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Summary — This contribution is an introduction to the main topics of spatial econo-
metrics. We start analyzing the main problems raised by spatial data. The first one is
heterogeneity : statisticians must take account of the fact that spatial units may not be
directly comparable. They must correct for differences in size, form, structure and so on.
The second one is interaction among units located in space, the intensity of which de-
creases with distance. These interactions lead to spatial autoregression and spatial au-
tocorrelation. Then, the paper introduces to the main instruments used to represent and
analyze spatial autocorrelation and autoregression: spatial graphs, weight matrices,
contiguity matrices. It presents the main tests used to detect spatial autocorrelation, color
tests on qualitative data, Moran and Geary tests for quantitative data. It shows how
these tests can be interpreted. An illustrative example is also provided. Last, the paper
shows how to deal with spatial autocorrelation and autoregression on the example of li-
near models. The main types of spatial linear models are presented: spatially autore-
gressive, spatially autocorrelated and their combination. Then, we explain why least
squares methods are not well suited to estimate this type of models. Most often, econome-
tric analysis will vest upon maximum likelihood methods. The paper shows how to use
these methods in the specific context of spatial models, in order to find parameters esti-
mates and to make tests on then.

Résumé — Cet article d’initiation & 1'économétrie sur données spatiales met l'ac-
cent sur les principaux problémes rencontrés dans I'utilisation de ces données: hé-
térogénéité des observations, interactions liées a la proximité. La présence de ces
dernieres conduit a s’intéresser a l'autocorrélation spatiale. L'article montre com-
ment la représenter en pratique. Il montre ensuite comment en tester la présence
dans les données. Enfin, il présente les principaux modeles linéaires qui en tien-
nent compte et leurs procédures d’estimation.

* Université des Sciences et Technologies de Lille, Laboratoirve des mécanismes écono-
miques et dynamiques des espaces européens, 59655 Villenenve d'Ascq cedex.
e-mail : jayer@pop. univ-lillel . fr

Cet article reprend, pour I'essentiel, une présentation a I’Ecole-Chercheurs du Croi-

sic. Je remercie Virginie Piguet et Mohamed Hillal, de I'unité INRA ESR de
Dijon, pour 'aide technique apportée sur certains points de l'article.
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ANIPULER des données spatiales pose des problemes auxquels

le praticien doit prendre garde. Ces probléemes ne sont pas né-
cessairement spécifiques a la nature spatiale des données utilisées. On
peut les rencontrer dans d’autres domaines. Mais, avec des données spa-
tialisées, ils se posent avec une acuité particuliere. De ce fait, il est im-
portant de les avoir toujours a U'esprit. C'est I'objectif de cet article d’en
préciser la nature, avec le regard du praticien plus que du théoricien, et
de donner quelques indications sur la maniére d’aborder les données
quand elles ont une dimension spatiale. Le lecteur ayant besoin d’aller
plus loin pourra consulter Jayet (1993), Anselin (1988), Cliff et Ord
(1981).

LHETEROGENEITE DES DONNEES SPATIALES

Précisons tout d’abord qu'en général la spatialisation d'une donnée
statistique revét deux formes principales. D'une part, les informations
recueillies peuvent porter sur des points particuliers répartis dans l'es-
pace. Cest par exemple le cas quand, a I'échelle nationale, on travaille
sur les grandes villes frangaises. On parlera alors de données ponctuelles.
D’autre part, ces mémes informations peuvent étre des agrégats, des
moyennes ou des taux relatifs a un ensemble de zones: les 22 régions
francaises, les 96 départements métropolitains, les 341 zones d’emploi,
etc. On parlera alors de données de zones.

Dans les deux cas, l'analyse d'une information spatialisée pose
d’abord un probléeme d’hétérogénéité. En effet, toute analyse statistique
d’une population suppose que les éléments de cette population ont des
points communs, sur lesquels on peut fonder des comparaisons et asseoir
des régularités. Or, qu'il s’agisse d’entités ponctuelles ou de zones, les
unités spatiales sont généralement fortement hétérogenes, au moins par

leur taille, leur forme et leur structure !,

L'hécérogénéité de taille est la premiere qui apparait. Peut-on com-
parer, sans précaution, I'agglomération parisienne et sa dizaine de mil-
lions d’habitants, et une petite ville de quelques milliers d’habitants ? Le
département du Nord avec ses 2,5 millions d’habitants et celui de la
Corse du Sud, qui dépasse a peine les 100000 habitants? Cette hétéro-
généité se manifeste au moins dans l'ordre de grandeur des agrégats,
beaucoup d’entre eux étant d’autant plus élevés que la taille de I'entité
est grande.

() Ces problemes d’hétérogénéité sont analysés de maniere trés détaillée par

G. Arbia (1989).
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H. JAYET

Ce probleme d’hétérogénéité de taille n'est pas spécifique aux don-
nées spatiales. Ces dernieres se distinguent par le fait que le probléeme se
pose de maniére quasi systématique . en particulier avec les données
utilisées par les sciences humaines. Les spécialistes des données tempo-
relles, qui travaillent en général sur des périodes de durée approximati-
vement égale (le jour, la semaine, le mois, I'année), le rencontrent peu.
Mais il se pose parfois, les conduisant a des pratiques comme la correc-
tion des jours ouvrables. De méme, les statisticiens utilisant des données
individuelles travaillent sur des entités qui, issues d'une méme popula-
tion, sont généralement considérées  priori comme directement compa-
rables. Il n’empéche que, quand les individus sont des ménages, des pro-
blemes de différences de taille se posent, justifiant I'usage des unités de
consommation. De méme, quand les entités sont des firmes, il faut
rendre compte de leurs différences de taille.

Dans tous les cas, le statisticien tiendra compte des différences de
taille en choisissant un indicateur de dimension (le nombre de jours ou-
vrables, le nombre d’unités de consommation, la population ou la super-
ficie de la zone), et en utilisant les taux plutdt que les agrégats comme
variables soumises a I'analyse statistique: le taux de chomage plutot que
le nombre de chomeurs, la valeur ajoutée par téte plutdt que la valeur
ajoutée globale. II faut étre bien conscient du fait qu'il peut y avoir plu-
sieurs indicateurs de taille: superficie, population totale, population ac-
tive, emploi, nombre de logements, etc. Dans certains cas, I'un d’entre
eux s'imposera a priori. Mais, le plus souvent, il faudra faire des tests
pour trancher.

A T'hétérogénéité de taille s’ajoutent souvent des hétérogénéités de
forme et de position. En effet, peut-on comparer sans précaution le dé-
partement du Nord, de forme longue et étroite avec pres de la moitié de
sa frontiere le séparant de la Belgique, avec la Sarthe, de forme presque
carrée et située a l'intérieur du territoire national ? Typiquement géogra-
phique, ce type d’hétérogénéité est tres difficile a appréhender, tant dans
ses conséquences que pour la construction d’indicateurs permettant d’en
mesurer les effets et de les corriger. Il faut cependant toujours I'avoir a
lesprit pour identifier les situations ou il pourrait poser probleme. On
verra un exemple plus loin avec I'analyse des interactions spatiales.

Enfin, on ne saurait négliger les hétérogénéités de structure. Un
exemple simple permet d’en illustrer 'importance. Peut-on, sans précau-
tion, comparer le revenu moyen par téte a Paris et dans un département
rural ? La réponse est non, car la structure de la population n’est pas la
méme dans les deux cas. Or, les revenus des individus sont fortement liés
a la nature de l'activité qu'ils exercent et a leur niveau de qualification.

(?)Les biometres, grands consommateurs de données spatialisées, y échappent
plus facilement car ils sont souvent capables d’utiliser des données réparties de
maniere réguliére dans l'espace, par exemple sur la base de quadrillages.
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ECONOMETRIE ET DONNEES SPATIALES

Pour déterminer I'influence effective qu'exerce une localisation particu-
liere par rapport a d’autres, il faut comparer ce qu'un méme individu ob-
tiendrait dans les différentes localisations. Ce qui conduit a un modele
intégrant des variables de structure: dans l'exemple des revenus, on
prendra en compte les structures de qualification, d’activité économique,
voire de taille d’établissement.

Cest ce qui justifie la pratique, fréquente en analyse spatiale, de
l'analyse «shift-share» des Anglo-saxons, terme qu'on traduira ici par
analyse structurelle-géographique. Celle-ci revient a choisir des indica-
teurs de référence (dans notre exemple, les revenus moyens nationaux par
téte pour chacun des niveaux de qualification) et a calculer l'effet struc-
turel, qui est égal aux performances qu’aurait chaque zone étudiée, avec
sa structure actuelle, si elle se comportait comme la zone de référence. La
comparaison entre zones portera alors sur les effets géographiques, égaux
a la différence entre performances actuelles et effets structurels (pour une
présentation déraillée, voir Jayet, 1993).

INTERACTIONS ET PROXIMITE

Des observations réparties dans l'espace sont fréquemment interdé-
pendantes: ce qui se passe dans une localisation particuliere dépend de
ce qui se passe dans d’autres localisations. Suivant un bon vieux principe
de la géographie, ces interactions sont d’autant plus fortes que les loca-
lisations concernées sont plus proches. Le statisticien a donc besoin d’'un
instrument qui lui permette de représenter cette interaction entre obser-
vations et sa décroissance en fonction de la distance qui les sépare.

Cet instrument est la matrice d’interactions spatiales®). Avec N ob-
servations, on utilise une matrice carrée W a N lignes et N colonnes,
dont les termes diagonaux sont nuls et dont le terme non diagonal w;;
est d’autant plus élevé que leffet de I'observation ; sur I'observation 7 est
important.

Si W est une matrice d’interactions et Y = (y,, ..., y5)' est un vecteur
colonne de N observations d’une variable spatialisée, le produit matriciel
WY a pour terme courant:

(WY)Z = Z]‘ wl']')’]' (1)

Ce terme mesure 'intensité de I'effet global sur la 7-iéme observation
des valeurs prises par la variable Y ailleurs dans I'espace. Cette variable
sera utilisée ensuite dans les modeles statistiques pour représenter les ef-
fets que les localisations exercent les unes sur les autres.

(3)Dans la littérature anglo-saxonne, on trouve fréquemment le terme de
weight matrix, matrice de poids.
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H. JAYET

Figure 1.
Représentation de la
contiguité de
quelques cantons de
Rhone-Alpes

Cependant, pour utiliser une matrice d’interactions dans un modele
statistique, il est nécessaire de lui donner une forme a priori. Il est en
effet impossible, du moins dans le cadre d’'un modele purement spatial,
d’estimer avec N observations chacun des N(N — 1)/2 coefficients de la
matrice d’interactions. En choisissant une définition particuliére des dis-
tances entre observations et une forme fonctionnelle spécifique pour la
relation entre la distance et I'intensité de I'interaction, I'’économetre dé-
termine une famille de matrices d’interactions dépendant d'un nombre
faible de parametres, dont la valeur sera déterminée par estimation.

Lexemple le plus classique est celui des matrices de contiguité, fré-
quemment utilisées quand les données portent sur des zones géogra-
phiques. Deux zones sont contigués quand elles ont une frontiére com-
mune. Plus généralement, on définit la distance de contiguité entre deux
zones comme le nombre minimal de frontieres qu'il faut franchir pour
aller de l'intérieur de l'une a l'intérieur de l'autre. Deux zones sont
contigués a l'ordre £ quand leur distance de contiguité est égale a k.
Cette définition de la contiguité est I'analogue spatial de la définition
des retards en séries temporelles: la contiguité d’ordre £ correspond au
retard d’ordre £.

Cette notion de contiguité peut étre commodément représentée par un
graphe. A chaque observation spatiale (zone géographique), on associe un
noeud du graphe. Les nceuds correspondant a deux zones contigués sont
reliés par un arc. La figure 1 est une bonne illustration de ce passage de la
carte au graphe, pour quelques cantons de la région Rhone-Alpes.

Pour un ensemble de N zones géographiques, la matrice C* de conti-
guité a lordre £ est l'analogue de lopérateur retard. L'élément
c<fl) de cette matrice est égal a I'unité quand les zones sont contigués a
l'ordre £, nul sinon. La matrice de contiguité est éventuellement norma-
lisée en divisant chacune de ses lignes par la somme de ses éléments. La
matrice normalisée est donc une matrice stochastique®. On définit

(9 C’est-a-dire une matrice dont la somme des éléments de chaque ligne est
égale 2 'unité. On a UZ) = 1/m{", ot n” est le nombre d’observations contigués 2

la zone 7 a 'ordre 7.
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alors une famille de matrices d’interactions spatiales sur la base des
contiguités d’ordre au plus égal a K:

K
- (%)
W(pp s p]() - 2 p,é C (2)
k=1
ol Py, ..., Pg sont des parametres a estimer. En pratique, on se restreint

généralement au cas K = 1 et donc 2 W(p) = pC'V. Linteraction se res-
treint donc a 'influence des zones contigués.

Les matrices de contiguité usuelles ont cependant pour inconvénient
que, lorsque ciﬁ) et f(z./j) different tous deux de zéro, c(? = c(z./j). Ce qui signifie
que toutes les observations contigués a une zone donnée l'influencent de la
méme maniere. On retrouve une homogénéité des interactions qui n’est
pas plus vraisemblable que 'homogénéité des observations elles-mémes.
On en retrouve un exemple sur la figure 1 avec la petite zone désignée par
la lettre A. Cette zone est contigué a trois autres, ce qu'on retrouve bien sur
le graphe. Cependant, avec la zone située a 'Est, la frontiére commune se
réduit a presque rien. Il s’en faudrait de peu pour qu’il n'y en ait pas, fai-
sant chuter brutalement le coefficient de contiguité a zéro.

On peut résoudre ce probleme en faisant des c(f) des fonctions des carac-
téristiques des zones 7 qui influencent 7. Un exemple classique est l'utilisa-
tion de coefficients proportionnels a la longueur des frontieres communes.
On peut penser a d’autres déterminants de I'intensité des interactions: la
distance entre les centres des deux zones, la taille de la zone émettrice de
I'interaction, la capacité des réseaux de transport entre les zones, etc. Cest
ici a 'économetre de choisir et de justifier les variables pertinentes.

Enfin, il y a de nombreuses situations ou l'utilisation de la contiguité
savere impossible ou inadaptée. C'est en particulier le cas avec des don-
nées portant sur des points: contrairement au cas des zones, la détermi-
nation de la contiguité entre deux points n'a guere de sens. Tout ce que
l'on peut dire est que ces points sont plus ou moins éloignés les uns des
autres. Méme avec des données de zones, on peut supposer que toutes les
observations (et pas seulement celles qui sont les plus proches les unes
des autres) interagissent les unes avec les autres. Dans ce cas, on adoptera
une formulation plus générale pour les coefficients w,; de la matrice din-
teraction, du type w,; = pf(dz.j) ou f(di]‘) est une fonction décroissante
d’une distance entre observations, éventuellement combinée comme plus
haut avec dautres variables. Les fonctions les plus utilisées sont
f(dz.j) = exp (—dij), f(dl-]«) = dl.]'.l et, dans le prolongement des modéles
gravitaires, f(dlj) = dl.jz.

En conclusion, il est rare qu'un choix unique s’impose d’emblée pour
représenter les interactions spatiales. Si le recours aux matrices de conti-
guité a I'avantage de fournir un outil similaire a celui des opérateurs re-
tard en économétrie des séries temporelles, il est loin de s’imposer de
maniére aussi générale. Bien souvent, il faudra tester plusieurs solutions
avant d’en arréter une.
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TESTER LA PRESENCE D’INTERACTIONS SPATIALES:
LES TESTS ELEMENTAIRES D’AUTOCORRELATION SPATIALE

Les tests de couleur

Commengons par 'exemple tres simple d'un ensemble de N zones
avec, pour chacune d’entre elles, une réalisation d’une variable binaire X
(Pour une analyse détaillée de cet exemple, voir Cliff et Ord, 1973).
Pour suivre la tradition imagée de la statistique spatiale, on désignera
par zones blanches celles pour lesquelles la variable binaire est égale a
zéro (X, = 0), par zones noires celles pour lesquelles elle est égale a
I'unité (X, = 1). Les zones blanches et noires sont-elles réparties aléatoi-
rement dans l'espace? Si ce n’est pas le cas, c’est parce que:

* Deux zones contigués tendent a étre de la méme couleur (les va-
leurs de la variable dichotomique sont souvent les mémes). On parlera
d’autocorrélation spatiale positive.

* Deux zones contigués tendent a étre de couleurs opposées (les va-
leurs de la variable dichotomique different en général). On parlera d’au-
tocorrélation spatiale négative.

La carte de la figure 2 illustre bien cette notion. Les cantons a haute
densité sont bien regroupés, en particulier autour de Lyon. Les cantons a
basse densité sont également regroupés, principalement dans les zones de
montagne. Deux cantons voisins ont donc tendance a avoir des densités
voisines, ce qui correspond bien a la définition de 'autocorrélation spa-
tiale positive.

Avant de parler de tests, il faut bien insister sur le fait que toute au-
tocorrélation spatiale est relative a une définition particuliere de la conti-
guité, et nous venons de voir quaucune d’entre elles ne s'imposait sans
discussion. Un exemple classique proposé initialement par Cliff et Ord
(1973) illustre bien ce point. Prenons un échiquier. Sur ce dernier, on
peut proposer trois définitions de la contiguité, chacune associée au
mouvement d’une piece particuliere. Pour la Tour, sont contigués deux
cases ayant un c6té commun. Ces deux cases sont de couleurs systémati-
quement opposées: il y a autocorrélation spatiale négative. Pour le Fou,
deux cases contigués sont sur la méme diagonale et ont un sommet com-
mun. Elles ont toujours la méme couleur. Pour le Roi et la Reine, sont
contigués deux cases ayant un coté ou un sommet commun. Chaque case
intérieure est contigué€ a quatre cases de méme couleur et a quatre cases
de couleur opposée: il n’y a pas d’autocorrélation spatiale.

Cet exemple montre bien la relativité de I'autocorrélation spatiale. Il
ne doit cependant pas décourager. Il nous confirme ce qui était signalé
plus haut: pour analyser I'interaction spatiale, il ne faut pas se res-
treindre a une seule définition de cette derniére. Il faut en étudier plu-
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Nombre d’habitants

sieurs. La confrontation des résultats de plusieurs définitions est riche en
enseignements sur la structure spatiale des données.

Figure 2. Densité de population cantonale en Rhone-Alpes, 1990
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Comment tester I'existence d’autocorrélation spatiale, positive ou né-
gative? Il faut d’abord définir soigneusement I'absence d’autocorrélation
spatiale, c’est-a-dire comment a été obtenue une répartition purement
aléatoire des zones blanches et noires. On trouve habituellement deux
définitions dans la littérature:

— Dans la premiere, appelée hypothese N, on suppose que les valeurs
blanches et noires ont été obtenues par des tirages aléatoires indépen-
dants et de méme loi dans chacune des zones, la probabilité d’une valeur
noire étant égale a p.

— Dans la seconde, appelée hypothése R, on suppose qu’il y avait au
départ [ réalisations de la valeur aléatoire, une par zone, dont une frac-
tion p était noire. Ces valeurs ont été affectées a chacune des zones par ti-
rage aléatoire sans remise.

Un test d’autocorrélation spatiale est un test de l'une des deux hypo-
theses nulles de répartition aléatoire, N ou R, I'hypothese alternative
étant la similarité (autocorrélation spatiale positive) ou la dissimilarité
(autocorrélation spatiale négative) des zones contigués. Le principe de ces
tests, appelés tests de couleur, est trés simple. Rappelons que I'ensemble

113



H. JAYET

des zones peut étre représenté par un graphe de contiguité, chaque zone
correspondant a un neeud relié par des arcs aux noeuds des zones conti-
gués. Attribuons a chaque nceud la couleur de la zone qu'il représente.
En présence d’autocorrélation spatiale, chaque arc tendra a relier des
nceuds de méme couleur: deux nceuds noirs (on parlera d’arc noir-noir)
ou deux nceuds blancs (on parlera d’arc blanc-blanc). Les arcs reliant
deux nceuds de couleurs opposées (on parlera d’arc noir-blanc) seront
rares. A l'opposé, en présence d’autocorrélation spatiale négative, chaque
arc tendra 2 relier des noeuds de couleurs opposées, d’ott une prédomi-
nance des arcs noir-blanc au détriment des arcs noir-noir et blanc-blanc.

Lespérance E(NN) et la variance V(NN) du nombre NN d’arcs noir-
noir et l'espérance E(NB) et la variance VINB) du nombre NB d’arcs
noir-blanc sont connues. On en trouvera les valeurs en annexe 1. Or, on
démontre qu'asymptotiquement ’, sous chacune des deux hypotheses
nulles, la statistique NN (resp. la statistique NB) suit une loi normale
de moyenne E(NN) et de variance V(NN) (resp. de moyenne E(NB) et de
variance V(NB)). La procédure de test est donc tres simple.

— Pour un «test NN», on compte le nombre NN d’arcs noir-noir,

NN — E(NN)

———"eton
VVINN)

utlhse un test de normalité /de l.hypothese TNN\: ,0' .Sl TN est s1gn1f£—
cativement positive (resp. négative), on conclut a l'existence d’autocorré-
lation spatiale positive (resp. négative).

puis on calcule la statistique centrée réduite Ty =

— Pour un «test NB», on compte le nombre NB d’arcs noir-blanc,
NB — E(NB) et o

VVINB)
utilise un test de normalité de I'hypothese T'; = 0. Si T est signifi-

cativement positive (resp. négative), on conclut a 'existence d’autocorré-
lation spatiale négative (resp. positive).

puis on calcule la statistique centrée réduite Ty, = n

A titre d’exemple, on peut réaliser un test de couleur sur la carte de
la figure 2 en la réduisant a deux groupes, les cantons a haute densité (au
moins égale 2 180 habitants par km?) et les cantons a faible densité (au
plus égale 2 179 habitants par km?). Sur les 309 cantons de la région
Rhone-Alpes, 224 sont dans la premiére catégorie (qu'on assimilera a la
couleur noire), 85 sont dans la seconde (qu'on assimilera a la couleur
blanche). Le graphe de contiguité entre ces 309 cantons comprend 853
arcs, dont 532 relient deux cantons a haute densité (arcs NN), 132 re-
lient deux cantons a basse densité (arcs BB) et 189 un canton a haute
densité et un canton a basse densité (arcs NB). L'utilisation des formules
de I'annexe conduit aux résultats suivants:

©) Cest-a-dire quand le nombre de nceuds et d’arcs du graphe devient suffi-
samment grand. On trouvera la justification de cette propriété dans Cliff et Ord,

1973.
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T dTablealu 1. Hypothese N Hypothese R
ests de couleur
sur les densités NN 532 532
de population des E(NN) 448,3 447,7
cantons de la région VINN) NN - ENN 1113,7 126,7
Rhone-Alpes T = — E(NN) 2.5 75
VVINN)
NB 189 189
E(NB) 340,2 341,3
V(NB) 551,5 168,5
NB — E(NB)
Tyg = ——— -6,4 -11,7
VV(NB)

Rappelons que, avec une loi normale, pour un test unilatéral au
risque de 5 %, le seuil est de 1,6 en valeur absolue; il est de 2,3 pour un
risque de 1 %. Les deux tests, sous les deux hypotheses, conduisent donc
bien a la conclusion qu’il y a autocorrélation spatiale et que cette der-
niere est positive.

Mathématiquement, les statistiques NN et NB s'écrivent de la ma-
niére suivante:

)’ (3)

7

NN:lEc,.x,x. et NB=%E%(X7,_X

A
izj izj

ol x; et X, sont les‘ Yaleurs (© de' la variable X en chacun des noeuds 7 et
Jrete estle coefficient de contiguité. Ces expressions servent de base a
deux généralisations. La premiére consiste a remplacer les coefficients de
contiguité par les coefficients w . d'une matrice W d'interactions spa-
tiales quelconque. Les propriéeés statistiques des tests sont les mémes.
Evidemment, d’'une matrice W a l'autre, c’est le type d’interaction spa-
tiale testée qui change, chaque matrice correspondant 4 un type d’inter-
action particulier.

Les tests de Moran et Geary

La seconde généralisation consiste a construire des tests utilisables sur
des variables quantitatives quelconques. De la statistique NN, on déduit
la statistique de Moran (Moran, 1950):

Ecij(xi —E)(xj -x)
=N )

P E(x,—ﬁ?)z

(6) Rappelons que x; = 0 pour un nceud blanc, x; = 1 pour un nceud noir.

115



H. JAYET

o N est le nombre d'observations, X est la moyenne des x; et
P = 21 =i Cij la somme des coefficients d’interaction. De la statistique
NB, on déduit la statistique de Geary (Geary, 1954):

Ec,/.(x,. —x].)2
G-l ©)
2P E(X;—f)z

Les statistiques de Moran et de Geary ont également une interpréta-
tion intuitive. La premiere est égale au ratio de la covariance entre ob-
servations contigués a la variance totale de Iéchantillon. A un facteur
1/2 prés, la seconde est égale au ratio de la variance des écarts entre ob-
servations contigués a la variance totale.

Comme pour les statistiques NN et NB, on connait 'espérance E(M)
et la variance V(M) de la statistique de Moran ainsi que I'espérance E(G)
et la variance V(G) de la statistique de Geary, dont on trouvera les va-
leurs en annexe 1. De méme, on démontre quasymptotiquement, sous
chacune des deux hypotheses nulles, la statistique de Moran (resp. la sta-
tistique de Geary) suit une loi normale de moyenne E(M) et de variance
V(M) (resp. de moyenne E(G) et de variance V(G))m . La procédure de
test est donc tres simple.

* Pour un test de Moran, on calcule la statistique centrée réduite
M -EM)
V(M)

T, =0.8i T, estsignificativement positive (resp. négative), on conclut

T et on utilise un test de normalité de I'hypothese

a l'existence d’autocorrélation spatiale positive (resp. négative).

* Pour un test de Geary, on calcule la statistique centrée réduite

_G-EG)
VV(G)

T, = 0.Si T est significativement positive (resp. négative), on conclut

T

c et on utilise un test de normalité de I'hypothese

a lexistence d’autocorrélation spatiale négative (resp. positive).

11 ne faut pas oublier que ces tests n'ont de valeur qu'asymptotique.
II ne faut donc les pratiquer que si 'on dispose d'un nombre d’observa-
tions suffisamment élevé.

Ainsi, nous disposons avec les tests de Moran et Geary de tests qui
permettront de trancher chaque fois qu'on soupgonne la présence d’auto-
corrélation dans une série quantitative. Dans la pratique, le test de
Moran, dont I'expérience a montré qu'il était plus robuste et puissant
que le test de Geary, est de loin le plus utilisé.

7) Pour une démonstration de ces propriétés, on pourra, comme plus haut,

consulter Cliff et Ord (1973 ou 1981).
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On peut, la encore, illustrer I'usage des tests de Moran et de Geary a
partir des données utilisées pour la carte de la figure 2. Cette fois, plu-
tot que de la réduire a une dimension dichotomique, nous allons utiliser
telle quelle la série des densités cantonales pour calculer les statistiques
de Moran et Geary. De plus, pour illustrer les effets d’une variation dans
la définition de la proximité, nous allons utiliser trois matrices d’inter-
action.

La premieére est, comme pour les tests NN et NB faits plus haut, la
matrice de contiguité standard; dans la deuxiéme, les coefficients de
contiguité ne sont plus égaux a l'unité, mais proportionnels a la lon-
gueur de la frontiére commune entre deux cantons. Enfin, dans la troi-
sieme, les coefficients d’interaction sont inversement proportionnels a la
distance entre les centroides des deux cantons, qu’ils soient contigus ou
non. Toutes ces matrices sont normalisées. Le tableau suivant récapitule
les résultats des calculs:

Tableau 2. Tests de Moran et Geary sur les densités de population des cantons de la région Rhone-Alpes

Hypothese N Hypothese R
Test de Moran M E(M) V(M) T E(M) V(M) Ty
Contiguité d’ordre 1 0,475 -0,00325 0,00123 13,62 -0,00325  0,00113 14,23
Longueur de la frontiére 0,494 -0,00325 0,00160 1247 -0,00325 0,00150 13,03
Inverse de la distance 0,102 -0,00325 0,00022 22,19 -0,00325  0,00021 23,17
Test de Geary G E(G) V(G) T E(G) V(G) T.
Contiguité d’ordre 1 0,588 1 0,00141 -10,99 1 0,00362 -6,84
Longueur de la frontiére 0,493 1 0,0018 -12,02 1 0,0042 -7,83
Inverse de la distance 1,016 1 0,00063 2,07 1 0,0059 0,68

On notera que, dans tous les cas, le test de Moran conduit a un rejet
beaucoup plus net de I'hypothese nulle que le test de Geary. Clest 'illus-
tration du fait, signalé plus haut, que la pratique a montré qu'en géné-
ral le test de Moran est plus puissant que le test de Geary. Ce dernier ac-
cepte méme I'hypothese nulle ou ne la rejette que faiblement avec une
matrice d’interactions proportionnelles a I'inverse de la distance entre
centroides.

Comme cette matrice pondeére beaucoup moins fortement les zones
les plus proches et les petites zones que les matrices fondées sur la conti-
guité, on peut penser que la similarité concerne surtout les cantons les
plus proches. Cette observation simple montre bien le type de lecon
qu'on peut tirer de I'usage simultané de plusieurs matrices d’interactions
spatiales.
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AUTOCORRELATION ET AUTOREGRESSION SPATIALES:
LEXEMPLE DU MODELE LINEAIRE

Formuler des modeles avec autocorrélation et
autorégression spatiales

Quelles sont les conséquences économétriques de la présence d’inter-
action spatiale ? Pour en donner une premiére idée, nous allons nous in-
téresser au modele économétrique le plus simple et le plus usuel, le mo-
dele linéaire. Le raisonnement mené a cette occasion peut étre réutilisé
pour d’autres modeles plus complexes, par exemple les modeles de pa-
nels ou les modeles a variables dépendantes limitées.

Examinons d’abord le cas d’une variable unique dont il apparait que
ses valeurs sont corrélées entre elles dans 'espace (voir également Jayet,
1993 ou Anselin, 1988). Le modele le plus simple pouvant expliquer
cette autocorrélation est l'existence d’un processus autorégressif spatial,
de la forme:

y=Ay+e < (I-Aly=¢ 6)

ol A est la matrice des effets d’autorégression spatiale, € est un vecteur
d’aléas indépendants, non nécessairement homoscédastiques :

E(e) = 0 et V(¢) = 0%V

et V est une matrice diagonale. Lintroduction de V permet de tenir
compte de I'hétérogénéité des observations, dont on a vu que, dans le
domaine spatial, elle était la régle plutot que 'exception.

Il faut noter un point important: un processus autorégressif spatial
est toujours stationnaire. On le voit bien en partant du fait que, si
(I - A)y = &, sachant que (I — A) doit étre inversible pour que le proces-
sus ait un sens, alors y = (I — A)'e. Dans ce cas,

E(e)=0ety=(I-A'e=Ey =0 (7)

Toutes les observations du processus sont d’espérance nulle. En consé-
quence, si une variable spatialisée est d’espérance non nulle, il faudra rai-
sonner sur I'écart a son espérance. Qui plus est, un processus autorégres-
sif spatial ne peut étre soumis a aucune tendance. On retrouve ici une
difficulté bien connue des spécialistes des données temporelles, qui les
conduit a tester la stationnarité d'une série avant de faire des estimations
et des tests économétriques. Et, une fois de plus, la double dimension
des séries spatiales et I'absence d’'un analogue a la fleche du temps rend
difficile la formulation d’hypothéses simples de tendances, analogues aux
trends linéaire ou exponentiel des séries temporelles. Il arrivera cependant
que des données présentent un ordre naturel (direction du vent, éloigne-
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ment d’un point ou d’une ligne remarquable,...) utilisable pour formu-
ler une tendance.

La matrice des effets d’autocorrélation spatiale peut elle-méme étre
paramétrée. Par exemple, on prend fréquemment une combinaison li-
néaire des matrices de contiguité d’'ordre 1 a K:

)

A=pC" 4+ 4 pC” (8)

ou les P;,---,Px sont des coefficients a estimer qui mesurent l'intensité
de l'interaction. Par analogie avec I'économétrie des séries temporelles,
on parle alors d’un processus spatial autorégressif d’ordre K, ou SAR(K).
Les processus SAR(1) sont de loin les plus utilisés.

En présence de variables explicatives, le point de départ est le modele
linéaire usuel,

y=Xp+¢€ )

ou X est la matrice des variables explicatives, 3 le vecteur des paramétres
a estimer et € la partie aléatoire du modele. L'introduction de l'interac-
tion spatiale peut prendre deux formes.

Dans la premiere, on considere que 'interaction spatiale porte sur la
variable expliquée. On aboutit alors au modele spatial autorégressif:

)/:Ay+Xﬁ+£¢>(I—A))/:X/J)+8 (10)

ou, comme plus haut, on fait sur € les hypotheses standard des moindres
carrés,

E(e) = 0 et V(¢) = 0%V (11)

Le modele spatial autorégressif s'impose en particulier dés qu'on n’a
aucune raison de penser que la variable expliquée est d’espérance nulle
partout dans 'espace. Il faut alors utiliser des variables explicatives per-
mettant de rendre compte de la valeur que prend cette espérance, sous
peine de formuler un modele incohérent. Clest ainsi que la maniere la
plus simple d’analyser une variable d’espérance constante, mais non
nulle, est d’introduire une constante parmi les variables explicatives du
modele, ce qui permet d’estimer la moyenne. Si I'espérance n’est pas
constante, il faudra introduire d’autres variables explicatives.

Dans le deuxieme cas, l'interaction spatiale porte sur la partie aléa-
toire du modele, &, qui suit un processus autorégressif spatial. On abou-
tit au modele avec autocorrélation spatiale des résidus:

P R TR R

ol G est la matrice des effets d’autocorrélation spatiale et 1) est un vec-
teur d'aléas indépendants, non nécessairement homoscédastiques:

Em) = 0 et V(1) = 02V (13)
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Ce qui a été dit plus haut au sujet des processus autorégressifs spa-
tiaux est évidemment vrai du processus gouvernant le vecteur des rési-
dus, €: toutes les composantes doivent étre d’espérance nulle et, en par-
ticulier, aucune tendance ne doit étre présente. Si ce n’est pas le cas, il
faut reformuler le modele pour introduire les tendances et, éventuelle-
ment, d’autres variables explicatives adaptées.

On peut enfin combiner les deux possibilités: il y a a la fois interac-
tion spatiale sur la variable expliquée et sur la partie aléatoire du mo-
dele. Cest le modele le plus général, avec autocorrélation et autorégres-
sion:

y=Ay+ XB + ¢

I-Ge=n SU-0a-ay-xpl=n a4

ol A est la matrice des effets d’autorégression spatiale, G la matrice des
effets d’autocorrélation spatiale et 1) est un vecteur d’aléas indépendants,
non nécessairement homoscédastiques:

E(n) = 0 et V(1)) = 02V (15)

Estimer des modéles avec autocorrélation spatiale

Quand ni V, qui permet de tenir compte de I'hétérogénéité, ni A ou
G, par lesquelles transitent les effets d’autocorrélation spatiale, ne dé-
pendent de parametres a estimer, les modeles ci-dessus ont des matrices
de variances-covariances connues et sestiment sans difficulté par les
moindres carrés généralisés:

— Pour le modele avec autorégression spatiale, on régresse (I — A)y
sur la matrice X des variables explicatives, le résidu € ayant comme
matrice de variances-covariances V(€) = 02V, d’ou lestimateur des
moindres carrés généralisés:

B= (X'VIX, X'V'IHI - A)H (16)

— Pour le modele avec autocorrélation spatiale des résidus, on régresse
y sur la matrice X des variables explicatives, le résidu € ayant comme
matrice de variances-covariances V(&) = 02 [(I- G)V'! (I — G")]}, d'ou
I'estimateur des moindres carrés généralisés:

p- HXI (- G'MV_l H’ - G)Hf)ﬁ X! H - G‘MV‘1 H - G)M (17)

— Pour le modele avec autorégression et autocorrélation spatiales, on ré-
gresse (I — A)y sur la matrice X des variables explicatives, le résidu € ayant
comme matrice de variances-covariances V(¢) = 02 [(I- G)V-'I - G")] !,
d’ou I'estimateur des moindres carrés généralisés:

B=(X'(U-GW'U-G)X)' XU-G)V'UI-G)(I-A)y (18)
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Cependant, en général, les matrices V, A et G dépendent de para-
metres a estimer. C'est méme quasiment la regle pour les matrices d'in-
teraction spatiale, A et G, car I'économetre n’a pas de raison de détermi-
ner a I'avance 'ampleur des effets d’autocorrélation spatiale. Dans ce cas,
les moindres carrés généralisés ne sont plus utilisables. L'économetre
peut recourir aux méthodes de variables instrumentales, du type double
moindres carrés, ou aux méthodes de maximum de vraisemblance. Ces
dernieres sont actuellement les plus utilisées et ce sont elles que nous
présenterons (pour les méthodes de variables instrumentales, voir Anse-
lin, 1988). Nous nous restreindrons au cas du modele avec autocorréla-
tion spatiale des résidus, le traitement des autres modeles étant similaire.

Léconomeétre a donc spécifié une matrice d’effets d’autocorrélation
spatiale des résidus, G(p), le plus souvent sous la forme G(p) = pW ou
W est une matrice normalisée de poids spatiaux, par exemple une ma-
trice de contiguité (on a alors un SAR (1)). Eventuellement, il a égale-
ment paramétré la matrice de poids spatiaux, V = V(u). On a vu plus
haut que le modele avec autocorrélation des résidus se présentait sous la
forme:

n=(I-Gp)Gy-XP (19)
avec E(1)) = 0 et V(1)) = 0*V(w). Sous I'hypothese de normalité des rési-

dus, on en déduit I'expression de la log-vraisemblance,

LB, p 1,0 = N ln2mo? - lmdet[l_G(,o)]- Dndecv () -——srG (o) (20)
2 2 2 20°

Wt -cttby et - kol - xm

s’interpréte comme une somme de carrés de résidus généralisés. On voit
facilement que pour p et u donnés, l'estimateur de f3 est le méme que
celui des moindres carrés généralisés,

pepaf- - bl -l bl - clbolf- ok -ctpolf

et qu'il en est de méme de I'estimateur de la variance,

&* (p, u|= N"'srGKp, 1 B, )| | 22)
d’ot, sachant que la matrice des effets d’hétéroscédasticité est diagonale,
V(W) = diaglv, (W), ..., v,(w), l'expression de la log-vraisemblance

ou

SRG (p. )| - xB

~
~

=515

3

N
CL(o u g’ 1+1n2f.“€f PR
2

concentrée:
Jim [l o

Clest cette expression qu'il faut maximiser par rapport aux para-
metres P et W pour trouver leurs estimateurs. En général, la maximisa-
tion par rapport 4 U ne pose pas de probleme. Pour ce qui est de p, les
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choses sont plus difficiles. En effet, dans le cas général, il faut calculer le
déterminant d’une matrice qui peut étre de taille élevée et ce a chaque
itération de l'algorithme de maximisation. On notera cependant (Ord,

1975) que, quand G(p) = pW, on a:
Indet [I - G(p)] = Indet [I — pW] = 2ln (1 - pA) (24)

olt les A, sont les valeurs propres de la matrice W. Il suffit donc de les
calculer une fois pour toutes au départ.

Tests sur les modeles

La formulation d’un modéle avec autorégression et/ou avec autocorré-
lation spatiale conduit a des tests qui permettent de déterminer si I'in-
troduction de 1'une ou l'autre de ces formes d’interaction entre observa-
tions est pertinente, au moins au niveau des données. C'est ainsi que,
dans le cadre du modele avec autorégression spatiale,

y=Ay+ ¢ (25)

si, comme c’est habituellement le cas, A = pC, tester 'absence d’autoré-
gression spatiale revient a tester 'hypothese nulle p = 0. De méme, dans
le cadre du modele avec autocorrélation spatiale,

y=XPete=Ge+n (26)

quand G = YC, tester I'absence d’autocorrélation spatiale revient a tester
I'hypothése nulle y = 0. Enfin, si I'on part du modele général avec auto-
régression et autocorrélation spatiales,

y=Ay+ XPete=Ge+n 27)

et que A = pC et G = yYC, on peut tester plusieurs hypothéses nulles: ab-
sence d’autorégression spatiale (0 = 0), absence d’autocorrélation spatiale
(y = 0), absence simultanée d’autorégression et d’autocorrélation spa-
tiales (0 = 0 et y = 0).

Lestimation par le maximum de vraisemblance fournit ici un cadre
commode, puisqu’il suffit ’a}ppliquer la méthodologie usuelle des tests
fondés sur la vraisemblance ¥, On peut alors :

— Soit estimer le modele sous I'hypothese nulle, c’est-a-dire sans au-
torégression ou autocorrélation spatiale, et pratiquer un test du multi-
plicateur de Lagrange. Cette stratégie est bien adaptée au cas ou l'on
souhaite éviter les difficultés de calcul d'un estimateur du maximum de
vraisemblance quand celle-ci n’est pas nécessaire et/ou quand la dépen-
dance entre observations n’est pas une préoccupation centrale. On sou-

(8 Pour une présentation générale et accessible des tests fondés sur la vraisem-
blance, voir Greene (1997), pp. 155-168.
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haite simplement vérifier son absence, car sa présence pourrait perturber
les résultats. L'inconvénient est évidemment que, si les tests rejettent
I'hypothése nulle, il faudra recommencer les estimations. De plus, les
statistiques sont d’un calcul malaisé.

— Soit estimer le modele sous I'hypothese alternative, c’est-a-dire avec
autorégression et/ou autocorrélation spatiale, et pratiquer un test de
Wald. Cette stratégie est bien adaptée au cas ou 'on pense que la pré-
sence d’interdépendances spatiales est trés vraisemblable et/ou quand ces
interactions sont un aspect central du modele. Linconvénient est que
I'on prend le risque de se lancer d’emblée dans un processus lourd d’es-
timation alors qu'un processus beaucoup plus simple suffit quand I'hy-
pothese nulle est vraie. Et, comme dans le premier cas, les statistiques
sont d'un calcul malaisé.

— Soit estimer les deux modeles et faire un test du rapport de vrai-
semblance. Lestimation des deux modeéles peut étre un processus lourd,
alors qu'un seul des deux sera retenu. En contrepartie, le calcul de la sta-
tistique du rapport de vraisemblance est immédiat.

Parce qu’ils cherchent en général a éviter I'estimation d'un modele
complet quand ce n'est pas nécessaire, la plupart des économetres spa-
tiaux tendent a privilégier la premiere méthode. Ils ont, dans ce cadre,
développé des tests complémentaires au test usuel du rapport de vrai-
semblance, dont on trouvera la présentation en annexe (voir également

Anselin et al., 1996).

Avant de conclure, il nous faut souligner deux points. Le premier est
que, pour simplifier I'exposé, on a volontairement laissé de c6té dans
cette présentation le probléme posé par 'interaction entre les observa-
tions & l'intérieur de la zone géographique sur laquelle on fait I'estima-
tion et les observations a I'extérieur de cette zone. Ce faisant, on suppose
implicitement que la zone est fermée. Pour reprendre un exemple anté-
rieur, estimer une série sur les communes ou les cantons de la région
Rhone-Alpes suppose implicitement que les localités de cette région
n’interagissent pas avec celles des régions voisines, ce qui n’est valide en
toute rigueur que si la région est fermée. Cette hypothese implicite de
fermeture est sans doute acceptable quand on travaille sur le découpage
exhaustif d’un territoire national. Dans des espaces plus petits, elle est
plus difficilement acceptable.

Vouloir traiter cette question, qui est I'analogue du probleme des
premiéres observations d’'un processus autorégressif temporel, pose ce-
pendant des problémes beaucoup plus délicats que nous n’aborderons pas
ici. Notons cependant que, si les spécialistes des données temporelles
peuvent raisonner conditionnellement aux premiéres observations (consi-
dérées comme purement exogeénes), ce n'est pas possible ici puisque
toutes les observations s'influencent réciproquement. Pour plus de préci-
sions sur ces questions, on pourra consulter Griffith (1988).
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Notre deuxiéme remarque est que les modeles présentés relevent de
méthodes statistiques paramétriques globales, le méme modele paramé-
trique étant valable pour I'ensemble des observations. Il est possible
d’utiliser des méthodes non-paramétriques ou semi-paramétriques, ainsi
que des modeles flexibles capables de s’adapter a des situations locales.
Ces modeles sont adaptés a de grands espaces ot I'on a de bonnes raisons
de penser que les processus connaissent des variations locales impor-
tantes dont ni les variables explicatives utilisées, ni les matrices d’inter-
actions spatiales ne peuvent rendre compte de maniere suffisante. Mais,
comme toutes les formes flexibles, ils ont un prix: difficulté d’incorpo-
ration des variables explicatives, colit des calculs, faible puissance des
tests... Le lecteur intéressé pourra utilement consulter I'ouvrage de
Upton et Fingleton (198)5).

CONCLUSION

Que conseiller au praticien confronté a des données spatiales ?

En premier lieu, de tenir compte de leur hétérogénéité. Ce qui se tra-
duira de deux manieres. D’une part, en introduisant des variables per-
mettant de tenir compte des différences de taille, de structure, voire de
forme entre les observations spatiales utilisées. D’autre part, en testant et
en corrigeant une possible hétéroscédasticité.

En deuxieme lieu, de tester systématiquement l'existence d’interac-
tions spatiales sous leurs différentes formes, autorégression des variables
expliquées et autocorrélation sur les parties aléatoires des modeles utili-
sés. Le plus souvent, pour réaliser ces tests, on ne se cantonnera pas a une
forme unique d’interaction et donc a une seule famille de matrices d'in-
teraction. En effet, chaque famille de matrices d’interactions implique
des restrictions particuliéres sur le type d’interaction. Aucune n’est suf-
fisamment générale. De plus, la confrontation des résultats obtenus avec
des matrices différentes peut s'avérer treés révélatrice de la structure spa-
tiale des données.

En troisieme lieu, de formuler explicitement les modeles économé-
triques de base et la maniére dont on y introduit I'interaction spatiale.
Clest ce que nous avons fait dans cet article, sur le modeéle linéaire en
partant de sa version standard. Clest ce qu'il faudra faire dans le cas
d’autres modeles, comme par exemple les modeles a variables qualita-
tives ou plus généralement a variables dépendantes limitées. On intro-
duit alors 'autorégression et I'autocorrélation spatiales dans la partie la-
tente du modele pour en tirer ensuite les conséquences sur le modele
observable.
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H. JAYET

ANNEXE 1

Moments des statistiques NN, NB et des statistiques
de Moran et de Geary

On adopte les notations suivantes:

N Nombre d’observations = nombre de nceuds du graphe
N, Nombre d'observations avec x; = 1 (nceuds noirs)
N, Nombre d’observations avec x; = 0 (nceuds blancs)

N, +N,=N,p=N,/N,g=N,/N,p+g=1

W = E ¢, WI2 est le poids total des arcs.

izj
X = 1— ij
N

S - %)
(26 - )
6= Db €= 2
j J

by=N

ey + ) >0, + )7
z, - [;‘gj;jv;fj , Zz‘[ A ]

|\

Espérances et variances de NN et NB sous I'hypothése N

1
E(NN) = — Wp? = tnn

V(NN) = ;— [T [zl (Z,=2Z)p+(Z, - Z2>P2]

E(NB) = Wpq = Ung

1
VINB) = 5 Ung [Z1 +(Zy-2Z,) b ; 1. 22, —ZZ)M]
Espérances et variances de NN et NB sous 'hypothése R
W NN, -1

ENN) = — ———— =1
(NN) > NN-D UNN
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V(NN)=%;7NN Z, + f]l - [zz_zz1 +Nl‘; (W+Zl_zz>] - 2y
E(NB) WiNINZ i
B N(N—l)_MNB
1 _ N, + N, -2 (N, - 1N, -1)
V(NB) = — Z o+ (Z, 27 )1 "27% oWiZ —7)y—1_"27" - ]
2:“1\13 1+, ) AN 2) +2W+ Z, 2) (N_ 2N _3) UnB

Espérances et variances des statistiques de Moran et Geary sous 'hypothése N

EM) = -

N-1
NNZ, -7 W 1
V) (NZ,-Z,) +3 ~
(N? - D)W (N = 1)?
EG) =1

VG - N-h ez« Z) - 4w
AN+ )W

Espérances et variances des statistiques de Moran et Geary sous 'hypothése R

EM) = —
N-1
VM) = N[(N2 - 3N + 3)Z, —nZ, + 3W] - bz[(N2 -N)Z, - 2NZ, + 6W]
(N-1)XN-2) (N -3)W
EG) =1
V(G) - Y1 — Y2 + Y3

NN -2XN-3) W
Y, =(N-1) [(N2_3N+ 3)—(N—1)b2] Z,

(N-12z,

YZ:[(N2+3N—6)—(N2—N+2)b2] 7

v, - [N os-v- 2w
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ANNEXE 2

Tests sur le modeéle linéaire

Dans le cas homoscédastique (V = I), on dispose des tests suivants:

- Tests d’autorégression spatiale

A 5

Multiplicateur de Lagrange classique: (86\5(2/)/ ) /@ — %% (1)
A’ Arvvra \2

Bera et Yoon: (Eé\YZ/y —86“;/8 ) /[@—T]—>X2(l)

- Tests d’autocorrélation spatiale

Moran: é:,WA/é — N(,1)

Multiplicateur de Lagrange classique: (é'é\)zVé )2 / T— %% (1)

Bera et Yoon: (% é(;zw - ééf‘fé )2 /[T— T70)— x> (1)

Kelejian-Robinson: QA’:/ZA/ZJA/ — 54(K)
a'alh

- Test simultané d’autorégression et autocorrélation spatiales

) frere

W est la matrice des coefficients d’interaction spatiale, avec A(p) = pW et
G(y) = yW. Elle est normalisée.

Multiplicateur de Lagrange classique:

EWy E&We\2 &' We
(6.2 52 ) /[G_T]+< &2

Pour tous ces tests, les notations suivantes sont utilisées:

y est le vecteur des observations de la variable expliquée.
£ est le vecteur des résidus de la régression sans interaction spatiale.
02 est I'estimateur de la variance.

T = trace(W'W + W?et® =T + (W/XB/)M (WXB)/(A}2 oﬁB est le vecteur des
coefficients estimés et M = [ — X(X'X)'' X".
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¥ eta sont les estimateurs du vecteur des coefficients et du vecteur des résidus de la
régression auxiliaire ¢ = Zy + a dont chaque observation correspond a un couple de
zones contigués (le coefficient correspondant de W est non nul). La valeur de ¢ pour
cette observation est le produit des valeurs correspondantes du vecteur des résidus
estimés, €. Les K colonnes de Z sont formées de maniére analogue 2 partir des va-
leurs des variables explicatives.

Le test de Moran est une adaptation au cas des résidus d’une régression du test
de Moran présenté plus haut. Les tests du multiplicateur de Lagrange classiques
sont ceux qu'on obtient & partir de la vraisemblance du modele linéaire sous I'hy-
pothese de normalité des résidus. Les tests de Bera et Yoon, connus aussi sous le
nom de tests du multiplicateur de Lagrange robustes, sont robustes 4 une mauvaise
spécification locale du terme autorégressif ou de la forme de l'autocorrélation des
résidus. Enfin, le test de Kelejian Robinson est un test robuste qui reste valide avec
des résidus non normaux et pour des modeles non linéaires. On notera cependant
que ce test est trés peu puissant, ce qui le rend peu attractif malgré sa robustesse.
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