



wherey; is producer i’ syidd, misthe unconditiond mean of v, i.e., E(y:), yisareayidd,
b isthe dope parameter satisfyingb; = Cov(y;, y)/s )7; mis the unconditiona mean of y

and g is amean zero random variable uncorrelated with areayidld. Equation (1)

decomposesindividud yield varigtion into a systemic component b, (y- m perfectly

correlated with areayield (since Cov(b; (y- ), y)2/ b;?Var(y)? =1) and anon-
systemic component € uncorrelated with areayield. For reasons that will become clear
later, we shal refer to (1) as areduced form modd.
Suppose the indemnity scheduleis | (y) = max(y, - y,0) wherey. isayidd
trigger fixed exogenoudy. Then Miranda showed
(& Theextent of variance reduction is proportiona to by and other exogenous parameters
thet are the same across al farmers.

(b) It thusfollows that more highly correlated a producer’ syidd isto the areayidd,

greater isthe risk reduction.

Mahul considered the choice of an optimal contract | (y) . If insuranceis actuaridly
fair, then the optimal contract is characterized by 1(y) = b.(y,, - Y) whereym, theyidd
trigger, isthe maximum possible value of y.! Hence the dope of the optimal indemnity
scheduleis-by. An aspect of this result, not noted by Mahul but relevant for us, isthat

the optima indemnity schedule isindependent of the non-systemic risk and its moments

(such asVar(g)).

! For the reduced form relation (1), Vercammen considers the optimal design of an areayield crop
insurance contract when the yield trigger is constrained, for institutional reasons, to be below the maximum
possible value of areayield.



Ancther implication is that optima area yidd insurance completely diminates the
gystemic risk. To seethis, note that a producer’ s revenue with insurance (denoted p) is
@) p=y +I(y)-P
where P isthe premium. When aproducer chooses the optimd areayield insurance, (2)
becomes
3 p=m+b(y-m+e+b(y,-y)-P
where we have used (1). But when insurance is actuaridly fair, P = b, (y,, - nm.
Subdtituting in (3), we see that the producer bears only the non-systemic risk, i.e.,

p=m+eg
Thus optima areayidd insurance fully insures againg the systemic risk. Since the
optimal insurance is independent of the riskiness of the non-systemic risk g, we have the
result that the optima areayidd insurance delivers full insurance againg the insured
(systemic) risk whatever be the riskiness of the uninsured (norn systemic) risk.
We note afind result regarding the dispersion of betas. Miranda showed that the

acreage weighted average of the betas within any arealis dways one. Hence

é Wibi =1

where w; denotes the ratio of producer i’ s acreage to total acreage in the area.

A Structural Model of Systemic and Non-Systemic Risks
Consder aregion R where there are n producers. Producer i’ syiddy;, isgiven by

(4) y; =mh,



where mis producer i’s mean yield and h; is aunit mean random variable capturing the
risks of farming. (4) isastandard specification of stochastic technologieswhererisks are
multiplicative to mean yidds. h; isalinear combination of two independent shocks and is
given by

5) h =ae +o
where g isashock specificto i and g isashock common to dl producersin region R
We therefore refer to g as the non-systemic or individud risk and g as the systemic or
agoregate risk. Theindividud and aggregate risks satisfy the following properties:

E@) =1, Var@)=s¢ . E(g) =1, Var(g) =s§ ,Cov(gq) = Ofor dl i, and
Cov(ee;)=0fordl it j. Toensurethe compositerisk hi has unit mean, weimpose the
redriction (a+ g = 1. Individua yields are, therefore,

(6) yi =m(a +ae)

We dso assume that individud risks are independent of mean yields, i.e,, E(e | ) =
E(g). Thiscompletes the description of the structural modd.

The areayidd for theregion R is

y=4wy =l@ wm)+ag (wme)

where w; denotes the area share of the ith producer. Let ndenote the mean areayield

(i.e., average of the mean yields of producers). Then, m= é wm and
i

(7) y=gnwaé(mwa)

Now decompose § (mw.e ) as
i



® & (mwie) =3 w (M- n)(e - & +ne

wheree=§ w; & isthe areaaverage of individud risks. Note that the first term on the
i

right-hand side of (8) is the sample covariance (weighted) between mean yields and
individual risk. If the region contains alarge number of producers, and if the law of

large numbers gpplies, the sample covariance will approach (in probability) the

population covariance (assumed to be zero). Similarly, ein large samples will be dose
to E(e).

Whenw; = (1/n), it is straightforward to use the law of large numbersto obtain
large sampleresults. In the case of weighted averages, however, aredriction on the
welghtsis necessary. Essentidly, we need to assume that the average yield is not
dominated by the yidd of any single producer. This requirement is automatically
satisfied by the unweighted sum but needs to be explicitly assumed in the case of
weighted sums? Assuming this condition to be satisfied, we use large sample

gpproximationsto get

9 a (mwig) =Cov(m,g) + nfE(g) = m

|
Subtituting in (7), areayield is

(10) y=[ga+a]mr

2 . [o} L. . [¢] _ ] _
Consider @ @; X, wherex; isi.i.dwithmeanmend @ @; =1. Then E(Q &;% ) = m By
i i i
Chebychev'sinequality, given any d>0, Prob[ | & %; - Mpd £ (Var(x ) /d?)8 a? . thelimit of
i i
which tends to zero as long as for every n, there exists abound ¢ such that @, £ Cand c(n) ® O for large
n.



Thus, areayield is random only because of aggregate systemic shocks as individua risks
cancd out in the aggregate. Since areayield isamonatonic function of ¢ theinverse
function exigs and is given by
q=[y- ma]/ngy

Subdtituting for qin (6), we obtain producer yield as afunction of areayield, i.e.,

y, =(m/m(y- n&) + mae, or

y, =(m/m(y- m+m- ma+nae or
(11) y, =m+(m/m(y- m+ma(e - 1)
which isidentica to the reduced form mode (1) if we denote (m/ m) = b, and

ma(e - 1) =g . Hence we have the following result.

Propostion 1. If the structurd modd is described by equations (4) to (6), then it hasa
reduced form representation (1) with the following relationships between the sructura

and reduced form parameters.
@ b, = (m/m
(b) & =mae -1
From part (a), we see that for any individua producer the b parameter istheratio
of thet individua’ s mean yield to the mean of areayield. It follows immediady that

é_ w;b; =1. Thisresult was noted earlier by Miranda. From part (b), we see thet the

error term in the linear projection of individua yield on areayield is heteroscedadtic. In



particular, Var (e ) = r’ri?a %s gwhich varies across producers even though the non-

systemic risk in the structural mode is assumed to be homoscedadtic.

In an empirical andyss of 102 cotton farms in Kentucky, Miranda observed that
the distribution of the empirical betas possesses aregular, bell shape centred on 1.
Proposition 1 saysthet this property isinherited from the digtribution of average yidds.
Since the digtribution of average yields depends on the disperson of soil and climatic
conditions in the region, Proposition 1 provides the formal basis for Miranda s conjecture
that “..the more homogenous are the soil and climatic conditions faced by producersin a
given areg, the more closdly the by “swill cluster around one.” (pp 236). To this, we can
add that the dispersion of betas will dso depend on the heterogeneity in the other factors
that determine yield such as management practices, farming skills and capital assets. In
the extreme when dl farmers have the same mean yidd, they will dso have betas
identicaly equa to one. We now turn to the implications of our results for areayield

insurance.

Proposition 2: Suppose the area-yidd indemnity scheduleis| (y) = max(y, - vy,0) where
Yc isayidd trigger fixed exogenoudy. Then for agiven region, the extent of variance-
reduction due to areayield insurance is directly proportiona to mean yields.

Miranda showed the extent of variance reduction to be proportional to . Sincem
is fixed for a given region, the result follows from Proposition 1. Theimplication isthat
if producers are restricted to insurance contracts as specified above, a producer would

like to be grouped with other producers who have lower mean yields. Conversdly,



producers with low mean yidds rdative to the average will havelittle interest in area
yield insurance.

However, if producers are dlowed to choose optima insurance plans then we
know from Mahul’ s analysis thet the yield trigger will be chosen to be the maximum area
yield and the dope of the indemnity schedule (i.e., coverage) would be-by. The

following result istherefore immediate.

Propostion 3: Producers with higher mean yidds will choose higher coveragein an

optimd areayidd insurance plan.

A General Structural Model

The earlier section presented a structural mode that led to the reduced-form
equation (1) used in evauations of area-yield insurance. However, more than one
gructura modd might be consstent with the reduced form modd in (1). In this section,
we characterize the entire class of structural modes that imply the reduced form model.
We do thisin two steps. Proposition 4 below identifies the class of structural moddls
implied by the reduced form relation (1). Then in Propogtion 5, we show that every
member of thisclassimplies (1). It thusfollows that no structurd model outside the class
identified in Proposition 4 can imply reduced form mode ().

Suppose agenerd structural modd of the form

yi = f(z;,8.0)

where, as before, g and g are the random redlizations of individua risk and aggregate

shock and f isafunction that maps the individua risk, the aggregate shock and a vector



of parameters zinto redlized yidds. In the previous section, z consgsted of asingle
parameter ) the i’ th producer’s mean yield. Suppressing z, we can write the mode as
12) yi = fi(g,Q)

where the function f; is now specific to producer i. If the rdationship between individud

yied and areayield islinear asin (1), then what restrictions must the function f; satisfy?

Proposition 4: If the relationship between individud and areayieldsis described by (1),
the structural model (12) necessarily satisfies the following:
(@ Fordli,y; = f,(e,9)=h;(e) + g, (q) whereh; and g; are functions that map
non-systemic shocks and systemic shocks respectivey into individua yidds.
(b) Fordl i, there exitsafunction k(.) and a parameter | ; such that,
0, () =1 k(@) +c, wherec; isacondant of integration that possbly varieswith
i.
Proof: The gtructural modd (12) satisfies
(Ty; /9e;) =(Ty; /7&)(Te /Tey)
But from the reduced form modd (1), fly, / e =1. Hence
(Tyi /1e) = (Te /9e)
Notice, thet the reduced form mode splitsthe variation in individua yields into variation
inareayiddy and an individud-specific risk € . By assumption,y and € are
orthogond. It followsthat areayield y isafunction of g donewhile e isafunction of
g done. Hence

(1?y, /e T0) = (T’e /1 Tg) =0

10



i.e., the cross-partid derivatives of (12) are zero. Sincethiscan betrueonly if (12) is
additive in the two risks, we have the result in part (a).
We now turn to the proof of part (b) of Proposition 4. Define the parameter d =

Ty, /9lg. d messures the sengtivity of producer i’syield to aggregate shocks. Also

define d as the sengitivity of areayield to aggregate shocks, i.e,, d = {y/1q. Since

n
Ty/fa=a wi(y; /19) ,wehave d =Q wd; . Now
i=1

(13) d = 1y; /Tg = (1Y, /W)(Ty/Ta) =d(1y, /1Ty).
Hence, for dl i,
d.
(14) y; 7y :EI
Fix a producer j and define, fordl i, 1= (Ty; /Ty)/(Ty; / fy) . Clearly I jis1. Using

(14) we obtain, d; =1;d; . Using part(a) of Proposition 4, this can be written as

(19) ig; 1Ta=1;(Tg; /Ta).
| i does not vary with the aggregate shock . This can be seen from the reduced form

modd (1), wherefor dl i, ly; / iy isaparameter thet isindependent of the realization of

g Integrating both sides of (14) with respect to g we therefore find that, for dl i, the

structural model satisfies g; (@) =19 (q) +¢; wherec; isaconstant of integration that
vaieswithi. Sincej isarbitrarily chosen, we definek(q) to be g;(q) . This proves part

(b).

11



Proposition 4 specifies the class of structural modelsimplied by equation (2).
The next result shows that the relationship runs the other way too, i.e., every member of

the classidentified in Proposition 4 implies (1).

Propostion 5: The structural mode in (12) has a reduced form representation asin (1)

provided the structurd model stisfies
(16) y, = fi@e)=a +bk@) +h(e)
where k; (.) and h; (.) are monotone functions, a and b; are parameters that possibly
vay withi.
Proof: From (16), mean producer yield is
(17) m=a, +h E[k@)] +E[h ()]
and areayidd is
y=Q wa +k@a wih +3a whi(e)
Denote a= § w;a;and b= a w;b; . Using the week law of large numbers,

é w; h; (&) can be gpproximated in large samplesby E[h; ()] . Hence

i
(18) y(@) =a+bk() +Eh(e)

Mean areayidd istherefore

(19 nF a+bEk(q) +Eh,(e)

Adding and subtracting nato the right-hand side of (16), we get

y, = m+b[k(@) - EK@] +[h (&) En(e)]

12



where we have used (17). But from (18) and (19), y- m= K k(q) - Ek(q)]. Dencting
(b /b) = b, and (h(e) - Eh(e)) =&, weget

y=m+b(y- m+e
where @ isamean zero random variable uncorrelated with areayield.

From Propositions 4 and 5, we conclude that the class of structural models that
satisfy (16) condtitutes the entire class of ructura mode s that has a reduced form
representation (1). Depending on the choice of functions g and h;, and the parameters g
and by, there can be many specia cases of (16). However, as we have seen, in al models
satisfying (16), the beta parameter will be related to the structura parametersin the

following manner.

Proposition 6: Inthe genera structural mode that is equivaent to the reduced form
modd in (1), the parameters satisfy
@ b/b=b.
(b) h(e)- Eh(g)=¢

We may note couple of implications of Propogition 6. by measures the sendtivity
of producer i’ syield to aggregate shocks while b isthe sengtivity of areayidd to
aggregate shocks. Part (a) of Proposition 6 therefore states that b, the sengtivity of
producer i’syidd to areayidd isthat producer’ s senditivity to aggregate shocks relaive
to the sengtivity of areayidd to aggregate shocks. Also recdl that when areayield

insurance is optimal, the producer bears only therisk € . From part (b) of Proposition 6,

it can be seen therefore that, with optima areayidd insurance, the variability of producer

13



profitsis Var (h, (e )).

Special Cases
Given Proposition 6, it is easy to compute the betas for special cases. We

congder afew specifications that are popular in the literature.
Cese(a): y, =m(an +ae)
Thisisthe multiplicative specification consdered earlier. It isadditive in the interaction
of systemic and non+systemic shocks. Fix any j and define k(q) = mgq. Defineb; =
(i) and h (e) =mae . Then, individud yidds can bewritten asy, =b k(q) +h,(e),
whichisaspecid case of the structurd model (16). Here, b= m/ m). Applying
Proposition 6, we can compute b as m/ m
Cese(b): y, =m+e +q

In this specification, risks are additive to mean yield. It clearly stisfies (16).
Herek(g =g b =1andsob=1. Hencely =1fordl i. Note thisresult obtains even
though producers are heterogenous in mean yields. What isimportant for there to be
heterogeneity in betas is heterogeneity in the way the aggregate shock affects mean
yields.
Case(0): y, =m+s,(g+¢€)
Thisisthe specification of a stochastic production function due to Just and Pope. Thisis

also a specia case of (16) wherek(g) = g by = s and thereforeb = s where s = é’[ WS,

Therefore b = si/s.

14



Systemic Risks, Non-Systemic Risksand Aggregation

A design issueisthe sdlection of the areathat should be used as the basis for
computing areayidlds. To maximize corration of producer yidd with areayield, it has
been suggested that “the area or zone boundaries for an areayield contract should be
selected S0 asto group together the largest possible number of farms with smilar soils
and climate” (Skees, Black and Barnett). To evauate this recommendation, weturnto a
gructurd modd with different levels of aggregation.

Suppose producer yields can be averaged at two levels of aggregation.® For
convenience, cal the smdler aggregation as a cluster and the larger aggregetion asa
county. Yield of producer i in cluster ¢ of county Kk is given by
(20) Yik = Muchiw where

Pigw =au€i a0 +ax0%
where g isashock specificto i, quek isashock specific to dl producersin cluster ¢ of
county k and cpk isashock common to al producersin county K. 1n other words, ec is
the individud risk, gk is the cluster- specific risk and oy is the county-specific risk. The
risks have unit means, congtant variances and are sochadticaly independent. Also

assume é a; =1. Thisensuresthe mean of Yick IsM. Theindividud risk e is

digtributed independently of the individua mean yidd my.

3 Extension to many levelsis straightforward.

15



Congder firgt areayidd insurance schemes where the indemnity scheduleis
contingent on cluster yields. The average yidd of cluster ¢ in county k can be caculated

as

A Wia Vi =218 Wi MuBak + (@20ha +@3001)a Wige M
il c ilc il c

where w,, isthe share of the ith producer in the area of cluster c. Denote cluster €'s
yidd asye and its mean as . By arguments smilar to that in preceding sections,

substitute § Wiy My € Dy itslarge sample gpproximation ng.. Hence

(21) Ya =[a, ta,0 +a Jmy
Thus, cluster yields are random because of cluster-specific risk and county- specific risk.
Areayidd insurance schemes at the cluster level would therefore offer protection against

both theserisks. Write g, = (@,0,, +a@,0,,) - G denotes the systemic risk at the cluster

level. Hence, for the cluster yidd insurance scheme, we can write the equations of the

gructurdl modd as

(22) Yik = Mihiok = My @186 +0k) and

(23) Yok = (@1 +0 )N

Since (22) satidfies the structure of (16), the relationship between individud and cluster

yields can be represented by areduced form modd like (1). In particular, we can write

Yik = M * B (Yo - M) + €
where, by Proposition 6, the beta of an individua producer can be computed

b,y =My / My . By the same proposition, the disturbance term in the linear model

iS€y =a My (6 - 1). Because optima areainsurance (on the basis of cluster yields)

16



eliminates systemic risk (a the cluster leve), the variance of profits for a producer with

insuranceis Var () = (@, My, )?Var (e ) . The reduction in variance dueto cluster yield

insuranceis g, Var (hy ) - Var (e ) =Var(qy) -

Consder next areayidd insurance schemes where the indemnity is contingent on
county yield rather than cluster yield. The average yield of county k can be caculated by

using (21) to average across clusters within the county. Hence

o _ o o o
A Wk Yok =1 Wek M Yo A WeChek Mk az02k A Wek Mk
C C C C

where wg isthe share of cluster ¢ in area of county k. Denote yi to be county yield and
mato beitsmean. Because q,, isacluster specific risk, averaging across clusters should
lead thisrisk be gpproximately equa to its expected vaue. Using this gpproximation and

arguments similar to that in equations (7) to (9), & Wg Ohac MYy = M. Subdtituting,

c
Yy, = (@, ta,+a,q,)m

Denoting &; +a, asa, and a;6 + a0y 8S Vick, the structura equations for the county

yield insurance scheme are

(24) Yioe = Ml (Vige @40, ) and

(25) Y =@+ag,,)m

Compare (24) and (22). At the county levd, the systemic risk is gpk Whileit is ¢ at the

cluster level. The non-systemic individual specific risk changestoo. At the county leve,

what is measured asthe non-sysemicrik is a,e, +a.,q,, Whileitisa gy a the

cluster level. Higher aggregation reduces systemic risk and increases non-systemic

individua specificrisk. In the extreme, averages at the leve of nation or group of

17



nations may be so stable that the systemic risk component of a producer’ s yield might be
closeto zero. Insuch acase, al producer risk would be non-systemic individud specific
rsk.

(24) is additive in systemic and non-systemic risks and satisfies (16). Thus (24)
can aso be represented by areduced form linear relationship (1) such that

Yik = M * bigk (Yk - M) + &k

where, by Proposition 6, the betaisnow b,y = my, / my and the disturbance term
IS€g = My (Vi - @). Since optima areainsurance (on the basis of county yields)
eliminates systemic risk (at the county leve), the variance of profits for a producer with
optimal county yield insranceis Var (g ) = rrilc,(ZVar (Vige) =

@imy) 2Var (6a) + @My ) 2\ar (Che ) - Consequently, the reduction in variance due

to county yield insurance schemesis Var (h; ) - Var (e ) = nfazVar (gyy) -
Compared with the reduction achieved by cluster yield insurance, we see thet the

clugter yield insurance achieves an additional variance reduction of Var (m,a,d,, ) -

This happens because, while g« is a systemic risk at the cluster leve, it becomes a non
systemic risk a the county level and is therefore not insured by the county yield
insurance scheme* The division of producer risk into systemic and non-systemic risksis
therefore dependent on the level of aggregation. Higher isthe leve of aggregation,
gregter areindividud risks, smdler are systemic risks and hence smaller are therisk

reduction impacts of area-yidd insurance.

* It is easy to show that cluster yields are more correlated with producer yields than county yields.

18



Skees, Black and Barnett are right in emphasizing that farms with smilar soils
and climate should be grouped together. In terms of the structural modd, such a
grouping would face risks that do not cancel out in the aggregate and hence would
quaify as sysemic risks. However, what our analysis has pointed out is that more risks
are likely to survive aggregation (and hence be regarded as systemic) when the farmer
groups are as smdl as possble. Hence, for areayield insurance to have the maximum
impact on risk reduction, the area boundaries for an area yield contract should be selected
S0 asto group together the smallest (and not the largest) number of farms with smilar

soils and dimate®

The Multiplicative Case

Consder astructurd mode where, for agiven leve of aggregeation, individud
yields are described by
(26) y, =mh andh =eq
where the variables continue to have the same meaning and properties as before. The
difference from (4) liesin the multiplicative interaction of risks. Such a specification is
naturd whenever the yidd impacts of one risk depend on the redlization of the other risk
aswdl. For ingance, even with a postive systemic shock due to say excellent rainfal,
the impact on an individua producer’ s yidd might be negligible because of aloca risk

such apest or fungd infestation. Conversdly, very adverse aggregate shocks could

® Informational problems aside, the smallest possible group consists of only asingle producer. With the
informational problems of moral hazard and adverse selection, the smallest group would be the minimum
group sizein which group outcomes are immune to the actions of any oneindividual. The smallest group
size istherefore greater than one.

19



nullify a good outcome in terms of locd risks. In an additive structure, on the other hand,
the impact of rainfal isinvariant to local risks and vice-versa.®

(26) does not satisfy (16) and thus does not possess a reduced form representation
(2). Earlier results of Mirandaand Mahul are therefore not applicable to (26). To see
how the multiplicative structure makes a difference, refer to (4) asthe additive modd and
(26) asthe multiplicative modd. As noted earlier, in the additive model, the dope of the
optimal indemnity scheduleis - b, = (m/n) and isinvariant to the non-systemic risk
and itsmoments. Since a thisleve of insurance, al sysemic risk isdiminated, it is
optimal to fully insure againgt systemic risksin the additive moddl. To see whether these
results extend to the multiplicative modd, it is necessary to directly andyze the Structurd
form (26) as the reduced form (1) is unavailable.

The areayidd associated with (26) is y :qé me . By uang large sample

gpproximations, we can express area yield as

(27) y =nq

Subdtituting in (26),

(28) y; =(m/mye = b ye

where we have denoted (m/ ) by b . Notice that, when the non-systemic risk is absent
and isequd to its expected value 1, (28) isidentical to the reduced form of the additive
modd (11). From the results that apply to the additive modd, we therefore have that the

insurance schedule stisfies 1'(y) = - b, whenever thereis no non-systemic risk. Now

® For an analysis of multiplicative structures arising from the interaction of price and quantity risks, see
Mahul (2000) and Ramaswami and Roe (1992).
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suppose g isarandom varigble that takes values other than one with nonzero probability.
Using (2), we can write producer i’s revenue with insurance as

P, =y, +1(y)- P=Dbyeg +1(y)- P
An actuaridly fair optima insurance contract maximizes expected utility of producer i

subject to the break-even condraint of the insurers. Hence it solves

(29) Max &3 (p,)dG(y)dF (g) subjectto P = ¢y (y)dG(y)

1Y) gy
where U is an increasing, concave and thrice differentiable utility function, F isthe
cumulative dengity of the non-systemic shock, and G is the cumulative density of area
yield derived from the probability digtribution of the systemic shock q (from (27)). Note
that Snce areayidd isafunction of g adone, it is distributed independently of the non-
sysemic risk.

Let | bethe Lagrange multiplier associated with the bresk-even congraint. Then

the optimad function |(.) satisfiesfor every y

(30 @ ') f(Y)dG(e)=1f(y)
g

where f (y) =dF(y)/dy. Clearly (30) can aso bewritten as
E[U'(P) Y] =1
i.e, the optimal insurance equaizes the expected margind utility in every date of area
yield, y. Differentiating the first order condition with respect to y,
E[U"(p, )(be +1'(y)] =0
from which we can solve for the dope of the indemnity schedule as

CovU"(p).&)
EU"(p)

(31) I"(y) =- by [1+ ]
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Cov(U"(p).&)

EU "< Oand sothesign of —
EU"(p)

is opposgite to the sign of the covariance

term. Since (U " (p,)/Me ) =U""(p, )b, y, the covariance term is positive, equal to zero
or negativeas U """ isposgitive, zero or negative. A risk-averse agent with a postive third
derivative of utility function has been referred to as prudent (Kimbal, ). Itiseasy to

show that an agent with non-increasing risk-averson must be prudent. U'"'* iszero for an
agent with a quadratic utility function. Since constant or decreasing risk-aversonisa
reasonable redtriction on risk-averse behaviour, we concentrate below on the case when

u">0.

Proposition 8: If systemic and non-systemic risks interact multiplicatively, the optimd
insurance for a prudent producer | sdtidfies - 1'(y) <b..

The proof isimmediate from (31). Recal, that when non-systemic risk is absent,
- I'(y) =b,. Thiscan aso be seen directly from (31). Thus, in the presence of an
uninsured nort systemic risk, it isoptima for a producer to choose alower leve of
coverage as compared to the case where non-systemic risk is absent. Thisisunlike the

additive case where the demand for insurance againgt the systemic risk is unaffected by

non-systemic risk.

To andyselocd changesin risk, consder aoneterm expansionof U as
U"(p)=U"(E(p)) + (- EE)U ™ (E(p)) or
U"(p) =U"(E(p)) +by(e - YU (E(P))

Subgtituting in (31),
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(32) I'(y) =- b [1+ b; yVar (e‘)%]

Grester istheriskiness of the nonsystemic risk, smaler isthe optima coverage for a
prudent producer. The demand for area yield insurance depends therefore on the
uninsured non-systemic risks faced by an individua producer. As seen earlier, the
classfication of risks as either systemic or non-systemic changes with the area size used
for computing areayields. In amultiplicative modd, therefore, the demand for areayield
insurance will depend on the level of aggregation at which areayidds are determined.
Since higher aggregations increase non-systemic risk, they would reduce the demand for
areayidd insurance.

To seethis, denote |1 and I, as the optima insurance contracts at the cluster and
county levels of aggregation. Suppose aso that the mean yields of al producers are

equd. Then by =1, irrespective of the leve of aggregation. In an additive moded, the
optima coveragewould satisfy - 1,'(y,) =-1,'(Y,) =1 where yg and yi are cluster and
county yields.

In amultiplicative modd, individud yidds, duster yidds and county yidds are
givenby Yige = Mk BckOlickOlok » Yok = MuOaekCok ad Y = My . Hence the non
systemic risk for cluster insurance is gy, O butisonly ey, for acounty yield insurance.

The variance of nonsystemic risk is therefore grester with county yied insurance. From

Propostion 8 and (32), it follows that the optimal coverage for a prudent producer

satisfies 1>- 17" (yg ) > 12" (k) -
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Conclusons

From previous literature, we know that the extent of risk-reduction achievable by
an areayidd insurance plan is proportional to by which isthe dope coefficient in alinear
regresson of individud yidds on areayidds. In this paper, such areaionship is derived
on the basis of a structurd model theat described the interaction of individual non-
systemic risks and aggregate systemic risks in determining individud yields. Asaresult,
this paper was able to throw light on the structurd determinants of the betas. The mgor
ingght isthat the betas are determined by the sengtivity of individuad yiedsto aggregeate
shocks relative to the sengitivity of areayields to aggregate shocks. In the specid case
when aggregate shocks affect al producers identically even when they are otherwise
heterogenous, dl producers have betasidenticaly equal to 1. Comparison of betas across
regionsis therefore not meaningful.

Theimplications for policy are the following. Firdly, if the coveragein an area
yield insurance plan is restricted, then it hurts producers who are the most vulnerable to
aggregate shocks since they are the ones likely to have betas greater than the permissible
coverage. Secondly, since the betas are not comparable across areas, a coverage
regtriction that is uniform across areas hurts those high risk producers who are
unfortunate to find themselves grouped with other low risk producers. On the other hand,
if dl producers are prone to high risks, then their betas will be clustered around 1 and
redtriction of coverage levelsto 100% of loss will not affect them.

If insurance coverage can be fredly chosen, areainsurance will diminate systemic
risksfor al producers provided such risks interact additively. Inthiscase, the risk

reduction impacts of areainsurance depend on the Size of systemic risks which, in turn,
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depends on the level of aggregation. In generd, smdler aggregations are preferable to
larger areas, as more risks are likely to survive aggregetion at lower levels. This
consderation gains strength if risksinteract multiplicatively. In such asst-up, area
insurance does not diminate al systemic risk. Moreover, the demand for insuranceis not
independent of the non-systemic risk. Greater isthe non-systemic risk, lower isthe
demand for insurance. The feasibility of smal area aggregations aso depends on the Sze
of faams. Smdler are farm sizes (asin developing countries), more feasible will be
smdler area aggregations and hence greater will be the risk reduction impacts of area
yield crop insurance.

Firms whaose profits depend on areayield such as insurance companies seeking re-
insurance or processors and firms that transact with large number of farmsin agiven area
will benefit the most from areayield insurance. Since their operations encompass large
number of farms, they are largely exempt from the non-systemic risks. Irrespective of
whether the interaction of risks is additive or multiplicative, such firmswill be able to use

areayidd insurance to fully diminate systemic risks.
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