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 Structural Models of Area Yield Crop Insurance 
 
 

Introduction 

 A classic issue in agricultural economics is the design of schemes that would offer 

insurance against production risks in agriculture.  The experience with conventional crop 

insurance has been disappointing as insurers have struggled to obtain reliable actuarial 

data on individual yields (Skees, Black and Barnett). The primary attraction of area yield 

insurance schemes is that insurers do not have to contend with the informational 

problems of moral hazard and adverse selection (Halcrow).  These problems can be 

dismissed because indemnities and premiums are based not on a producer’s individual 

yield but rather on the aggregate yield of a sorrounding geographical area.  However, 

how good are they in reducing the risks faced by producers?  What are the structural 

features of yield risk that determine this effectiveness and are these features important in 

design?   

The answers provided by the literature build on a reduced form linear relationship 

between individual yield and area yield.  The key parameter of the reduced form model is 

the beta which is the slope coefficient of the linear model.  For an exogenously specified 

insurance contract, Miranda showed the extent of variance reduction for a producer to be 

proportional to that producer’s beta.  Consequently, for producers with large enough 

betas, the risk-reduction from area yield insurance plans may well outweigh the risk 

reduction from individual yield plans with large deductibles.  Mahul showed that if 

insurance is actuarially fair, then a producer’s optimal indemnity schedule contains no 

deductible and has slope equal to beta.  However, the literature does not discuss, except 

as informal remarks, how the betas are determined.  Why do some producers have higher 
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betas than others?  How would it depend on individual production functions?  And would 

the level of aggregation matter?   

To answer such questions, this paper provides the structure for the reduced form 

linear model.  The structural model is a set of assumptions about individual yield 

functions.  Area yields are obtained as an aggregate of individual yields.  Under some 

conditions, individual yields can be expressed as a linear function of area yield.  The 

paper characterizes the entire class of structural models that are consistent with the 

reduced form model.  The characterization is valuable for several reasons.  First, for any 

member of the general class of structural models consistent with the reduced form, the 

betas can be readily computed as a function of structural parameters, which can be 

producer and region specific.  This provides insights into the relation between stochastic 

technologies and producer betas.  Second, and as shall be shown, the structural model is 

useful for analyzing the relation between the level of aggregation (that determines area 

yields) and the risk reduction due to area yield crop insurance.  Third, the characterization 

points to structural models that are not consistent with reduced form models.  Previous 

results do not apply to these models.  In this paper, we consider optimal area yield 

insurance for an important class of structural models that do not imply, and nor are 

implied by, the reduced form model.   

 

Literature 

 Both Miranda and Mahul begin by assuming that the expectation of individual 

yield conditional on area yield is linear in area yield.  Thus, we have  

(1)    iiii yy εµβµ +−+= )(  
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where yi is producer i’s yield, µi is the unconditional mean of yi, i.e., E(yi), y is area yield, 

βi is the slope parameter satisfying 2/),( yii yyCov σβ = ,  µ is the unconditional mean of y 

and εi is a mean zero random variable uncorrelated with area yield.  Equation (1) 

decomposes individual yield variation into a systemic component )( µβ −yi perfectly 

correlated with area yield (since )1)(/)),(( 222 =− yVaryyCov ii βµβ and a non-

systemic component iε uncorrelated with area yield.  For reasons that will become clear 

later, we shall refer to (1) as a reduced form model.   

Suppose the indemnity schedule is )0,max()( yyyI c −= where yc is a yield 

trigger fixed exogenously. Then Miranda showed  

(a) The extent of variance reduction is proportional to βi and other exogenous parameters 

that are the same across all farmers. 

(b) It thus follows that more highly correlated a producer’s yield is to the area yield, 

greater is the risk reduction.   

Mahul considered the choice of an optimal contract )(yI .  If insurance is actuarially 

fair, then the optimal contract is characterized by )()( yyyI mi −= β where ym, the yield 

trigger, is the maximum possible value of y.1  Hence the slope of the optimal indemnity 

schedule is -βi.  An aspect of this result, not noted by Mahul but relevant for us, is that 

the optimal indemnity schedule is independent of the non-systemic risk and its moments 

(such as Var(εi)).    

 

                                                 
1 For the reduced form relation (1), Vercammen considers the optimal design of an area yield crop 
insurance contract when the yield trigger is constrained, for institutional reasons, to be below the maximum 
possible value of area yield.   
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Another implication is that optimal area yield insurance completely eliminates the 

systemic risk.  To see this, note that a producer’s revenue with insurance (denoted π) is  

(2)    PyIy i −+= )(π  

where P is the premium.  When a producer chooses the optimal area yield insurance, (2) 

becomes  

(3)     Pyyy miiii −−++−+= )()( βεµβµπ  

where we have used (1).  But when insurance is actuarially fair, )( µβ −= mi yP .  

Substituting in (3), we see that the producer bears only the non-systemic risk, i.e.,   

   ii εµπ +=  

Thus optimal area yield insurance fully insures against the systemic risk.  Since the 

optimal insurance is independent of the riskiness of the non-systemic risk εi, we have the 

result that the optimal area yield insurance delivers full insurance against the insured 

(systemic) risk whatever be the riskiness of the uninsured (non-systemic) risk.   

We note a final result regarding the dispersion of betas.  Miranda showed that the 

acreage weighted average of the betas within any area is always one.  Hence 

   1=∑
i

iiw β    

where wi denotes the ratio of producer i’s acreage to total acreage in the area.   

 

A Structural Model of Systemic and Non-Systemic Risks 

Consider a region R where there are n producers.  Producer i’s yield yi, is given by  

(4)    iiiy ηµ=  
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where µi is producer i’s mean yield and ηi is a unit mean random variable capturing the 

risks of farming.  (4) is a standard specification of stochastic technologies where risks are 

multiplicative to mean yields. ηi is a linear combination of two independent shocks and is 

given by  

(5)    γθαη += ii e  

where ei is a shock specific to i and θ  is a shock common to all producers in region R.  

We therefore refer to ei as the non-systemic or individual risk and θ as the systemic or 

aggregate risk.  The individual and aggregate risks satisfy the following properties: 

1)( =θE ,   )( 2
θσθ =Var , 2)(  ,1)( eii eVareE σ==  , ieCov i  allfor  0)( =θ , and 

jieeCov ji ≠=  allfor  0)( .  To ensure the composite risk ηi has unit mean, we impose the 

restriction (α + γ) = 1.  Individual yields are, therefore, 

(6)    )( iii ey αγθµ +=  
 
We also assume that individual risks are independent of mean yields, i.e., ieE( | µi) = 

E(ei).  This completes the description of the structural model.   

The area yield for the region R is  

   )]()[( i
i

ii
i

ii
i

ii ewwywy ∑∑∑ +== µαµγθ  

where wi denotes the area share of the ith producer.  Let µ denote the mean area yield 

(i.e., average of the mean yields of producers). Then, ∑=
i

iiw µµ  and  

(7)   )( ii
i

i ewy ∑+= µαγθµ  

Now decompose )( ii
i

i ew∑ µ as  
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(8)   eeewew
i

iiiii
i

i µµµµ +−−= ∑∑ ))(()(  

where ∑=
i

iiewe is the area average of individual risks.  Note that the first term on the 

right-hand side of (8) is the sample covariance (weighted) between mean yields and 

individual risk.   If the region contains a large number of producers, and if the law of 

large numbers applies, the sample covariance will approach (in probability) the 

population covariance (assumed to be zero).  Similarly, e  in large samples will be close 

to E(ei).  

When wi = (1/n), it is straightforward to use the law of large numbers to obtain 

large sample results.  In the case of weighted averages, however, a restriction on the 

weights is necessary.  Essentially, we need to assume that the average yield is not 

dominated by the yield of any single producer.  This requirement is automatically 

satisfied by the unweighted sum but needs to be explicitly assumed in the case of 

weighted sums.2  Assuming this condition to be satisfied, we use large sample 

approximations to get 

(9)   µµµµ =+=∑ )(),()( iiiii
i

i eEeCovew  

Substituting in (7), area yield is  

(10)    µαγθ ][ +=y  

                                                 
2 Consider ∑

i
ii xa where xi is i.i.d with mean µ and 1=∑

i
ia . Then µ=∑ )(

i
ii xaE .  By 

Chebychev’s inequality, given any δ > 0, Prob[ | µ−∑
i

ii xa |>δ] ∑≤
i

ii axVar 22 )/)(( δ , the limit of 

which tends to zero as long as for every n, there exists a bound c such that ca i ≤ and c(n)  0→ for large 

n.   
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Thus, area yield is random only because of aggregate systemic shocks as individual risks 

cancel out in the aggregate.  Since area yield is a monotonic function of θ, the inverse 

function exists and is given by  

    µγµαθ /][ −= y  

Substituting for θ in (6), we obtain producer yield as a function of area yield, i.e.,  

   iiii eyy αµµαµµ +−= ))(/(  or  

   iiiiii eyy αµαµµµµµ +−+−= ))(/(  or 

(11)    )1())(/( −+−+= iiiii eyy αµµµµµ  

which is identical to the reduced form model (1) if we denote ii βµµ =)/( and 

iii e εαµ =− )1( .  Hence we have the following result.   

 

Proposition 1:  If the structural model is described by equations (4) to (6), then it has a 

reduced form representation (1) with the following relationships between the structural 

and reduced form parameters:  

(a) )/( µµβ ii =  

(b)  )1( −= iii eαµε  
 

From part (a), we see that for any individual producer the β parameter is the ratio 

of that individual’s mean yield to the mean of area yield. It follows immediately that 

1=∑
i

iiw β .  This result was noted earlier by Miranda.  From part (b), we see that the 

error term in the linear projection of individual yield on area yield is heteroscedastic. In 
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particular, )( iVar ε = 222
ei σαµ which varies across producers even though the non-

systemic risk in the structural model is assumed to be homoscedastic.   

 In an empirical analysis of 102 cotton farms in Kentucky, Miranda observed that 

the distribution of the empirical betas possesses a regular, bell shape centred on 1.  

Proposition 1 says that this property is inherited from the distribution of average yields.  

Since the distribution of average yields depends on the dispersion of soil and climatic 

conditions in the region, Proposition 1 provides the formal basis for Miranda’s conjecture 

that “..the more homogenous are the soil and climatic conditions faced by producers in a 

given area, the more closely the βi ‘s will cluster around one.” (pp 236).  To this, we can 

add that the dispersion of betas will also depend on the heterogeneity in the other factors 

that determine yield such as management practices, farming skills and capital assets.  In 

the extreme when all farmers have the same mean yield, they will also have  betas 

identically equal to one.  We now turn to the implications of our results for area yield 

insurance. 

 

Proposition 2:  Suppose the area-yield indemnity schedule is )0,max()( yyyI c −= where 

yc is a yield trigger fixed exogenously.  Then for a given region, the extent of variance-

reduction due to area yield insurance is directly proportional to mean yields.   

Miranda showed the extent of variance reduction to be proportional to βi.  Since µ 

is fixed for a given region, the result follows from Proposition 1.  The implication is that 

if producers are restricted to insurance contracts as specified above, a producer would 

like to be grouped with other producers who have lower mean yields.  Conversely, 
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producers with low mean yields relative to the average will have little interest in area 

yield insurance.  

However, if producers are allowed to choose optimal insurance plans then we 

know from Mahul’s analysis that the yield trigger will be chosen to be the maximum area 

yield and the slope of the indemnity schedule (i.e., coverage) would be -βi.  The 

following result is therefore immediate.    

 

Proposition 3:  Producers with higher mean yields will choose higher coverage in an 

optimal area yield insurance plan. 

  

A General Structural Model 

 The earlier section presented a structural model that led to the reduced-form 

equation (1) used in evaluations of area-yield insurance.  However, more than one 

structural model might be consistent with the reduced form model in (1).  In this section, 

we characterize the entire class of structural models that imply the reduced form model.  

We do this in two steps.  Proposition 4 below identifies the class of structural models 

implied by the reduced form relation (1).  Then in Proposition 5, we show that every 

member of this class implies (1).  It thus follows that no structural model outside the class 

identified in Proposition 4 can imply reduced form model (1).   

 Suppose a general structural model of the form  

   ),,( θiii efy z=  

where, as before, ei and θ  are the random realizations of individual risk and aggregate 

shock and  f is a function that maps the individual risk, the aggregate shock and a vector 
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of parameters z into realized yields.  In the previous section, zi consisted of a single 

parameter µi, the i’th producer’s mean yield.  Suppressing zi, we can write the model as  

(12)      ),( θiii efy =  

where the function fi is now specific to producer i.  If the relationship between individual 

yield and area yield is linear as in (1), then what restrictions must the function fi satisfy?  

 

Proposition 4: If the relationship between individual and area yields is described by (1), 

the structural model (12) necessarily satisfies the following:  

(a) For all i, )()(),( θθ iiiiii gehefy +==  where hi and gi are functions that map 

non-systemic shocks and systemic shocks respectively into individual yields.  

(b) For all i, there exists a function k(.) and a parameter λi such that, 

iii ckg += )()( θλθ  where ci is a constant of integration that possibly varies with 

i.  

Proof:   The structural model (12) satisfies 

   )/)(/()/( iiiiii eyey ∂∂∂∂=∂∂ εε  

But from the reduced form model (1), 1/ =∂∂ iiy ε . Hence  

   =∂∂ )/( ii ey )/( ii e∂∂ε   

Notice, that the reduced form model splits the variation in individual yields into variation 

in area yield y and an individual-specific risk iε .  By assumption, y and iε  are 

orthogonal.  It follows that area yield y is a function of θ  alone while iε  is a function of 

ei alone.  Hence  

0)/()/( 22 =∂∂∂=∂∂∂ θεθ iiii eey  
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i.e., the cross-partial derivatives of (12) are zero.  Since this can be true only if (12) is 

additive in the two risks, we have the result in part (a).   

We now turn to the proof of part (b) of Proposition 4.  Define the parameter δi = 

θ∂∂ /iy .  δi measures the sensitivity of producer i’s yield to aggregate shocks.  Also 

define δ as the sensitivity of area yield to aggregate shocks, i.e., θδ ∂∂= /y . Since 

)/(/ ∑ ∂∂=∂∂ θθ ii ywy , we have ∑
=

=
n

i
iiw

1

δδ .  Now  

(13)   δi = )/)(/(/ θθ ∂∂∂∂=∂∂ yyyy ii  = )/( yyi ∂∂δ .   

Hence, for all i, 

(14)     
δ
δi

i yy =∂∂ /    

Fix a  producer j and define, for all i, λi = )//()/( yyyy ji ∂∂∂∂ .  Clearly λj is 1.   Using 

(14) we obtain, jii δλδ = .  Using part(a) of Proposition 4, this can be written as  

(15)    )/(/ θλθ ∂∂=∂∂ jii gg .   

λi does not vary with the aggregate shock θ .  This can be seen from the reduced form 

model (1), where for all i, yyi ∂∂ / is a parameter that is independent of the realization of 

θ.   Integrating both sides of (14) with respect to θ, we therefore find that, for all i, the 

structural model satisfies ijii cgg += )()( θλθ  where ci is a constant of integration that 

varies with i.  Since j is arbitrarily chosen, we define k(θ) to be )(θjg .  This proves part 

(b).   
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 Proposition 4 specifies the class of structural models implied by  equation (1).  

The next result shows that the relationship runs the other way too, i.e., every member of 

the class identified in Proposition 4 implies (1).   

 

Proposition 5:  The structural model in (12) has a reduced form representation as in (1) 

provided the structural model satisfies  

(16)  ),( iii efy θ= = )()( iiii ehkba ++ θ  

 where (.)ik  and (.)ih  are monotone functions, ai and bi are parameters that possibly 

vary with i.   

Proof:  From (16), mean producer yield is  

(17)   )]([)]([ iiiii ehEkEba ++= θµ  

and area yield is  

)()( iiiiiii ehwbwkawy ∑∑∑ ++= θ  

Denote iiawa ∑= and iibwb ∑= .  Using the weak law of large numbers, 

∑
i

iii ehw )( can be approximated in large samples by )]([ ii ehE .  Hence  

(18)    )()()( ii eEhbkay ++= θθ  

Mean area yield is therefore  

(19)   )()( ii eEhbEka ++= θµ  

Adding and subtracting µi to the right-hand side of (16), we get  

)]()([)]()([ iiiiiii eEhehEkkby −+−+= θθµ  
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where we have used (17).  But from (18) and (19), )]()([ θθµ Ekkby −=− .  Denoting 

ii bb β=)/(  and iiiii eEheh ε=− ))()(( , we get  

   iiii yy εµβµ +−+= )(  

where εi is a mean zero random variable uncorrelated with area yield.   

 From Propositions 4 and 5, we conclude that the class of structural models that 

satisfy (16) constitutes the entire class of structural models that has a reduced form 

representation (1).  Depending on the choice of functions g and hi, and the parameters ai 

and bi, there can be many special cases of (16).  However, as we have seen, in all models 

satisfying (16), the beta parameter will be related to the structural parameters in the 

following manner.  

 

Proposition 6:  In the general structural model that is equivalent to the reduced form 

model in (1), the parameters satisfy  

(a) ii bb β=/ .   

(b) iiiii eEheh ε=− )()(  

 We may note couple of implications of Proposition 6.  bi measures the sensitivity 

of producer i’s yield to aggregate shocks while b is the sensitivity of area yield to 

aggregate shocks.  Part (a) of Proposition 6 therefore states that βi, the sensitivity of 

producer i’s yield to area yield is that producer’s sensitivity to aggregate shocks relative 

to the sensitivity of area yield to aggregate shocks.  Also recall that when area yield 

insurance is optimal, the producer bears only the risk iε .  From part (b) of Proposition 6, 

it can be seen therefore that, with optimal area yield insurance, the variability of producer 
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profits is )).(( ii ehVar  

 

Special Cases 

Given Proposition 6, it is easy to compute the betas for special cases.  We 

consider a few specifications that are popular in the literature.   

Case (a):  )( iii ey αγθµ +=  

This is the multiplicative specification considered earlier.  It is additive in the interaction 

of systemic and non-systemic shocks.  Fix any j and define γθµθ jk =)( .  Define bi = 

(µi/µj) and iiii eeh αµ=)( .  Then, individual yields can be written as )()( iiii ehkby += θ , 

which is a special case of the structural model (16).  Here, b = jµµ / .  Applying 

Proposition 6, we can compute βi as µµ /i .    

Case (b): θµ ++= iii ey  

 In this specification, risks are additive to mean yield.  It clearly satisfies (16).  

Here k(θ) = θ, bi = 1 and so b = 1.  Hence βi = 1 for all i.  Note this result obtains even 

though producers are heterogenous in mean yields.  What is important for there to be 

heterogeneity in betas is heterogeneity in the way the aggregate shock affects mean 

yields.   

Case (c): )( iiii ey ++= θσµ  

This is the specification of a stochastic production function due to Just and Pope.  This is 

also a special case of (16) where k(θ) = θ, bi = σi and therefore b = σ where ∑=
i

iiw σσ  

Therefore βi = σi/σ.   
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Systemic Risks, Non-Systemic Risks and Aggregation  
 
 A design issue is the selection of the area that should be used as the basis for 

computing area yields.  To maximize correlation of producer yield with area yield, it has 

been suggested that “the area or zone boundaries for an area yield contract should be 

selected so as to group together the largest possible number of farms with similar soils 

and climate” (Skees, Black and Barnett).  To evaluate this recommendation, we turn to a 

structural model with different levels of aggregation.   

Suppose producer yields can be averaged at two levels of aggregation.3  For 

convenience, call the smaller aggregation as a cluster and the larger aggregation as a 

county.  Yield of producer i in cluster c of county k is given by   

(20)    ickickicky ηµ=  where  

kckickick e 23121 θαθααη ++=  

where eick is a shock specific to i, θ1ck  is a shock specific to all producers in cluster c of 

county k and θ2k is a shock common to all producers in county k.  In other words, eick  is 

the individual risk, θ1ck is the cluster-specific risk and θ2k is the county-specific risk. The 

risks have unit means, constant variances and are stochastically independent.  Also 

assume ∑ = 1iα .   This ensures the mean of yick is µick.  The individual risk eick is 

distributed independently of the individual mean yield µick.   

                                                 
3 Extension to many levels is straightforward.  
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 Consider first area yield insurance schemes where the indemnity schedule is 

contingent on cluster yields.  The average yield of cluster c in county k can be calculated 

as  

  ∑∑∑
∈∈∈

++=
ci

ickickkckickick
ci

ickick
ci

ick wewyw µθαθαµα )( 23121  

where ickw  is the share of the ith producer in the area of cluster c.  Denote cluster c’s 

yield as yck and its mean as µck.  By arguments similar to that in preceding sections, 

substitute ickick
i

ick ew µ∑  by its large sample approximation µck.  Hence  

(21)   ckkckcky µθαθαα ][ 23121 ++=  

Thus, cluster yields are random because of cluster-specific risk and county-specific risk.  

Area yield insurance schemes at the cluster level would therefore offer protection against 

both these risks.  Write  )( 2312 kckk θαθαθ += .  θk denotes the systemic risk at the cluster 

level.  Hence, for the cluster yield insurance scheme, we can write the equations of the 

structural model as  

(22)   )( 1 kickickickickick ey θαµηµ +==  and 

(23)   ckkcky µθα )( 1 +=  

Since (22) satisfies the structure of (16), the relationship between individual and cluster 

yields can be represented by a reduced form model like (1).  In particular, we can write  

   ickckckickickick yy εµβµ +−+= )(     

where, by Proposition 6, the beta of an individual producer can be computed 

ckickick µµβ /= .  By the same proposition, the disturbance term in the linear model 

is ).1(1 −= ickickick eµαε   Because optimal area insurance (on the basis of cluster yields) 
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eliminates systemic risk (at the cluster level), the variance of profits for a producer with 

insurance is )()()( 2
1 iicki eVarVar µαε = .  The reduction in variance due to cluster yield 

insurance is )()()(2
kiiick VarVarVar θεηµ =− .   

 Consider next area yield insurance schemes where the indemnity is contingent on 

county yield rather than cluster yield.   The average yield of county k can be calculated by 

using (21) to average across clusters within the county.  Hence   

ck
c

ckkckck
c

ck
c

ckck
c

ckck wwwyw µθαµθαµα ∑∑∑∑ ++= 23121  

where wck is the share of cluster c in area of county k.  Denote yk  to be county yield and 

µk to be its mean.  Because ck1θ is a cluster specific risk, averaging across clusters should 

lead this risk be approximately equal to its expected value.  Using this approximation and 

arguments similar to that in equations (7) to (9), kckck
c

ckw µµθ =∑ 1 .  Substituting,  

 kkky µθααα )( 2321 ++=  

Denoting 21 αα +  as α, and ckie 121 θαα + as vick, the structural equations for the county 

yield insurance scheme are  

(24)    )( 23 kickickick vy θαµ +=  and 

(25)   kkky µθαα )( 23+=  

Compare (24) and (22).  At the county level, the systemic risk is θ2k while it is θk at the 

cluster level.  The non-systemic individual specific risk changes too.  At the county level, 

what is measured as the non-systemic risk is ckicke 121 θαα +  while it is icke1α  at the 

cluster level.  Higher aggregation reduces systemic risk and increases non-systemic 

individual specific risk.  In the extreme, averages at the level of nation or group of 
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nations may be so stable that the systemic risk component of a producer’s yield might be 

close to zero.  In such a case, all producer risk would be non-systemic individual specific 

risk.   

(24) is additive in systemic and non-systemic risks and satisfies (16).  Thus (24)  

can also be represented by a reduced form linear relationship (1) such that  

ickkkickickick yy εµβµ +−+= )(  

where, by Proposition 6, the beta is now kickick µµβ /=  and the disturbance term 

is ).( αµε −= ickickick v   Since optimal area insurance (on the basis of county yields) 

eliminates systemic risk (at the county level), the variance of profits for a producer with 

optimal county yield insurance is )()( 2
ickickick vVarVar µε =  = 

)()()()( 1
2

2
2

1 ckickickick VareVar θµαµα + .  Consequently, the reduction in variance due 

to county yield insurance schemes is )()()( 2
2
3

2
kiii VarVarVar θαµεη =− .   

Compared with the reduction achieved by cluster yield insurance, we see that the 

cluster yield insurance achieves an additional variance reduction of )( 12 ckickVar θαµ .  

This happens because, while θ1ck is a systemic risk at the cluster level, it becomes a non-

systemic risk at the county level and is therefore not insured by the county yield 

insurance scheme.4  The division of producer risk into systemic and non-systemic risks is 

therefore dependent on the level of aggregation.  Higher is the level of aggregation, 

greater are individual risks, smaller are systemic risks and hence smaller are the risk 

reduction impacts of area-yield insurance.   

                                                 
4 It is easy to show that cluster yields are more correlated with producer yields than county yields.   
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Skees, Black and Barnett are right in emphasizing that farms with similar soils 

and climate should be grouped together.  In terms of the structural model, such a 

grouping would face risks that do not cancel out in the aggregate and hence would 

qualify as systemic risks.  However, what our analysis has pointed out is that more risks  

are likely to survive aggregation (and hence be regarded as systemic) when the farmer 

groups are as small as possible.  Hence, for area yield insurance to have the maximum 

impact on risk reduction, the area boundaries for an area yield contract should be selected 

so as to group together the smallest (and not the largest) number of farms with similar 

soils and climate.5     

 

The Multiplicative Case 

 Consider a structural model where, for a given level of aggregation, individual 

yields are described by  

(26)   iiiy ηµ=  and θη ii e=  

where the variables continue to have the same meaning and properties as before.  The 

difference from (4) lies in the multiplicative interaction of risks.  Such a specification is 

natural whenever the yield impacts of one risk depend on the realization of the other risk 

as well.  For instance, even with a positive systemic shock due to say excellent rainfall, 

the impact on an individual producer’s yield might be negligible because of a local risk 

such a pest or fungal infestation.  Conversely, very adverse aggregate shocks could 

                                                 
5 Informational problems aside, the smallest possible group consists of only a single producer.  With the 
informational problems of moral hazard and adverse selection, the smallest group would be the minimum 
group size in which group outcomes are immune to the actions of any one individual.  The smallest group 
size is therefore greater than one.   
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nullify a good outcome in terms of local risks.  In an additive structure, on the other hand, 

the impact of rainfall is invariant to local risks and vice-versa.6  

(26) does not satisfy (16) and thus does not possess a reduced form representation 

(1).  Earlier results of Miranda and Mahul are therefore not applicable to (26).  To see 

how the multiplicative structure makes a difference, refer to (4) as the additive model and 

(26) as the multiplicative model.  As noted earlier, in the additive model, the slope of the 

optimal indemnity schedule is )/( µµβ ii =− and is invariant to the non-systemic risk 

and its moments.  Since at this level of insurance, all systemic risk is eliminated, it is 

optimal to fully insure against systemic risks in the additive model.  To see whether these 

results extend to the multiplicative model, it is necessary to directly analyze the structural 

form (26) as the reduced form (1) is unavailable.   

The area yield associated with (26) is ∑=
i

iiey µθ .  By using large sample 

approximations, we can express area yield as  

(27)    µθ=y  

Substituting in (26),  

(28)    iii yey )/( µµ= = ii yeβ  

where we have denoted )/( µµi by βi .  Notice that, when the non-systemic risk is absent 

and is equal to its expected value 1, (28) is identical to the reduced form of the additive 

model (11).  From the results that apply to the additive model, we therefore have that the 

insurance schedule satisfies iyI β−=)('  whenever there is no non-systemic risk.  Now 

                                                 
6 For an analysis of multiplicative structures arising from the interaction of price and quantity risks, see 
Mahul (2000) and Ramaswami and Roe (1992).   
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suppose ei is a random variable that takes values other than one with nonzero probability.  

Using (2), we can write producer i’s revenue with insurance as  

PyIyePyIy iiii −+=−+= )()( βπ  

An actuarially fair optimal insurance contract maximizes expected utility of producer i 

subject to the break-even constraint of the insurers.  Hence it solves  

(29) Max
yI )(

 ∫ ∫
ie y

ii edFydGU )()()(π  subject to ∫=
y

ydGyIP )()(  

where U is an increasing, concave and thrice differentiable utility function, F is the 

cumulative density of the non-systemic shock, and G is the cumulative density of area 

yield derived from the probability distribution of the systemic shock θ (from (27)).  Note 

that since area yield is a function of θ  alone, it is distributed independently of the non-

systemic risk.   

Let λ be the Lagrange multiplier associated with the break-even constraint.  Then 

the optimal function I(.) satisfies for every y 

(30) )()()()(' yfedGyfU ii
ei

λπ =∫  

where dyydFyf /)()( = .  Clearly (30) can also be written as  

  λπ =]|)('[ yUE i  

i.e., the optimal insurance equalizes the expected marginal utility in every state of area 

yield, y.  Differentiating the first order condition with respect to y,  

0))](')(('[ =+ yIeUE ii βπ  

from which we can solve for the slope of the indemnity schedule as  

(31)  ]
)(''

)),(''(
1[)('

π
π

β
EU

eUCov
yI i

i +−=  



 22

0'' <EU and so the sign of 
)(''

)),(''(

π
π

EU

eUCov i  is opposite to the sign of the covariance 

term.  Since yUeU iiii βππ )(''')/)(''( =∂∂ , the covariance term is positive, equal to zero 

or negative as '''U  is positive, zero or negative.  A risk-averse agent with a positive third 

derivative of utility function has been referred to as prudent (Kimball, ).  It is easy to 

show that an agent with non-increasing risk-aversion must be prudent.  '''U  is zero for an 

agent with a quadratic utility function.  Since constant or decreasing risk-aversion is a 

reasonable restriction on risk-averse behaviour, we concentrate below on the case when 

0''' >U .   

 

Proposition 8:  If systemic and non-systemic risks interact multiplicatively, the optimal 

insurance for a prudent producer I satisfies iyI β<− )(' . 

 The proof is immediate from (31).  Recall, that when non-systemic risk is absent, 

iyI β=− )(' .  This can also be seen directly from (31).  Thus, in the presence of an 

uninsured non-systemic risk, it is optimal for a producer to choose a lower level of 

coverage as compared to the case where non-systemic risk is absent.  This is unlike the 

additive case where the demand for insurance against the systemic risk is unaffected by 

non-systemic risk.   

To analyse local changes in risk, consider a one term expansion of ''U  as  

 ))(('''))(())(('')('' πππππ EUEEUU −+=  or  

))((''')1())(('')('' πβππ EUeyEUU ii −+=  

Substituting in (31),  
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(32)  ]
))((''
))(('''

)(1[)('
π
πββ

EU
EU

eyVaryI iii +−=  

Greater is the riskiness of the non-systemic risk, smaller is the optimal coverage for a 

prudent producer.  The demand for area yield insurance depends therefore on the 

uninsured non-systemic risks faced by an individual producer.   As seen earlier, the 

classification of risks as either systemic or non-systemic changes with the area size used 

for computing area yields.  In a multiplicative model, therefore, the demand for area yield 

insurance will depend on the level of aggregation at which area yields are determined.  

Since higher aggregations increase non-systemic risk, they would reduce the demand for 

area yield insurance.   

To see this, denote I1 and I2 as the optimal insurance contracts at the cluster and 

county levels of aggregation.  Suppose also that the mean yields of all producers are 

equal.  Then βi = 1, irrespective of the level of aggregation.  In an additive model, the 

optimal coverage would satisfy 1)(')(' 21 =−=− kck yIyI  where yck and yk are cluster and 

county yields.    

In a multiplicative model, individual yields, cluster yields and county yields are 

given by kckickickick ey 21 θθµ= , kckckcky 21 θθµ= and kkky 2θµ= .  Hence the non-

systemic risk for cluster insurance is ckicke 1θ but is only icke  for a county yield insurance.  

The variance of non-systemic risk is therefore greater with county yield insurance.  From 

Proposition 8 and (32), it follows that the optimal coverage for a prudent producer 

satisfies )(')('1 21 kck yIyI >−> .   
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Conclusions 

 From previous literature, we know that the extent of risk-reduction achievable by 

an area yield insurance plan is proportional to βi which is the slope coefficient in a linear 

regression of individual yields on area yields.  In this paper, such a relationship is derived 

on the basis of a structural model that described the interaction of individual non-

systemic risks and aggregate systemic risks in determining individual yields.  As a result, 

this paper was able to throw light on the structural determinants of the betas.  The major 

insight is that the betas are determined by the sensitivity of individual yields to aggregate 

shocks relative to the sensitivity of area yields to aggregate shocks.  In the special case 

when aggregate shocks affect all producers identically even when they are otherwise 

heterogenous, all producers have betas identically equal to 1.  Comparison of betas across 

regions is therefore not meaningful.   

The implications for policy are the following.  Firstly, if the coverage in an area 

yield insurance plan is restricted, then it hurts producers who are the most vulnerable to 

aggregate shocks since they are the ones likely to have betas greater than the permissible 

coverage.  Secondly, since the betas are not comparable across areas, a coverage 

restriction that is uniform across areas hurts those high risk producers who are 

unfortunate to find themselves grouped with other low risk producers.  On the other hand, 

if all producers are prone to high risks, then their betas will be clustered around 1 and 

restriction of coverage levels to 100% of loss will not affect them.   

 If insurance coverage can be freely chosen, area insurance will eliminate systemic 

risks for all producers provided such risks interact additively.  In this case, the risk 

reduction impacts of area insurance depend on the size of systemic risks which, in turn, 
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depends on the level of aggregation.  In general, smaller aggregations are preferable to 

larger areas, as more risks are likely to survive aggregation at lower levels.  This 

consideration gains strength if risks interact multiplicatively.  In such a set-up, area 

insurance does not eliminate all systemic risk.  Moreover, the demand for insurance is not 

independent of the non-systemic risk.  Greater is the non-systemic risk, lower is the 

demand for insurance.  The feasibility of small area aggregations also depends on the size 

of farms.  Smaller are farm sizes (as in developing countries), more feasible will be 

smaller area aggregations and hence greater will be the risk reduction impacts of area 

yield crop insurance.   

 Firms whose profits depend on area yield such as insurance companies seeking re-

insurance or processors and firms that transact with large number of farms in a given area 

will benefit the most from area yield insurance.  Since their operations encompass large 

number of farms, they are largely exempt from the non-systemic risks.  Irrespective of 

whether the interaction of risks is additive or multiplicative, such firms will be able to use 

area yield insurance to fully eliminate systemic risks.   
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