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Summary – This contribution is an introduction to the main topics of spatial econo-
metrics. We start analyzing the main problems raised by spatial data. The first one is
heterogeneity : statisticians must take account of the fact that spatial units may not be
directly comparable. They must correct for differences in size, form, structure and so on.
The second one is interaction among units located in space, the intensity of which de-
creases with distance. These interactions lead to spatial autoregression and spatial au-
tocorrelation. Then, the paper introduces to the main instruments used to represent and
analyze spatial autocorrelation and autoregression : spatial graphs, weight matrices,
contiguity matrices. It presents the main tests used to detect spatial autocorrelation, color
tests on qualitative data, Moran and Geary tests for quantitative data. It shows how
these tests can be interpreted. An illustrative example is also provided. Last, the paper
shows how to deal with spatial autocorrelation and autoregression on the example of li-
near models. The main types of spatial linear models are presented : spatially autore-
gressive, spatially autocorrelated and their combination. Then, we explain why least
squares methods are not well suited to estimate this type of models. Most often, econome-
tric analysis will rest upon maximum likelihood methods. The paper shows how to use
these methods in the specific context of spatial models, in order to find parameters esti-
mates and to make tests on them.

Résumé – Cet article d’initiation à l’économétrie sur données spatiales met l’ac-
cent sur les principaux problèmes rencontrés dans l’utilisation de ces données : hé-
térogénéité des observations, interactions liées à la proximité. La présence de ces
dernières conduit à s’intéresser à l’autocorrélation spatiale. L’article montre com-
ment la représenter en pratique. Il montre ensuite comment en tester la présence
dans les données. Enfin, il présente les principaux modèles linéaires qui en tien-
nent compte et leurs procédures d’estimation.

* Université des Sciences et Technologies de Lille, Laboratoire des mécanismes écono-
miques et dynamiques des espaces européens, 59655 Villeneuve d’Ascq cedex.
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(1) Ces problèmes d’hétérogénéité sont analysés de manière très détaillée par
G. Arbia (1989).

MANIPULER des données spatiales pose des problèmes auxquels
le praticien doit prendre garde. Ces problèmes ne sont pas né-

cessairement spécifiques à la nature spatiale des données utilisées. On
peut les rencontrer dans d’autres domaines. Mais, avec des données spa-
tialisées, ils se posent avec une acuité particulière. De ce fait, il est im-
portant de les avoir toujours à l’esprit. C’est l’objectif de cet article d’en
préciser la nature, avec le regard du praticien plus que du théoricien, et
de donner quelques indications sur la manière d’aborder les données
quand elles ont une dimension spatiale. Le lecteur ayant besoin d’aller
plus loin pourra consulter Jayet (1993), Anselin (1988), Cliff et Ord
(1981).

L’HÉTÉROGÉNÉITÉ DES DONNÉES SPATIALES

Précisons tout d’abord qu’en général la spatialisation d’une donnée
statistique revêt deux formes principales. D’une part, les informations
recueillies peuvent porter sur des points particuliers répartis dans l’es-
pace. C’est par exemple le cas quand, à l’échelle nationale, on travaille
sur les grandes villes françaises. On parlera alors de données ponctuelles.
D’autre part, ces mêmes informations peuvent être des agrégats, des
moyennes ou des taux relatifs à un ensemble de zones : les 22 régions
françaises, les 96 départements métropolitains, les 341 zones d’emploi,
etc. On parlera alors de données de zones.

Dans les deux cas, l’analyse d’une information spatialisée pose
d’abord un problème d’hétérogénéité. En effet, toute analyse statistique
d’une population suppose que les éléments de cette population ont des
points communs, sur lesquels on peut fonder des comparaisons et asseoir
des régularités. Or, qu’il s’agisse d’entités ponctuelles ou de zones, les
unités spatiales sont généralement fortement hétérogènes, au moins par
leur taille, leur forme et leur structure (1).

L’hétérogénéité de taille est la première qui apparaît. Peut-on com-
parer, sans précaution, l’agglomération parisienne et sa dizaine de mil-
lions d’habitants, et une petite ville de quelques milliers d’habitants ? Le
département du Nord avec ses 2,5 millions d’habitants et celui de la
Corse du Sud, qui dépasse à peine les 100 000 habitants ? Cette hétéro-
généité se manifeste au moins dans l’ordre de grandeur des agrégats,
beaucoup d’entre eux étant d’autant plus élevés que la taille de l’entité
est grande.
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(2) Les biomètres, grands consommateurs de données spatialisées, y échappent
plus facilement car ils sont souvent capables d’utiliser des données réparties de
manière régulière dans l’espace, par exemple sur la base de quadrillages.
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Ce problème d’hétérogénéité de taille n’est pas spécifique aux don-
nées spatiales. Ces dernières se distinguent par le fait que le problème se
pose de manière quasi systématique (2), en particulier avec les données
utilisées par les sciences humaines. Les spécialistes des données tempo-
relles, qui travaillent en général sur des périodes de durée approximati-
vement égale (le jour, la semaine, le mois, l’année), le rencontrent peu.
Mais il se pose parfois, les conduisant à des pratiques comme la correc-
tion des jours ouvrables. De même, les statisticiens utilisant des données
individuelles travaillent sur des entités qui, issues d’une même popula-
tion, sont généralement considérées a priori comme directement compa-
rables. Il n’empêche que, quand les individus sont des ménages, des pro-
blèmes de différences de taille se posent, justifiant l’usage des unités de
consommation. De même, quand les entités sont des firmes, il faut
rendre compte de leurs différences de taille.

Dans tous les cas, le statisticien tiendra compte des différences de
taille en choisissant un indicateur de dimension (le nombre de jours ou-
vrables, le nombre d’unités de consommation, la population ou la super-
ficie de la zone), et en utilisant les taux plutôt que les agrégats comme
variables soumises à l’analyse statistique : le taux de chômage plutôt que
le nombre de chômeurs, la valeur ajoutée par tête plutôt que la valeur
ajoutée globale. Il faut être bien conscient du fait qu’il peut y avoir plu-
sieurs indicateurs de taille : superficie, population totale, population ac-
tive, emploi, nombre de logements, etc. Dans certains cas, l’un d’entre
eux s’imposera a priori. Mais, le plus souvent, il faudra faire des tests
pour trancher.

A l’hétérogénéité de taille s’ajoutent souvent des hétérogénéités de
forme et de position. En effet, peut-on comparer sans précaution le dé-
partement du Nord, de forme longue et étroite avec près de la moitié de
sa frontière le séparant de la Belgique, avec la Sarthe, de forme presque
carrée et située à l’intérieur du territoire national ? Typiquement géogra-
phique, ce type d’hétérogénéité est très difficile à appréhender, tant dans
ses conséquences que pour la construction d’indicateurs permettant d’en
mesurer les effets et de les corriger. Il faut cependant toujours l’avoir à
l’esprit pour identifier les situations où il pourrait poser problème. On
verra un exemple plus loin avec l’analyse des interactions spatiales.

Enfin, on ne saurait négliger les hétérogénéités de structure. Un
exemple simple permet d’en illustrer l’importance. Peut-on, sans précau-
tion, comparer le revenu moyen par tête à Paris et dans un département
rural ? La réponse est non, car la structure de la population n’est pas la
même dans les deux cas. Or, les revenus des individus sont fortement liés
à la nature de l’activité qu’ils exercent et à leur niveau de qualification.
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(3) Dans la littérature anglo-saxonne, on trouve fréquemment le terme de
weight matrix, matrice de poids.
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Pour déterminer l’influence effective qu’exerce une localisation particu-
lière par rapport à d’autres, il faut comparer ce qu’un même individu ob-
tiendrait dans les différentes localisations. Ce qui conduit à un modèle
intégrant des variables de structure : dans l’exemple des revenus, on
prendra en compte les structures de qualification, d’activité économique,
voire de taille d’établissement.

C’est ce qui justifie la pratique, fréquente en analyse spatiale, de
l’analyse « shift-share » des Anglo-saxons, terme qu’on traduira ici par
analyse structurelle-géographique. Celle-ci revient à choisir des indica-
teurs de référence (dans notre exemple, les revenus moyens nationaux par
tête pour chacun des niveaux de qualification) et à calculer l’effet struc-
turel, qui est égal aux performances qu’aurait chaque zone étudiée, avec
sa structure actuelle, si elle se comportait comme la zone de référence. La
comparaison entre zones portera alors sur les effets géographiques, égaux
à la différence entre performances actuelles et effets structurels (pour une
présentation détaillée, voir Jayet, 1993).

INTERACTIONS ET PROXIMITÉ

Des observations réparties dans l’espace sont fréquemment interdé-
pendantes : ce qui se passe dans une localisation particulière dépend de
ce qui se passe dans d’autres localisations. Suivant un bon vieux principe
de la géographie, ces interactions sont d’autant plus fortes que les loca-
lisations concernées sont plus proches. Le statisticien a donc besoin d’un
instrument qui lui permette de représenter cette interaction entre obser-
vations et sa décroissance en fonction de la distance qui les sépare.

Cet instrument est la matrice d’interactions spatiales (3). Avec N ob-
servations, on utilise une matrice carrée W à N lignes et N colonnes,
dont les termes diagonaux sont nuls et dont le terme non diagonal wij
est d’autant plus élevé que l’effet de l’observation j sur l’observation i est
important.

Si W est une matrice d’interactions et Y = (y1, ..., yN)′ est un vecteur
colonne de N observations d’une variable spatialisée, le produit matriciel
WY a pour terme courant :

(WY)i = Σj wij yj (1)

Ce terme mesure l’intensité de l’effet global sur la i-ième observation
des valeurs prises par la variable Y ailleurs dans l’espace. Cette variable
sera utilisée ensuite dans les modèles statistiques pour représenter les ef-
fets que les localisations exercent les unes sur les autres.
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(4) C’est-à-dire une matrice dont la somme des éléments de chaque ligne est
égale à l’unité. On a c (n)

ij = 1/mi
(n), où mi

(n) est le nombre d’observations contiguës à
la zone i à l’ordre n.
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Cependant, pour utiliser une matrice d’interactions dans un modèle
statistique, il est nécessaire de lui donner une forme a priori. Il est en
effet impossible, du moins dans le cadre d’un modèle purement spatial,
d’estimer avec N observations chacun des N(N – 1)/2 coefficients de la
matrice d’interactions. En choisissant une définition particulière des dis-
tances entre observations et une forme fonctionnelle spécifique pour la
relation entre la distance et l’intensité de l’interaction, l’économètre dé-
termine une famille de matrices d’interactions dépendant d’un nombre
faible de paramètres, dont la valeur sera déterminée par estimation.

L’exemple le plus classique est celui des matrices de contiguïté, fré-
quemment utilisées quand les données portent sur des zones géogra-
phiques. Deux zones sont contiguës quand elles ont une frontière com-
mune. Plus généralement, on définit la distance de contiguïté entre deux
zones comme le nombre minimal de frontières qu’il faut franchir pour
aller de l’intérieur de l’une à l’intérieur de l’autre. Deux zones sont
contiguës à l’ordre k quand leur distance de contiguïté est égale à k.
Cette définition de la contiguïté est l’analogue spatial de la définition
des retards en séries temporelles : la contiguïté d’ordre k correspond au
retard d’ordre k. 

Cette notion de contiguïté peut être commodément représentée par un
graphe. A chaque observation spatiale (zone géographique), on associe un
nœud du graphe. Les nœuds correspondant à deux zones contiguës sont
reliés par un arc. La figure 1 est une bonne illustration de ce passage de la
carte au graphe, pour quelques cantons de la région Rhône-Alpes.

Pour un ensemble de N zones géographiques, la matrice C(k) de conti-
guïté à l’ordre k est l’analogue de l’opérateur retard. L’élément
c(k)
ij de cette matrice est égal à l’unité quand les zones sont contiguës à

l’ordre k, nul sinon. La matrice de contiguïté est éventuellement norma-
lisée en divisant chacune de ses lignes par la somme de ses éléments. La
matrice normalisée est donc une matrice stochastique (4). On définit

Figure 1.
Représentation de la

contiguïté de
quelques cantons de

Rhône-Alpes
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alors une famille de matrices d’interactions spatiales sur la base des
contiguïtés d’ordre au plus égal à K :

K

W(ρ1, ..., ρK) = Σ ρk C(k) (2)
k=1

où ρ1, ..., ρK sont des paramètres à estimer. En pratique, on se restreint
généralement au cas K = 1 et donc à W(ρ) = ρC(1). L’interaction se res-
treint donc à l’influence des zones contiguës.

Les matrices de contiguïté usuelles ont cependant pour inconvénient
que, lorsque c(k)

ij et c(k)
il diffèrent tous deux de zéro, c(k)

ij = c(k)
il . Ce qui signifie

que toutes les observations contiguës à une zone donnée l’influencent de la
même manière. On retrouve une homogénéité des interactions qui n’est
pas plus vraisemblable que l’homogénéité des observations elles-mêmes.
On en retrouve un exemple sur la figure 1 avec la petite zone désignée par
la lettre A. Cette zone est contiguë à trois autres, ce qu’on retrouve bien sur
le graphe. Cependant, avec la zone située à l’Est, la frontière commune se
réduit à presque rien. Il s’en faudrait de peu pour qu’il n’y en ait pas, fai-
sant chuter brutalement le coefficient de contiguïté à zéro.

On peut résoudre ce problème en faisant des c(k)
ij des fonctions des carac-

téristiques des zones j qui influencent i. Un exemple classique est l’utilisa-
tion de coefficients proportionnels à la longueur des frontières communes.
On peut penser à d’autres déterminants de l’intensité des interactions : la
distance entre les centres des deux zones, la taille de la zone émettrice de
l’interaction, la capacité des réseaux de transport entre les zones, etc. C’est
ici à l’économètre de choisir et de justifier les variables pertinentes.

Enfin, il y a de nombreuses situations où l’utilisation de la contiguïté
s’avère impossible ou inadaptée. C’est en particulier le cas avec des don-
nées portant sur des points : contrairement au cas des zones, la détermi-
nation de la contiguïté entre deux points n’a guère de sens. Tout ce que
l’on peut dire est que ces points sont plus ou moins éloignés les uns des
autres. Même avec des données de zones, on peut supposer que toutes les
observations (et pas seulement celles qui sont les plus proches les unes
des autres) interagissent les unes avec les autres. Dans ce cas, on adoptera
une formulation plus générale pour les coefficients wij de la matrice d’in-
teraction, du type wij = ρƒ(dij) où ƒ(dij) est une fonction décroissante
d’une distance entre observations, éventuellement combinée comme plus
haut avec d’autres variables. Les fonctions les plus utilisées sont
ƒ(dij) = exp (–dij), ƒ(dij) = dij

-1 et, dans le prolongement des modèles
gravitaires, ƒ(dij) = dij

-2.

En conclusion, il est rare qu’un choix unique s’impose d’emblée pour
représenter les interactions spatiales. Si le recours aux matrices de conti-
guïté a l’avantage de fournir un outil similaire à celui des opérateurs re-
tard en économétrie des séries temporelles, il est loin de s’imposer de
manière aussi générale. Bien souvent, il faudra tester plusieurs solutions
avant d’en arrêter une.
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TESTER LA PRÉSENCE D’INTERACTIONS SPATIALES :
LES TESTS ÉLÉMENTAIRES D’AUTOCORRÉLATION SPATIALE

Les tests de couleur

Commençons par l’exemple très simple d’un ensemble de N zones
avec, pour chacune d’entre elles, une réalisation d’une variable binaire X
(Pour une analyse détaillée de cet exemple, voir Cliff et Ord, 1973).
Pour suivre la tradition imagée de la statistique spatiale, on désignera
par zones blanches celles pour lesquelles la variable binaire est égale à
zéro (Xi = 0), par zones noires celles pour lesquelles elle est égale à
l’unité (Xi = 1). Les zones blanches et noires sont-elles réparties aléatoi-
rement dans l’espace ? Si ce n’est pas le cas, c’est parce que :

• Deux zones contiguës tendent à être de la même couleur (les va-
leurs de la variable dichotomique sont souvent les mêmes). On parlera
d’autocorrélation spatiale positive.

• Deux zones contiguës tendent à être de couleurs opposées (les va-
leurs de la variable dichotomique diffèrent en général). On parlera d’au-
tocorrélation spatiale négative.

La carte de la figure 2 illustre bien cette notion. Les cantons à haute
densité sont bien regroupés, en particulier autour de Lyon. Les cantons à
basse densité sont également regroupés, principalement dans les zones de
montagne. Deux cantons voisins ont donc tendance à avoir des densités
voisines, ce qui correspond bien à la définition de l’autocorrélation spa-
tiale positive.

Avant de parler de tests, il faut bien insister sur le fait que toute au-
tocorrélation spatiale est relative à une définition particulière de la conti-
guïté, et nous venons de voir qu’aucune d’entre elles ne s’imposait sans
discussion. Un exemple classique proposé initialement par Cliff et Ord
(1973) illustre bien ce point. Prenons un échiquier. Sur ce dernier, on
peut proposer trois définitions de la contiguïté, chacune associée au
mouvement d’une pièce particulière. Pour la Tour, sont contiguës deux
cases ayant un côté commun. Ces deux cases sont de couleurs systémati-
quement opposées : il y a autocorrélation spatiale négative. Pour le Fou,
deux cases contiguës sont sur la même diagonale et ont un sommet com-
mun. Elles ont toujours la même couleur. Pour le Roi et la Reine, sont
contiguës deux cases ayant un côté ou un sommet commun. Chaque case
intérieure est contiguë à quatre cases de même couleur et à quatre cases
de couleur opposée : il n’y a pas d’autocorrélation spatiale.

Cet exemple montre bien la relativité de l’autocorrélation spatiale. Il
ne doit cependant pas décourager. Il nous confirme ce qui était signalé
plus haut : pour analyser l’interaction spatiale, il ne faut pas se res-
treindre à une seule définition de cette dernière. Il faut en étudier plu-
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sieurs. La confrontation des résultats de plusieurs définitions est riche en
enseignements sur la structure spatiale des données.

Figure 2. Densité de population cantonale en Rhône-Alpes, 1990

Comment tester l’existence d’autocorrélation spatiale, positive ou né-
gative ? Il faut d’abord définir soigneusement l’absence d’autocorrélation
spatiale, c’est-à-dire comment a été obtenue une répartition purement
aléatoire des zones blanches et noires. On trouve habituellement deux
définitions dans la littérature :

– Dans la première, appelée hypothèse N, on suppose que les valeurs
blanches et noires ont été obtenues par des tirages aléatoires indépen-
dants et de même loi dans chacune des zones, la probabilité d’une valeur
noire étant égale à p. 

– Dans la seconde, appelée hypothèse R, on suppose qu’il y avait au
départ I réalisations de la valeur aléatoire, une par zone, dont une frac-
tion p était noire. Ces valeurs ont été affectées à chacune des zones par ti-
rage aléatoire sans remise.

Un test d’autocorrélation spatiale est un test de l’une des deux hypo-
thèses nulles de répartition aléatoire, N ou R, l’hypothèse alternative
étant la similarité (autocorrélation spatiale positive) ou la dissimilarité
(autocorrélation spatiale négative) des zones contiguës. Le principe de ces
tests, appelés tests de couleur, est très simple. Rappelons que l’ensemble

Nombre d’habitants
au kilomètre carré

0- 79
80- 179

180- 629
630- 2589
220- 8680
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(5) C’est-à-dire quand le nombre de nœuds et d’arcs du graphe devient suffi-
samment grand. On trouvera la justification de cette propriété dans Cliff et Ord,
1973.
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des zones peut être représenté par un graphe de contiguïté, chaque zone
correspondant à un nœud relié par des arcs aux nœuds des zones conti-
guës. Attribuons à chaque nœud la couleur de la zone qu’il représente.
En présence d’autocorrélation spatiale, chaque arc tendra à relier des
nœuds de même couleur : deux nœuds noirs (on parlera d’arc noir-noir)
ou deux nœuds blancs (on parlera d’arc blanc-blanc). Les arcs reliant
deux nœuds de couleurs opposées (on parlera d’arc noir-blanc) seront
rares. A l’opposé, en présence d’autocorrélation spatiale négative, chaque
arc tendra à relier des nœuds de couleurs opposées, d’où une prédomi-
nance des arcs noir-blanc au détriment des arcs noir-noir et blanc-blanc.

L’espérance E(NN) et la variance V(NN) du nombre NN d’arcs noir-
noir et l’espérance E(NB) et la variance V(NB) du nombre NB d’arcs
noir-blanc sont connues. On en trouvera les valeurs en annexe 1. Or, on
démontre qu’asymptotiquement (5), sous chacune des deux hypothèses
nulles, la statistique NN (resp. la statistique NB) suit une loi normale
de moyenne E(NN) et de variance V(NN) (resp. de moyenne E(NB) et de
variance V(NB)). La procédure de test est donc très simple.

– Pour un « test NN», on compte le nombre NN d’arcs noir-noir,
NN – E(NN)puis on calcule la statistique centrée réduite TNN = —————– et on
√V(NN)

utilise un test de normalité de l’hypothèse TNN = 0. Si TNN est signifi-
cativement positive (resp. négative), on conclut à l’existence d’autocorré-
lation spatiale positive (resp. négative).

– Pour un « test NB», on compte le nombre NB d’arcs noir-blanc,
NB – E(NB)puis on calcule la statistique centrée réduite TNB = —————– et on
√V(NB)

utilise un test de normalité de l’hypothèse TNB = 0. Si TNB est signifi-
cativement positive (resp. négative), on conclut à l’existence d’autocorré-
lation spatiale négative (resp. positive).

A titre d’exemple, on peut réaliser un test de couleur sur la carte de
la figure 2 en la réduisant à deux groupes, les cantons à haute densité (au
moins égale à 180 habitants par km2) et les cantons à faible densité (au
plus égale à 179 habitants par km2). Sur les 309 cantons de la région
Rhône-Alpes, 224 sont dans la première catégorie (qu’on assimilera à la
couleur noire), 85 sont dans la seconde (qu’on assimilera à la couleur
blanche). Le graphe de contiguïté entre ces 309 cantons comprend 853
arcs, dont 532 relient deux cantons à haute densité (arcs NN), 132 re-
lient deux cantons à basse densité (arcs BB) et 189 un canton à haute
densité et un canton à basse densité (arcs NB). L’utilisation des formules
de l’annexe conduit aux résultats suivants :
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Hypothèse N Hypothèse R
NN 532 532
E(NN) 448,3 447,7
V(NN) 1 113,7 126,7

NN – E(NN)
TNN = —————– 2,5 7,5

√V(NN)

NB 189 189
E(NB) 340,2 341,3
V(NB) 551,5 168,5

NB – E(NB)
TNB = —————– -6,4 -11,7

√V(NB)

Rappelons que, avec une loi normale, pour un test unilatéral au
risque de 5 %, le seuil est de 1,6 en valeur absolue ; il est de 2,3 pour un
risque de 1 %. Les deux tests, sous les deux hypothèses, conduisent donc
bien à la conclusion qu’il y a autocorrélation spatiale et que cette der-
nière est positive.

Mathématiquement, les statistiques NN et NB s’écrivent de la ma-
nière suivante :

et (3)

où xi et xj sont les valeurs (6) de la variable X en chacun des nœuds i et
j, et cij est le coefficient de contiguïté. Ces expressions servent de base à
deux généralisations. La première consiste à remplacer les coefficients de
contiguïté par les coefficients wij d’une matrice W d’interactions spa-
tiales quelconque. Les propriétés statistiques des tests sont les mêmes.
Evidemment, d’une matrice W à l’autre, c’est le type d’interaction spa-
tiale testée qui change, chaque matrice correspondant à un type d’inter-
action particulier.

Les tests de Moran et Geary

La seconde généralisation consiste à construire des tests utilisables sur
des variables quantitatives quelconques. De la statistique NN, on déduit
la statistique de Moran (Moran, 1950) :

(4)
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Tableau 1.
Tests de couleur

sur les densités
de population des

cantons de la région
Rhône-Alpes
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où N est le nombre d’observations, –x est la moyenne des xi et
P = Σi≠j cij la somme des coefficients d’interaction. De la statistique
NB, on déduit la statistique de Geary (Geary, 1954) :

(5)

Les statistiques de Moran et de Geary ont également une interpréta-
tion intuitive. La première est égale au ratio de la covariance entre ob-
servations contiguës à la variance totale de l’échantillon. A un facteur
1/2 près, la seconde est égale au ratio de la variance des écarts entre ob-
servations contiguës à la variance totale.

Comme pour les statistiques NN et NB, on connaît l’espérance E(M)
et la variance V(M) de la statistique de Moran ainsi que l’espérance E(G)
et la variance V(G) de la statistique de Geary, dont on trouvera les va-
leurs en annexe 1. De même, on démontre qu’asymptotiquement, sous
chacune des deux hypothèses nulles, la statistique de Moran (resp. la sta-
tistique de Geary) suit une loi normale de moyenne E(M) et de variance
V(M) (resp. de moyenne E(G) et de variance V(G)) (7). La procédure de
test est donc très simple.

• Pour un test de Moran, on calcule la statistique centrée réduite
M – E(M)TM = ————–  et on utilise un test de normalité de l’hypothèse
√V(M)

TM = 0. Si TM est significativement positive (resp. négative), on conclut
à l’existence d’autocorrélation spatiale positive (resp. négative).

• Pour un test de Geary, on calcule la statistique centrée réduite
G – E(G)TG = ————–  et on utilise un test de normalité de l’hypothèse
√V(G)

TG = 0. Si TG est significativement positive (resp. négative), on conclut
à l’existence d’autocorrélation spatiale négative (resp. positive).

Il ne faut pas oublier que ces tests n’ont de valeur qu’asymptotique.
Il ne faut donc les pratiquer que si l’on dispose d’un nombre d’observa-
tions suffisamment élevé.

Ainsi, nous disposons avec les tests de Moran et Geary de tests qui
permettront de trancher chaque fois qu’on soupçonne la présence d’auto-
corrélation dans une série quantitative. Dans la pratique, le test de
Moran, dont l’expérience a montré qu’il était plus robuste et puissant
que le test de Geary, est de loin le plus utilisé.
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(7) Pour une démonstration de ces propriétés, on pourra, comme plus haut,
consulter Cliff et Ord (1973 ou 1981).
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On peut, là encore, illustrer l’usage des tests de Moran et de Geary à
partir des données utilisées pour la carte de la figure 2. Cette fois, plu-
tôt que de la réduire à une dimension dichotomique, nous allons utiliser
telle quelle la série des densités cantonales pour calculer les statistiques
de Moran et Geary. De plus, pour illustrer les effets d’une variation dans
la définition de la proximité, nous allons utiliser trois matrices d’inter-
action.

La première est, comme pour les tests NN et NB faits plus haut, la
matrice de contiguïté standard ; dans la deuxième, les coefficients de
contiguïté ne sont plus égaux à l’unité, mais proportionnels à la lon-
gueur de la frontière commune entre deux cantons. Enfin, dans la troi-
sième, les coefficients d’interaction sont inversement proportionnels à la
distance entre les centroïdes des deux cantons, qu’ils soient contigus ou
non. Toutes ces matrices sont normalisées. Le tableau suivant récapitule
les résultats des calculs :

Tableau 2. Tests de Moran et Geary sur les densités de population des cantons de la région Rhône-Alpes

Hypothèse N Hypothèse R

Test de Moran M E(M) V(M) TM E(M) V(M) TM

Contiguïté d’ordre 1 0,475 -0,00325 0,00123 13,62 -0,00325 0,00113 14,23

Longueur de la frontière 0,494 -0,00325 0,00160 12,47 -0,00325 0,00150 13,03

Inverse de la distance 0,102 -0,00325 0,00022 22,19 -0,00325 0,00021 23,17

Test de Geary G E(G) V(G) TG E(G) V(G) TG

Contiguïté d’ordre 1 0,588 1 0,00141 -10,99 1 0,00362 -6,84

Longueur de la frontière 0,493 1 0,0018 -12,02 1 0,0042 -7,83

Inverse de la distance 1,016 1 0,00063 2,07 1 0,0059 0,68

On notera que, dans tous les cas, le test de Moran conduit à un rejet
beaucoup plus net de l’hypothèse nulle que le test de Geary. C’est l’illus-
tration du fait, signalé plus haut, que la pratique a montré qu’en géné-
ral le test de Moran est plus puissant que le test de Geary. Ce dernier ac-
cepte même l’hypothèse nulle ou ne la rejette que faiblement avec une
matrice d’interactions proportionnelles à l’inverse de la distance entre
centroïdes.

Comme cette matrice pondère beaucoup moins fortement les zones
les plus proches et les petites zones que les matrices fondées sur la conti-
guïté, on peut penser que la similarité concerne surtout les cantons les
plus proches. Cette observation simple montre bien le type de leçon
qu’on peut tirer de l’usage simultané de plusieurs matrices d’interactions
spatiales.

JAYET  3/01/2 13:47  Page 117



H. JAYET

118

AUTOCORRÉLATION ET AUTORÉGRESSION SPATIALES :
L’EXEMPLE DU MODÈLE LINÉAIRE

Formuler des modèles avec autocorrélation et
autorégression spatiales

Quelles sont les conséquences économétriques de la présence d’inter-
action spatiale ? Pour en donner une première idée, nous allons nous in-
téresser au modèle économétrique le plus simple et le plus usuel, le mo-
dèle linéaire. Le raisonnement mené à cette occasion peut être réutilisé
pour d’autres modèles plus complexes, par exemple les modèles de pa-
nels ou les modèles à variables dépendantes limitées.

Examinons d’abord le cas d’une variable unique dont il apparaît que
ses valeurs sont corrélées entre elles dans l’espace (voir également Jayet,
1993 ou Anselin, 1988). Le modèle le plus simple pouvant expliquer
cette autocorrélation est l’existence d’un processus autorégressif spatial,
de la forme :

y = Ay + ε ⇔ (I – A)-1y = ε (6)

où A est la matrice des effets d’autorégression spatiale, ε est un vecteur
d’aléas indépendants, non nécessairement homoscédastiques :

E(ε) = 0 et V(ε) = σ2V

et V est une matrice diagonale. L’introduction de V permet de tenir
compte de l’hétérogénéité des observations, dont on a vu que, dans le
domaine spatial, elle était la règle plutôt que l’exception.

Il faut noter un point important : un processus autorégressif spatial
est toujours stationnaire. On le voit bien en partant du fait que, si
(I – A)y = ε, sachant que (I – A) doit être inversible pour que le proces-
sus ait un sens, alors y = (I – A)-1ε. Dans ce cas,

E(ε) = 0 et y = (I – A)-1ε ⇒ E(y) = 0 (7)

Toutes les observations du processus sont d’espérance nulle. En consé-
quence, si une variable spatialisée est d’espérance non nulle, il faudra rai-
sonner sur l’écart à son espérance. Qui plus est, un processus autorégres-
sif spatial ne peut être soumis à aucune tendance. On retrouve ici une
difficulté bien connue des spécialistes des données temporelles, qui les
conduit à tester la stationnarité d’une série avant de faire des estimations
et des tests économétriques. Et, une fois de plus, la double dimension
des séries spatiales et l’absence d’un analogue à la flèche du temps rend
difficile la formulation d’hypothèses simples de tendances, analogues aux
trends linéaire ou exponentiel des séries temporelles. Il arrivera cependant
que des données présentent un ordre naturel (direction du vent, éloigne-
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ment d’un point ou d’une ligne remarquable,…) utilisable pour formu-
ler une tendance.

La matrice des effets d’autocorrélation spatiale peut elle-même être
paramétrée. Par exemple, on prend fréquemment une combinaison li-
néaire des matrices de contiguïté d’ordre 1 à K :

(8)

où les sont des coefficients à estimer qui mesurent l’intensité
de l’interaction. Par analogie avec l’économétrie des séries temporelles,
on parle alors d’un processus spatial autorégressif d’ordre K, ou SAR(K).
Les processus SAR(1) sont de loin les plus utilisés.

En présence de variables explicatives, le point de départ est le modèle
linéaire usuel,

y = Xβ + ε (9)

où X est la matrice des variables explicatives, β le vecteur des paramètres
à estimer et ε la partie aléatoire du modèle. L’introduction de l’interac-
tion spatiale peut prendre deux formes.

Dans la première, on considère que l’interaction spatiale porte sur la
variable expliquée. On aboutit alors au modèle spatial autorégressif :

y = Ay + Xβ + ε ⇔ (I – A) y = Xβ + ε (10)

où, comme plus haut, on fait sur ε les hypothèses standard des moindres
carrés,

E(ε) = 0 et V(ε) = σ2V (11)

Le modèle spatial autorégressif s’impose en particulier dès qu’on n’a
aucune raison de penser que la variable expliquée est d’espérance nulle
partout dans l’espace. Il faut alors utiliser des variables explicatives per-
mettant de rendre compte de la valeur que prend cette espérance, sous
peine de formuler un modèle incohérent. C’est ainsi que la manière la
plus simple d’analyser une variable d’espérance constante, mais non
nulle, est d’introduire une constante parmi les variables explicatives du
modèle, ce qui permet d’estimer la moyenne. Si l’espérance n’est pas
constante, il faudra introduire d’autres variables explicatives.

Dans le deuxième cas, l’interaction spatiale porte sur la partie aléa-
toire du modèle, ε, qui suit un processus autorégressif spatial. On abou-
tit au modèle avec autocorrélation spatiale des résidus :

y = Xβ + ε 
(I – G)ε = η  ⇔ (I – G) (y – Xβ) = η (12)

où G est la matrice des effets d’autocorrélation spatiale et η est un vec-
teur d’aléas indépendants, non nécessairement homoscédastiques :

E(η) = 0 et V(η) = σ2V (13)

  ρ ρ1,..., K

   A C CK

K
= + +ρ ρ1

1( ) ( )
! ! ! !

L
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Ce qui a été dit plus haut au sujet des processus autorégressifs spa-
tiaux est évidemment vrai du processus gouvernant le vecteur des rési-
dus, ε : toutes les composantes doivent être d’espérance nulle et, en par-
ticulier, aucune tendance ne doit être présente. Si ce n’est pas le cas, il
faut reformuler le modèle pour introduire les tendances et, éventuelle-
ment, d’autres variables explicatives adaptées.

On peut enfin combiner les deux possibilités : il y a à la fois interac-
tion spatiale sur la variable expliquée et sur la partie aléatoire du mo-
dèle. C’est le modèle le plus général, avec autocorrélation et autorégres-
sion :

y = Ay + Xβ + ε 
(I – G)ε = η  ⇔ (I – G) [(I – A) y – Xβ] = η (14)

où A est la matrice des effets d’autorégression spatiale, G la matrice des
effets d’autocorrélation spatiale et η est un vecteur d’aléas indépendants,
non nécessairement homoscédastiques :

E(η) = 0 et V(η) = σ2V (15)

Estimer des modèles avec autocorrélation spatiale

Quand ni V, qui permet de tenir compte de l’hétérogénéité, ni A ou
G, par lesquelles transitent les effets d’autocorrélation spatiale, ne dé-
pendent de paramètres à estimer, les modèles ci-dessus ont des matrices
de variances-covariances connues et s’estiment sans difficulté par les
moindres carrés généralisés :

– Pour le modèle avec autorégression spatiale, on régresse (I – A)y
sur la matrice X des variables explicatives, le résidu ε ayant comme
matrice de variances-covariances V(ε) = σ2V, d’où l’estimateur des
moindres carrés généralisés :

(16)

– Pour le modèle avec autocorrélation spatiale des résidus, on régresse
y sur la matrice X des variables explicatives, le résidu ε ayant comme
matrice de variances-covariances V(ε) = σ2 [(I– G)V-1 (I – G′)]-1, d’où
l’estimateur des moindres carrés généralisés :

(17)

– Pour le modèle avec autorégression et autocorrélation spatiales, on ré-
gresse (I – A)y sur la matrice X des variables explicatives, le résidu ε ayant
comme matrice de variances-covariances V(ε) = σ2 [(I– G)V-1(I – G′)]-1,
d’où l’estimateur des moindres carrés généralisés :
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Cependant, en général, les matrices V, A et G dépendent de para-
mètres à estimer. C’est même quasiment la règle pour les matrices d’in-
teraction spatiale, A et G, car l’économètre n’a pas de raison de détermi-
ner à l’avance l’ampleur des effets d’autocorrélation spatiale. Dans ce cas,
les moindres carrés généralisés ne sont plus utilisables. L’économètre
peut recourir aux méthodes de variables instrumentales, du type double
moindres carrés, ou aux méthodes de maximum de vraisemblance. Ces
dernières sont actuellement les plus utilisées et ce sont elles que nous
présenterons (pour les méthodes de variables instrumentales, voir Anse-
lin, 1988). Nous nous restreindrons au cas du modèle avec autocorréla-
tion spatiale des résidus, le traitement des autres modèles étant similaire.

L’économètre a donc spécifié une matrice d’effets d’autocorrélation
spatiale des résidus, G(ρ), le plus souvent sous la forme G(ρ) = ρW où
W est une matrice normalisée de poids spatiaux, par exemple une ma-
trice de contiguïté (on a alors un SAR (1)). Eventuellement, il a égale-
ment paramétré la matrice de poids spatiaux, V = V(µ). On a vu plus
haut que le modèle avec autocorrélation des résidus se présentait sous la
forme :

η = ((I – G(ρ)) (y – Xβ) (19)

avec E(η) = 0 et V(η) = σ2V(µ). Sous l’hypothèse de normalité des rési-
dus, on en déduit l’expression de la log-vraisemblance,

(20)

où

s’interprète comme une somme de carrés de résidus généralisés. On voit
facilement que pour ρ et µ donnés, l’estimateur de β est le même que
celui des moindres carrés généralisés,

(21)

et qu’il en est de même de l’estimateur de la variance,

(22)

d’où, sachant que la matrice des effets d’hétéroscédasticité est diagonale,
V(µ) = diag(v1(µ), ..., v1(µ)), l’expression de la log-vraisemblance
concentrée :

(23)

C’est cette expression qu’il faut maximiser par rapport aux para-
mètres ρ et µ pour trouver leurs estimateurs. En général, la maximisa-
tion par rapport à µ ne pose pas de problème. Pour ce qui est de ρ, les
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choses sont plus difficiles. En effet, dans le cas général, il faut calculer le
déterminant d’une matrice qui peut être de taille élevée et ce à chaque
itération de l’algorithme de maximisation. On notera cependant (Ord,
1975) que, quand G(ρ) = ρW, on a :

lndet [I – G(ρ)] = ln det [I – ρW] = Σln (1 – ρλi) (24)
i

où les λi sont les valeurs propres de la matrice W. Il suffit donc de les
calculer une fois pour toutes au départ.

Tests sur les modèles

La formulation d’un modèle avec autorégression et/ou avec autocorré-
lation spatiale conduit à des tests qui permettent de déterminer si l’in-
troduction de l’une ou l’autre de ces formes d’interaction entre observa-
tions est pertinente, au moins au niveau des données. C’est ainsi que,
dans le cadre du modèle avec autorégression spatiale,

y = Ay + ε (25)

si, comme c’est habituellement le cas, A = ρC, tester l’absence d’autoré-
gression spatiale revient à tester l’hypothèse nulle ρ = 0. De même, dans
le cadre du modèle avec autocorrélation spatiale,

y = Xβ et ε = Gε + η (26)

quand G = γC, tester l’absence d’autocorrélation spatiale revient à tester
l’hypothèse nulle γ = 0. Enfin, si l’on part du modèle général avec auto-
régression et autocorrélation spatiales,

y = Ay + Xβ et ε = Gε + η (27)

et que A = ρC et G = γC, on peut tester plusieurs hypothèses nulles : ab-
sence d’autorégression spatiale (ρ = 0), absence d’autocorrélation spatiale
(γ = 0), absence simultanée d’autorégression et d’autocorrélation spa-
tiales (ρ = 0 et γ = 0).

L’estimation par le maximum de vraisemblance fournit ici un cadre
commode, puisqu’il suffit d’appliquer la méthodologie usuelle des tests
fondés sur la vraisemblance (8). On peut alors :

– Soit estimer le modèle sous l’hypothèse nulle, c’est-à-dire sans au-
torégression ou autocorrélation spatiale, et pratiquer un test du multi-
plicateur de Lagrange. Cette stratégie est bien adaptée au cas où l’on
souhaite éviter les difficultés de calcul d’un estimateur du maximum de
vraisemblance quand celle-ci n’est pas nécessaire et/ou quand la dépen-
dance entre observations n’est pas une préoccupation centrale. On sou-
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haite simplement vérifier son absence, car sa présence pourrait perturber
les résultats. L’inconvénient est évidemment que, si les tests rejettent
l’hypothèse nulle, il faudra recommencer les estimations. De plus, les
statistiques sont d’un calcul malaisé.

– Soit estimer le modèle sous l’hypothèse alternative, c’est-à-dire avec
autorégression et/ou autocorrélation spatiale, et pratiquer un test de
Wald. Cette stratégie est bien adaptée au cas où l’on pense que la pré-
sence d’interdépendances spatiales est très vraisemblable et/ou quand ces
interactions sont un aspect central du modèle. L’inconvénient est que
l’on prend le risque de se lancer d’emblée dans un processus lourd d’es-
timation alors qu’un processus beaucoup plus simple suffit quand l’hy-
pothèse nulle est vraie. Et, comme dans le premier cas, les statistiques
sont d’un calcul malaisé.

– Soit estimer les deux modèles et faire un test du rapport de vrai-
semblance. L’estimation des deux modèles peut être un processus lourd,
alors qu’un seul des deux sera retenu. En contrepartie, le calcul de la sta-
tistique du rapport de vraisemblance est immédiat.

Parce qu’ils cherchent en général à éviter l’estimation d’un modèle
complet quand ce n’est pas nécessaire, la plupart des économètres spa-
tiaux tendent à privilégier la première méthode. Ils ont, dans ce cadre,
développé des tests complémentaires au test usuel du rapport de vrai-
semblance, dont on trouvera la présentation en annexe (voir également
Anselin et al., 1996).

Avant de conclure, il nous faut souligner deux points. Le premier est
que, pour simplifier l’exposé, on a volontairement laissé de côté dans
cette présentation le problème posé par l’interaction entre les observa-
tions à l’intérieur de la zone géographique sur laquelle on fait l’estima-
tion et les observations à l’extérieur de cette zone. Ce faisant, on suppose
implicitement que la zone est fermée. Pour reprendre un exemple anté-
rieur, estimer une série sur les communes ou les cantons de la région
Rhône-Alpes suppose implicitement que les localités de cette région
n’interagissent pas avec celles des régions voisines, ce qui n’est valide en
toute rigueur que si la région est fermée. Cette hypothèse implicite de
fermeture est sans doute acceptable quand on travaille sur le découpage
exhaustif d’un territoire national. Dans des espaces plus petits, elle est
plus difficilement acceptable.

Vouloir traiter cette question, qui est l’analogue du problème des
premières observations d’un processus autorégressif temporel, pose ce-
pendant des problèmes beaucoup plus délicats que nous n’aborderons pas
ici. Notons cependant que, si les spécialistes des données temporelles
peuvent raisonner conditionnellement aux premières observations (consi-
dérées comme purement exogènes), ce n’est pas possible ici puisque
toutes les observations s’influencent réciproquement. Pour plus de préci-
sions sur ces questions, on pourra consulter Griffith (1988).

JAYET  3/01/2 13:47  Page 123



H. JAYET

124

Notre deuxième remarque est que les modèles présentés relèvent de
méthodes statistiques paramétriques globales, le même modèle paramé-
trique étant valable pour l’ensemble des observations. Il est possible
d’utiliser des méthodes non-paramétriques ou semi-paramétriques, ainsi
que des modèles flexibles capables de s’adapter à des situations locales.
Ces modèles sont adaptés à de grands espaces où l’on a de bonnes raisons
de penser que les processus connaissent des variations locales impor-
tantes dont ni les variables explicatives utilisées, ni les matrices d’inter-
actions spatiales ne peuvent rendre compte de manière suffisante. Mais,
comme toutes les formes flexibles, ils ont un prix : difficulté d’incorpo-
ration des variables explicatives, coût des calculs, faible puissance des
tests… Le lecteur intéressé pourra utilement consulter l’ouvrage de
Upton et Fingleton (1985).

CONCLUSION

Que conseiller au praticien confronté à des données spatiales ?

En premier lieu, de tenir compte de leur hétérogénéité. Ce qui se tra-
duira de deux manières. D’une part, en introduisant des variables per-
mettant de tenir compte des différences de taille, de structure, voire de
forme entre les observations spatiales utilisées. D’autre part, en testant et
en corrigeant une possible hétéroscédasticité.

En deuxième lieu, de tester systématiquement l’existence d’interac-
tions spatiales sous leurs différentes formes, autorégression des variables
expliquées et autocorrélation sur les parties aléatoires des modèles utili-
sés. Le plus souvent, pour réaliser ces tests, on ne se cantonnera pas à une
forme unique d’interaction et donc à une seule famille de matrices d’in-
teraction. En effet, chaque famille de matrices d’interactions implique
des restrictions particulières sur le type d’interaction. Aucune n’est suf-
fisamment générale. De plus, la confrontation des résultats obtenus avec
des matrices différentes peut s’avérer très révélatrice de la structure spa-
tiale des données.

En troisième lieu, de formuler explicitement les modèles économé-
triques de base et la manière dont on y introduit l’interaction spatiale.
C’est ce que nous avons fait dans cet article, sur le modèle linéaire en
partant de sa version standard. C’est ce qu’il faudra faire dans le cas
d’autres modèles, comme par exemple les modèles à variables qualita-
tives ou plus généralement à variables dépendantes limitées. On intro-
duit alors l’autorégression et l’autocorrélation spatiales dans la partie la-
tente du modèle pour en tirer ensuite les conséquences sur le modèle
observable.

JAYET  3/01/2 13:47  Page 124



ÉCONOMÉTRIE ET DONNÉES SPATIALES

125

BIBLIOGRAPHIE

ANSELIN (L.), 1988 — Spatial Econometrics : Methods and Models, Dor-
drecht, Kluwer.

ANSELIN (L.), BERA (A. K.), FLORAX (R.), YOON (M. J.), 1996 —
Simple diagnostic tests for spatial dependance, Regional Science and
Urban Economics, 26, pp. 77-104.

ARBIA (G.), 1989 — Spatial Data Configuration in Statistical Analysis of
Regional Economic and Related Problems, Dordrecht, Kluwer.

CLIFF (A.), ORD (J. K.), 1973 — Spatial Autocorrelation, Londres, Pion.

CLIFF (A.), ORD (J. K.), 1981 — Spatial Processes. Models and Applications,
Londres, Pion.

GEARY (R. C.), 1954 — The contiguity ratio and statistical mapping,
The Incorporated Statistician, 5, pp. 115-145.

GREENE (W. H.), 1997 — Econometric Analysis, 3rd edition, London,
Prentice-Hall.

GRIFFITH (D.), 1988 — Advanced Spatial Statistics : Special Topics in the
Exploration of Quantitative Spatial Data Series, Dordrecht, Kluwer.

JAYET (H.), 1993 — Analyse spatiale quantitative : une introduction, Paris,
Economica.

MORAN (P. A. P.), 1950 — A test for serial dependence of residuals, Bio-
metrika, 37, pp. 178-181.

ORD (J. K.), 1975 — Estimation methods for models of spatial interac-
tion, Journal of the American Statistical Association, 70, pp. 120-126.

UPTON (G. J. G.), FINGLETON (B.), 1985 — Spatial Data Analysis by
Example, New York, Wiley. 

JAYET  3/01/2 13:47  Page 125



H. JAYET

126

ANNEXE 1

Moments des statistiques NN, NB et des statistiques
de Moran et de Geary

On adopte les notations suivantes :

N Nombre d’observations = nombre de nœuds du graphe
N1 Nombre d’observations avec xi = 1 (nœuds noirs)
N2 Nombre d’observations avec xi = 0 (nœuds blancs)

W/2 est le poids total des arcs.

1–x = — Σxi
N

Σ(xi – –x)4
b2 = N ——————

(Σ(xi – –x)2)2

ci. = Σcij ,   c.i = Σcji
j j

[ Σ(cij + cji)
2 ] [ Σ(ci. + c.j)

2]i≠j i
Z1 = —————— ,  Z2 = ——————

2W W

Espérances et variances de NN et NB sous l’hypothèse N

1
E(NN) = — Wp2 = µNN2

1
V(NN) = — µNN [Z1 + (Z2 – 2Z1)p + (Z1 – Z2)p2]

2

E(NB) = Wpq = µNB

1 p + q
V(NB) = — µNB [Z1 + (Z2 – 2Z1) ——– + 2(Z1 – Z2) pq]2 2

Espérances et variances de NN et NB sous l’hypothèse R

W N1(N1 – 1)
E(NN) = —  ————— = –µNN2 N(N – 1)

 
W cij

i j

=
≠
∑

  N N N p N N q N N p q1 2 1 2 1+ = = = + =, , ,
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1 N1 –2 N1 – 3
V(NN) = — –µNN [Z1 + ——–– [Z2 – 2Z1 + ——–– (W + Z1 – Z2)] – 2–µNN]2 N – 2 N – 3

N1 N2E(NB) = W ———— = –µNBN(N – 1)

1 N1 + N2 – 2 (N1 – 1)(N2 – 1)
V(NB) = — –µNB [Z1 + (Z2 – 2Z1) ———––—— + 2(W + Z1 – Z2) ————–——— – 2–µNB]2 2(N – 2) (N – 2)(N – 3)

Espérances et variances des statistiques de Moran et Geary sous l’hypothèse N

1
E(M) = – ———

N – 1

N(NZ1 – Z2) + 3W 1
V(M) = ————————— – ————

(N2 – 1)W (N – 1)2

E(G) = 1

(N – 1) (2Z1 + Z2) – 4W
V(G) = ——————————

2(N + 1) W

Espérances et variances des statistiques de Moran et Geary sous l’hypothèse R

1
E(M) = – ———

N – 1

N[(N2 – 3N + 3)Z1 – nZ2 + 3W] – b2[(N2 – N)Z1 – 2NZ2 + 6W]
V(M) = —————————————————————————————

(N – 1)(N – 2) (N – 3)W

E(G) = 1

Y1 – Y2 + Y3V(G) = —————————
N(N – 2)(N – 3) W

Y1 = (N – 1) [(N2 – 3N + 3) – (N – 1) b2] Z1

(N – 1)Z2Y2 = [(N2 + 3N – 6) – (N2 – N + 2) b2] —————
4

Y3 = [N2 – 3 – (N – 1)2 b2]W
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ANNEXE 2

Tests sur le modèle linéaire

Dans le cas homoscédastique (V = I), on dispose des tests suivants :

- Tests d’autorégression spatiale

Multiplicateur de Lagrange classique : ε̂′ Wy(——–)2 ⁄ Θ→ χ2 (1)
σ̂ 2

Bera et Yoon : ε̂′ Wy ε̂′ Wε̂(——– – ——–)2 ⁄ [Θ – T]→ χ2 (1)
σ̂ 2 σ̂ 2

- Tests d’autocorrélation spatiale

Moran : ε̂′ Wε̂
——–  →Ν (0,1)
ε̂′ ε̂

Multiplicateur de Lagrange classique : ε̂′ Wε̂(——–)2 ⁄ T→ χ2 (1)
σ̂ 2

Bera et Yoon : T ε̂′ Wy ε̂′ Wε̂(—  ——– – ——–)2 ⁄ [T –  T2⁄Θ]→ χ2 (1)
Θ σ̂ 2 σ̂ 2

Kelejian-Robinson : γ̂′ Z′ Zγ̂
——— → χ2(K)
α̂′α̂/h

- Test simultané d’autorégression et autocorrélation spatiales

Multiplicateur de Lagrange classique :

ε̂′ Wy ε̂′ Wε̂ ε̂′ Wε̂(——– – ——––) 2 ⁄ [Θ – T] + (——–) 2 ⁄ T→ χ2 (2)
σ̂ 2 σ̂ 2 σ̂ 2

Pour tous ces tests, les notations suivantes sont utilisées :

W est la matrice des coefficients d’interaction spatiale, avec A(ρ) = ρW et
G(γ) = γW. Elle est normalisée.

y est le vecteur des observations de la variable expliquée.
ε̂ est le vecteur des résidus de la régression sans interaction spatiale.
σ̂2 est l’estimateur de la variance.
T = trace(W′W + W2) et Θ = T + (WXβ̂′)M (WXβ̂)/σ̂2 où β̂ est le vecteur des
coefficients estimés et M = I – X(X′X)-1 X′.
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γ̂ et α̂ sont les estimateurs du vecteur des coefficients et du vecteur des résidus de la
régression auxiliaire e = Zγ + α dont chaque observation correspond à un couple de
zones contiguës (le coefficient correspondant de W est non nul). La valeur de e pour
cette observation est le produit des valeurs correspondantes du vecteur des résidus
estimés, ε̂. Les K colonnes de Z sont formées de manière analogue à partir des va-
leurs des variables explicatives.

Le test de Moran est une adaptation au cas des résidus d’une régression du test
de Moran présenté plus haut. Les tests du multiplicateur de Lagrange classiques
sont ceux qu’on obtient à partir de la vraisemblance du modèle linéaire sous l’hy-
pothèse de normalité des résidus. Les tests de Bera et Yoon, connus aussi sous le
nom de tests du multiplicateur de Lagrange robustes, sont robustes à une mauvaise
spécification locale du terme autorégressif ou de la forme de l’autocorrélation des
résidus. Enfin, le test de Kelejian Robinson est un test robuste qui reste valide avec
des résidus non normaux et pour des modèles non linéaires. On notera cependant
que ce test est très peu puissant, ce qui le rend peu attractif malgré sa robustesse.
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