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Abstracts 

This paper examined the dependence structure among global food grain markets that determines 

the speed of shock/volatility transmission from one market to another. We have applied copula-

based models that consider the joint distribution of food grain prices from different markets and 

three most traded food grains (rice, wheat and corn) are considered for the analysis. Gaussian 

copulas have shown statistically significant dependence for most price pairs between markets, but 

with small Kendall’s tau values, which imply low dependence among markets. Then we have 

applied copulas that capture distributions other than the Gaussian and also capture tail dependence 

and found a significant improvement in Kendall’s tau values, implying a strong dependence for 

price pairs among global food grain markets.  
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I.  Introduction 

Food grain prices in global markets surged sharply in late 2000s and the welfare implications of 

such food price upsurge were huge, especially for net food importing developing countries. The 

sharp food price hike caused serious food insecurity and even civil unrests in many countries across 

Africa and Asia (Lagi et. al., 2011). Sudden price surge in international food grain markets also 

hurts fiscal stability of net food importing countries, especially in countries where food subsidies 

consist a bulk share of national budget (FAO, 2011). Voluminous studies and reports have been 

published on what explain the commodity price boom in late 2000s. Carter et.al. (2011) presents 



a survey of the relevant literature and finds three prominent explanations for the global commodity 

price boom in late 2000s. They are: i) speculation, ii) export restrictions by exporting countries; 

and iii) demand shock to corn market due to changes in biofuel policy of united states of America 

(USA) in 2007. 

Speculation, arbitrage activities in commodity markets have been increased in recent years due to 

future markets trading in commodity exchange markets. Futures attract investors who are not 

interested in the commodity as such, but in making a speculative profit on future movements in 

the price of the commodity. The feature of negative correlation between returns to commodity 

futures and returns to equities and bonds attracts “non-commercial” investors increasingly in 

commodity futures markets (FAO, 2010). Commodity futures, thus, constitute an attractive vehicle 

for portfolio diversification. There has been a significant inflow of funds from traditional 

institutions such as hedge funds and pension funds into commodity futures markets (FAO, 2012). 

Thus, speculation might play a role in commodity price hike in late 2000s. However, the role of 

speculation in the price boom has not been confirmed yet in relevant literature due to lack of proper 

data.  

Deliberate restriction on agricultural exports such as export bans, raising or introducing export tax 

etc. was another key factor behind the commodity price boom in late 2000s. At least 30 countries 

around the world imposed some forms of export restriction in 2007 and 2008 (IMF, 2008). For 

example, Argentina raised export tax on soybeans from 35% to 45 %, India banned exports of 

wheat and non-basmati rice, Vietnam restricted rice exports and Kazakhstan banned wheat exports. 

Martin and Anderson (2011) estimates that approximately 30% of rice price increase and 25% of 

wheat price increase in the period of 2005-08 were due to the export control measures of exporting 

countries.  



The most prominent explanations for the global food price hike in late 2000s that emerges in the 

literature is that ethanol production growth in the USA played crucial role in rising global food 

prices through excess demand in corn markets.  Roberts & Schlenker (2010) claim that 30 percent 

of the rise of average price of staple food commodities was caused by excess biofuel demand in 

2007-2008. Studies dealing with rice price boom in 2008 argue that the role of the change in the 

biofuel policy in the USA had, even, a broader role in explaining rice price boom (FAO, 2008). 

The economics of substitution in supply and demand is a major factor that strongly tied linkages 

among food grain markets due to demand shock in corn markets as a response to a shift in ethanol 

production policy. Supply substitutability leads to higher corn production and lower wheat and 

soybeans production in the United States, while demand substitutability transmits corn market 

shocks into other food grain markets. More than 30 % of corn produced in 2008 was used for 

ethanol production, while the analogous figure was only 14% in 2005. This diversion causes to 

raise food prices significantly first through the direct effect on corn prices and second through the 

economics of substitution with other commodities as the US produces around 40% of global corn 

production and accounts more than 60% of global corn exports (FAO, 2008).  FAO (2008) reports 

that the global demand for corn had been increased by 40% in 2007; and 75% of the increase were 

due to ethanol production. The demand shock in corn market due to ethanol policy lowered acreage 

of wheat and soybeans; and reduced corn inventory level significantly in the U.S.  

Thus, demand shock in the corn market of the United States shoots the overall food commodity 

prices in international food grain markets in late 2000s. Rice markets around the world, even, 

responded more swiftly and spurred. While net rice exporting countries could exploit the returns 

from a high global rice price, instead these countries imposed various restrictions on rice export to 

insulate domestic market from the global markets to curb domestic food inflation. In fact, some of 



net rice exporting countries have been engaged in ‘panic buying’ as they feared that food crisis 

could lead their countries into political destabilization. The question that remains unexplored in 

the literature is that, while correlation among prices in food grain markets is historically quite low, 

why are demand shocks in corn markets transmitted to other food grain markets so swiftly?  This 

paper examines this issue with a novel approach. The dependence structure among global food 

grain markets determines the speed of shock transmission from one market to another. Insufficient 

understanding about dependence structures among international food grain markets make it 

difficult to forecast food grain prices. Predicting future commodity price booms requires a careful 

examination of dependence structure among food grain markets and of price transmission 

mechanisms. 

Efficient trade and arbitrage activities should ensure that prices of related goods in the major food 

markets are well integrated through a common long-run equilibrium. However, the dependence 

structure among spatially separated global food grain markets has not been examined yet with 

proper analytical tools such as the copula; in fact studies on the dependence structure among major 

global financial markets are not handful. While major stock markets around the globe are more 

dependent at the state of ‘crush’ than at the state of ‘boom’, global food grain markets appear to 

be more dependent on ‘up days’ than on ‘down days’. As price elasticity of demand for a staple 

food is usually low, overall food prices do not respond much for a small price change of a specific 

food grain. A large price change of a specific grain, however, could stimulate panic responses from 

agents involved in the food grain markets due to the economics of substitutions in supply and 

demand.   

The link among spatially separated agricultural commodity markets around the world has received 

considerable attention in recent years due to the issue of food security. While correlations among 



price changes of food grains are historically quite low, many studies on the price boom in late 

2000s conclude that growth in the ethanol industry, through the demand shock in corn markets, 

has strengthened the links among commodity markets around the world. Despite studies on co-

movement of prices among global food grain markets somewhat limited, there are numerous 

studies on the notions of price parity, price transmission and price arbitrage relationships for 

tradable homogeneous goods. The main idea of these studies is that efficient functioning of market 

should ensure stable links across spatially separated regional markets and eliminates any potential 

for persistent spatial arbitrage profits. This fundamental condition is known as the “Law of One 

Price" (LOP) and the general implication is that prices in spatially separated markets should not 

vary by no more than the transport and transaction cost. The existing literature on spatial price 

linkages extends from simple tests of correlation among prices, to recent sophisticated time series 

regression models that address the issues of nonstationarity, nonlinearities, and threshold behavior 

in price linkages among spatially separated markets. 

Empirical support to LOP is rather mixed.  While early studies ( see Isard (1977), Thursby, 

Johnson, and Grennes (1986), and Benninga and Protopapadakis (1988)) fail to confirm the LOP;   

Goodwin, Grennes, and Wohlgenant (1990) do, however, find some support in favor of the LOP 

when price expectations was taken into account instead of observed prices. Cointegration 

techniques have been adopted extensively evaluating LOP as a long-run concept following the 

seminal paper Engle and Granger (1987), and more convincing evidence were established in favor 

of the LOP ( see Buongiorno and Uusivuori (1992), Bessler and Fuller (1993), and Jung and 

Doroodian (1994)). Smooth or discrete threshold time series models get prominence among the 

most recent literature on the LOP with the underlying assumption that adjustments to equilibrium 

may not be linear, and that this nonlinearity may, in turn, be associated with hard-to-observe 



transactions costs associated with arbitrage. Studies that use this line of methodology find 

nonlinearity is an important feature of price relationships in these markets and that the price parity 

relationships implied by economic theory and efficient arbitrage are generally supported by the 

threshold models ( Holt, Prestemon, and Goodwin (2011), Goodwin and Piggott (2001), Lo and 

Zivot (2001), Sephton (2003), Balcombe, Bailey, and Brooks (2007), and Park, Mjelde, and 

Bessler (2007). Very recently, researchers have started to use the copulas in modeling spatial price 

linkages. Goodwin et.al (2011) estimates copula-based nonlinear models for pairs of North 

American orient strand board (OSB) prices and finds even stronger evidence of nonlinearities in 

spatial market linkages.  

Most studies in the relevant literature have generally examined the notion of price parity, price 

transmission and arbitrage activities for tradable homogeneous good (Goodwin, Grennes, and 

Wohlgenant (1990), Goodwin and Piggott (2001); Goodwin et.al (2011)). Studies on price 

transmission and price linkages among the international food grain markets are limited. Despite 

progress, the understanding about commodity prices and the ability to forecast commodity prices 

remains seriously scarce and this insufficient understanding make it difficult to construct good 

policy rules (Deaton, 1999).  This paper intends to improve the understanding about the 

dependence structure among global food grain markets, and hence advances the ability to forecast 

food grain prices. In this paper, we examine the links among international food grain markets and 

propose an alternative and novel approach to analyzing dependence structures among international 

food grain markets. We develop copula-based models that consider the joint distribution of prices 

from different markets and apply them to weekly prices for food grains at geographically distinct 

global markets. To improve the capability of precise forecasts of food grain prices in future, a 

careful examination of the dependence structure among food grain markets is needed. Evaluation 



of the dependence structure among international food grain markets could serve dual purposes: as 

risk management tool for speculators operating in the commodity exchange markets to forecast 

future price movements and as better forecasting tool for policy makers around the world dealing 

with policies to ensure food security. 

 

We have seen a tremendous increase in the application of copulas in the financial literature recently 

and they have proven to be a very useful tool in modeling the dependence structures among 

financial markets. Like financial markets, international food grain prices tend to exhibit 

asymmetric dependence. This asymmetry implies that in times of upward trend, prices tend to be 

more dependent than they are in times of downward trend. This phenomenon has important 

implications for the risk of speculators and arbitragers who operate in commodity futures market 

and for the risk of policy-makers who formulates policy to ensure food security for a country.  

This paper uses the copula models to study the comovement and the tail dependence of food grain 

prices using three most traded food grains in the World: Rice, Wheat and Corn. The approach used 

in this paper is a natural extension of the existing time-series evaluations of spatial price linkages. 

Our contribution is two-fold. First, we use copulas which allow modeling the dependence in a 

much more flexible and realistic way than models based on the Gaussian distribution which have 

been previously implemented. The use of copulas makes it possible to separate the dependence 

model from the marginal distributions. Second, copulas allow us to have asymmetric tail 

dependence, which means that, unlike with the Gaussian distribution, the dependence does not 

vanish as we consider increasingly higher or lower price changes. 

The remainder of the paper is organized as follows. Following introductory discussions in Section 

I, we discuss methodology and models in section II. We describe the two-step estimation 



procedures of the model in this section. First, we discuss various forms of copulas and compare 

them in terms of capturing the dependence among international food grain prices. Then we present 

the GARCH model to be used for the marginal. In Section III, we discuss data sources and 

summary statistics of the price series as it is useful to describe the data and make initial decisions 

about the choice of GARCH process and copula selection. In section IV, we present the results 

and discussions of GARCH models for the marginal. This section also presents the results of the 

copula models. Section V concludes the paper. 

II. Specifications and Methodology 

In the last decade, copula modeling has become a frequently used tool in financial economics2. 

The empirical approach adopted in this paper involves considering the joint distribution function 

of    ∆(𝑝𝑡
𝑖 −  𝑝𝑡−1

𝑖 )  and ∆(𝑝𝑡
𝑗

−  𝑝𝑡−1
𝑗

) . To implement an empirical model we use the copula 

approach. The fundamental of copulas dates to work by Sklar (1959). Sklar (1959) theorem implies 

that any joint probability function can be represented in terms of the marginal densities and a 

function known as ‘Copula’.  

2.1. Copulas 

Copula models have been used extensively in recent empirical literature on risk management and 

financial economics (see, among others, Hu (2006), Patton (2006), and Jondeau and Rockinger 

(2006)).  Copula models are used in empirical models of joint probability distributions and  the 

model use a “copula” function to link together two marginal probability functions which may (or 

may not) be linked with each other.  

                                                           
2  A nice accounts of copula theory are available in Joe (1997) and Nelsen (2006) 



 A 𝑝-dimensional copula, 𝐶(𝑢1, 𝑢2, … … . , 𝑢𝑝), is a multivariate distribution function in the unit 

hypercube [0, 1]p with uniform U (0, 1) marginal distributions. For the continuous marginal 

distributions, Sklar (1959) has demonstrated that a unique copula is linked with the joint 

distribution, F , that can be found as: 

𝐶(𝑢1, 𝑢2, … … . , 𝑢𝑝) = 𝐹(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2), … … … … … , 𝐹𝑝
−1(𝑢𝑝))                                    (1) 

Similarly, given a 𝑝-dimensional copula, 𝐶(𝑢1, 𝑢2, … … . , 𝑢𝑝),  and p univariate distributions, 

𝐹1(𝑥1), 𝐹2(𝑥2), … … … … , 𝐹𝑝(𝑥𝑝), equation (1) is a 𝑝-variate distribution function with marginals 

𝐹1, 𝐹2, … … . . , 𝐹𝑝 whose corresponding density function can be expressed as: 

        𝑓(𝑥1, 𝑥2, … … … … , 𝑥𝑝) = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥21), … … … … , 𝐹𝑝(𝑥𝑝)) ∏ 𝑓𝑖(𝑥𝑖
𝑝
𝑖=1 )                   (2) 

Then, the density function of the copula (c), given that it exists, can be derived using equation (1) 

and marginal density functions, 𝑓𝑖: 

𝑐(𝑢1, 𝑢2, … … . , 𝑢𝑝) =
𝑓(𝐹1

−1(𝑢1),𝐹2
−1(𝑢2),……………,𝐹𝑝

−1(𝑢𝑝)) 

∏ 𝑓𝑖(𝐹𝑖
−1(𝑢𝑖)𝑝

𝑖=1
) 

                                               (3) 

Copulas differ in terms of how the dependencies among variables are represented. For example, a 

Gaussian copula assumes linear correlation and imposes zero dependence in the tails of the 

distributions. A t copula allows for non-zero tail dependence but imposes symmetry in the 

dependence relationships in alternate tails of the distributions. Archimedean copulas typically 

allow for dependence in only one tail and represent the dependence relationship by using a single 

parameter. Thus, the choice of a copula function determines the nature of the relationships among 

dependent random variables. 



There are several advantages of using copula models to analyze the dependence structure among 

pairs of prices in spatially distinct global agricultural commodity markets. First, copulas allow us 

to model the marginal behavior and the dependence structure of commodity prices separately and, 

thus, allow for greater flexibility in estimating margins. Second, copula models provide both the 

degree and the structure of dependence among pairs of prices, while the simple correlation 

coefficient only look at the degree of dependence among the marginal distributions assuming 

multivariate normality. Third, Kendall’s tau is a copula-based dependence measure which relies 

on the notion of concordance while it does not depend on the marginal distributions. The Kendall’s 

tau is exclusively a function of the copula  

𝜏 = ∫ 𝐶(𝑣1,𝑣2)𝑑𝐶(𝑣1,𝑣2) − 1
[0,1]2                                                             (4) 

While the Kendall’s tau measures overall dependence, tail dependence, another copula-based 

measure, captures the dependence between extremes. Intuitively, tail dependence measures the 

propensity of geographically distinct global agricultural commodity markets to go up or down 

together. The coefficients of upper tail dependence, λU, and lower tail dependence, λL,  between X1 

and X2 can be expressed in terms of the copula, given that it exists, between  X1 and X2 as: 

𝜆𝑈 = lim
𝑢⟶1−

𝑃(𝑋2 > 𝐹𝑋2

−1(𝑢) |𝑋1 > 𝐹𝑋1

−1(𝑢)) = lim
𝑢⟶1−

1−2𝑢+𝐶(𝑢,𝑢)

1−𝑢
                      (5) 

𝜆𝐿 = lim
𝑢⟶0+

𝑃(𝑋2 ≤ 𝐹𝑋2

−1(𝑢) |𝑋1 ≤ 𝐹𝑋1

−1(𝑢)) = lim
𝑢⟶0+

𝐶(𝑢,𝑢)

1−𝑢
                                (6) 

Where F-1 is the marginal quantile function and λU, λL∈[0,1]. There is no upper (lower) tail 

dependence if λU=0 (λL=0). Different copulas allow for different degrees of tail dependence3. The 

                                                           
3 Range of parameters, Tail dependence, and Kendall’s tau for some common copulas are provided in a table in the 
annex.  



Gaussian copula captures no tail dependence, which would imply that extreme price changes in 

spatially distinct commodity markets are independent.  

In this paper, to empirically estimate copula models of the joint distribution of log price changes 

between different markets, we consider a large number of bivariate copula specifications that 

permit considerable flexibility in explaining the relationships between price changes in spatially 

distinct markets around the world. We first estimate models with one symmetric Gaussian copula. 

Then we choose a copula family from a wide range of copula models, using AIC model-fitting 

criterion that capture asymmetries for a bivariate analysis of 15 different price pairs4. We estimate 

Kendall’s tau value for both Gaussian copula and the selected copula family to compare the 

dependence structure based on traditional Gaussian assumptions and based on flexible 

distributional assumption that capture asymmetries and tail dependence.   

2.2. The Marginal Model: GARCH Process 

We need to find the appropriate marginal distributions for the copula model. Usually a specific 

form of heteroscedasticity is observed in price series. Today’s price volatility will lead to a higher 

volatility tomorrow and, thus, variances over time somewhat are related. This type of 

heteroscedasticity implies autocorrelation in squared price changes. GARCH is a model of 

stochastic process that allows such type of heteroscedasticity (Engle, 1982; Bollerslev,1986) . A 

GARCH is a stationary stochastic time series process and as prices are non-stationary (ADF and 

PP tests suggests so), we use changes in log prices and these price changes were found stationary. 

                                                           
4 As asymmetric tail dependence is one of our goals, we considered those copula families that can capture asymmetric 

tail dependence well and exclude Gaussian, Student t and Frank copulas from consideration in this stage.  



We use GARCH model instead of ARMA-GARCH as price change series are demeaned which 

remove the autocorrelation components from price changes.  

Specifically, the GARCH process is expressed as follows: 

𝑦𝑡 = √ℎ𝑡  . 𝜀𝑡 

Where 𝜀𝑡 is a white noise with 𝜎𝜀
2 = 𝑣𝑎𝑟(𝜀𝑡) = 1, and  

ℎ𝑡 = 𝛼0 + ∑ 𝛽𝑖ℎ𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛼𝑖𝑦𝑡−𝑖
2

𝑞

𝑖=1

 

With parameters 𝛼0, 𝛼1, 𝛼2, … … . . 𝛼𝑞, 𝛽1, 𝛽2, … … … . , 𝛽𝑝 ≥ 0  and ∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑖

𝑝
𝑖=1 < 1 

𝜀𝑡 accounts for ‘idiosyncratic’ shocks, news etc.  

Taking into consideration the characteristics of price changes in Table 1, which are generally non-

normal and skewed, we employ the GARCH (1,1) model with the skewed student-t to capture the 

time-varying volatility and leverage effect, and to fit the marginal distributions for the copula 

model.5 Skewed t distribution of Hansen (1994) has two shape parameters: a skewness parameter 

which controls the degree of asymmetry, and a degrees of freedom parameter which controls the 

thickness of the tails. Following the GARCH fit, the cumulative distributions of standardized 

residuals are formed to plug into the copula model. 

 

III. Data Source and Descriptive Statistics: 

                                                           
5  I also estimated GARCH(1,1) model with normal distribution for the comparison purpose and we found that GARCH 

(1,1) with skewed student t performs better as AIC value is lowest for all marginal.   



To model dependence structures among global food grain markets, we consider the three most 

traded food grains: rice, wheat and corn. To capture the dynamics within each food grain, we use 

two price series from each cereal grain. There are quality differences within each food grain 

markets and consumers’ preferences vary over the quality of grains. Substitution between food 

grains depends, somewhat, on quality of the grains. For example, price change of A1 super rice 

which is traded in Thailand is more correlated with either hard wheat or soft wheat, two variation 

of wheat traded in the US,  than the correlation of 100% broken rice traded in Thailand with either 

types of wheat. Thus, using a single series for a food grain would lead to misleading conclusion 

about dependencies among commodity markets. For each food grain, we select two key price 

series. The rice market is represented by the type of 100% Broken in Thailand (R1) and by the 

type of A1 Super Quality (R2). For wheat, the study uses prices of Winter Hard Wheat (W1) and 

Winter Soft Wheat (W2) traded in US export markets. For corn, we use US corn price (C1) and 

Argentine corn price (C2). Selection of commodities and price series have been somewhat 

restricted by the data availability. We use weekly price data from Food and Agriculture 

Organization (FAO) of United Nations (UN) for the period of January, 2000 to February, 2014, 

which yields 735 weekly observations.  We replace missing values using commonly used cubic 

spline interpolation6. The percentage of missing observations varies from 0.7 % to 6.6% of total 

sample.  

Table 1 presents the time series properties of the price series. Based on augmented Dickey-Fuller 

(ADF) test (Dickey and Fuller, 1979), I find that two price series of corn and the hard wheat price 

are non-stationary in levels. Other three price series, two price series of rice and soft wheat price, 

are non-stationary at conventional 5 percent level; but these prices are stationary at 10 percent 

                                                           
6 For details of Cubic Spline intrapolation, see ‘A Practical Guide to Spline’ by C.De Boor, New York, Springer, 1978.  



level. Figure 1 depicts presence of structural shift for most prices, and we consider Phillips-Perron 

(PP) test (Phillips & Perron, 1988) to check stationarity of the price series. PP test suggests all 

prices are non-stationary even at 10 percent level, except winter soft wheat which is stationary at 

5 percent level. Then we examine stationarity of price series in first difference and find all series 

are stationary at conventional 5 percent level in both ADF and PP tests.  As price series in levels 

are mostly non-stationary and price series in first difference are stationary, we use changes in 

weekly prices. The price change (pct) is calculated as pct =log(pt / pt-1), where pt and pt-1 are current 

and one period lagged weekly spot prices respectively. All price series are expressed as current 

US Dollar per metric ton.  

Table 2 provides descriptive statistics of the price series in return form. We find that all prices 

have some positive returns and positive skewness (with the exception of corn prices in Argentina) 

which indicates that the right tail of the density function of price changes is fatter or longer than 

the left side. The right-skewed nature of price changes implies that dependence of commodity 

prices may be present and prices are more dependent on each other when move upward than when 

they move downward.  

Asymmetric dependence nature of price changes has also been observed as Kurtosis values for all 

price changes except corn price in Argentina are either well above of 3 or well below of 3. This 

implies that empirical distribution of price changes may not be well described by the widely used 

normal distributions. From figure 2, it is also obvious that volatility in price series are somewhat 

clustered at least for rice and corn markets which imply that large changes in prices followed by 

large change as well. To have the appropriate marginal distributions for the copula models, we use 

GARCH model as our price change series are demeaned series which remove the autocorrelation 

components from price changes. Taking into consideration the characteristics of log price changes, 



which are generally non-normal and skewed, we employ the GARCH (1,1) model with the skewed 

student-t to capture the time-varying volatility and leverage effect, and to fit the marginal 

distributions for the copula model7.  Following the GARCH fit, the cumulative distributions of 

standardized residuals are formed to plug into copula model. 

Table 1: Time Series Properties of the Prices 

 Augmented Dickey-Fuller (ADF) Test Phillips-Perron (PP) Test 

Variables Test Statistics P-Value Test Statistics P-Value 

A. Levels 

Rice Price (100%B, Thailand) -3.2417 0.08 -11.3707 0.47 

Rice Price (A1 Super, Thailand) -3.1747 0.09 -12.8922 0.39 

Wheat Price (Hard Wheat, USA) -2.8656 0.21 -17.5175 0.13 

Wheat Price (Soft Wheat, USA) -3.2712 0.07 -20.4879 0.06 

Corn Price (USA) -2.5681 0.34 -12.3446 0.42 

Corn Price (Argentina) -2.4344 0.39 -15.8153 .23 

B. Returns 

Rice Price (100%B, Thailand) -6.7567 0.01 -545.9469 0.01 

Rice Price (A1 Super, Thailand) -6.7996 0.01 -606.4759 0.01 

Wheat Price (Hard Wheat, USA) -8.4482 0.01 -747.9682 0.01 

Wheat Price (Soft Wheat, USA) -8.2113 0.01 -724.5378 0.01 

Corn Price (USA) -7.8713 0.01 -777.9462 0.01 

Corn Price (Argentina) -8.7185 0.01 -746.1828 0.01 

Note: ADF test applies 9th lag order and truncation lag parameter for PP test was 6 for each series.  

 

Table 2:  Summary Statistics of the Prices Returns.  

Variables Mean Standard Dev. Skewness Kurtosis Observation 

Sample Period: January, 2000 to February, 2014 

Return 

Rice Price (100%B, Thailand) 0.09 2.23 2.19 21.56 735 

Rice Price (A1 Super, Thailand) 0.10 2.38 0.45 4.74 735 

Wheat Price (Hard Wheat, USA) 0.14 3.58 0.02 1.28 735 

Wheat Price (Soft Wheat, USA) 0.14 4.43 0.03 1.46 735 

Corn Price (USA) 0.11 3.89 0.02 1.97 735 

Corn Price (Argentina) 0.13 3.91 -0.20 3.02 735 

 

Table 3: Spearman and Pearson’s Correlation Coefficients for the Prices  

                                                           
7 I have estimated GARCH (1,1) with normal distribution as well and I find loglikelihoods are higher for models with 

skewed student t distribution than for models with normal distributions for each price series. AIC values were also 

higher for the GARCH models with student t-distribution. (Results are presented in the Appendix) 



Variables Rice  (100%B, 

Thai) 

Rice (A1 

Super, Thai) 

Wheat  

(Hard, 

USA) 

Wheat (Soft 

, USA) 

Corn 

(USA) 

Corn 

(Argentina) 

 Spearman’s Correlation Coefficients 

Rice (100%B, Thai) 1.00      

Rice (A1Sup, Thai) 0.56 1.00     

Wheat (Hard, USA) 0.04 0.08 1.00    

Wheat (Soft, USA) 0.02 0.05 0.80 1.00   

Corn (USA) 0.08 0.10 0.47 0.50 1.00  

Corn (Argentina) 0.04 0.07 0.44 0.47 0.75 1.00 

 Pearson’s Correlation Coefficients 

Rice (100%B, Thai) 1.00      

Rice (A1Sup, Thai) 0.61 1.00     

Wheat (Hard, USA) -0.05 0.04 1.00    

Wheat (Soft, USA) -0.03 0.01 0.80 1.00   

Corn (USA) 0.04 0.08 0.49 0.50 1.00  

Corn (Argentina) 0.01 0.04 0.45 0.45 0.76 1.00 

 

 

 



 

 



III. Results and Discussions 

In this section we present and discuss the results. First, we discuss the results of GARCH (1, 1) for 

the marginal models; and the discussion on the dependence results follows. 

 

3.1. Marginal: GARCH Process 

The parameter estimates and standard errors of the univariate skewed Student t GARCH models 

for marginal distribution are presented in Table 4. The skewness coefficients, that capture 

asymmetry in the distribution, are significant for each series which justify the rationale of using 

skewed student t GARCH process. Skewness coefficient for each price series is positive which 

depicts the fact that tail of marginal distribution is longer in the right side. This implies that large 

positive price changes, as observed during price boom, are more likely than large negative price 

changes of the same magnitude. This corroborates the descriptive statistics presented in Table 2. 

The shape parameter estimates portray that wheat prices have most fat tails with coefficients of 

10.0 followed by corn prices of USA and Argentina. Table 4 also presents results for a bunch of 

tests that checks whether models for the marginal are well specified. The p-values of those tests 

are presented in Table 4.  Jerque-Bera (JB) test and Shapir-Wilk (SW) test confirm that marginal 

models are well specified for each price series. Table 4 also presents the p-values for Ljung-Box 

test of autocorrelation in the squared residuals of the skewed student t GARCH fits and the p-

values for the LM-Arch test. All these results imply that marginal model for each series is well 

specified. Thus, the residuals from GARCH fits are extracted and are transformed into cumulative 

distribution function of uniform distribution with range between 0 and 1.  

 

 

 



 Table 4: GARCH (1,1) Results 

Variables 𝜶 𝜷 skew shape JB 

Test 

SW 

Test 

Ljung-Box Test LM 

ARCH 10 15 20 

Rice (100%B, 

Thai) 

0.26** 0.72*** 1.06*** 3.80*** 0.00 0.00 0.17 0.21 0.42 0.16 

(0.13) (0.14) (0.005) (0.66)       

Rice  (A1Super, 

Thai) 

0.27** 0.84*** 1.06*** 2.64*** 0.00 0.00 0.12 0.05 0.06 0.09 

(0.12) (0.03) (0.004) (0.35)       

Wheat  (Hard, 

USA) 

0.01* 0.88*** 1.1*** 10.0*** 0.00 0.00 0.27 0.41 0.29 0.45 

(0.005) (0.007) (0.006) (0.003)       

Wheat  (Soft, 

USA) 

0.15*** 0.79*** 1.01*** 10.0*** 0.00 0.03 058 0.71 0.81 0.65 

(0.004) (0.006) (0.006) (2.79)       

Corn (USA) 0.15*** 0.77*** 1.05*** 7.51*** 0.00 0.00 0.95 0.28 0.26 0.23 

(0.004) (0.007) (0.005) (2.05)       

Corn (Argentina) 0.003*** 0.96*** 1.09*** 5.51*** 0.00 0.00 0.06 0.20 0.27 0.11 

(0.001) (0.001) (0.006) (1.16)       

 

 

3.2. Copula Results  

We estimate copula models to analyzing the dependence structure in spatially distinct global food 

grain markets. Empirical estimation of copula models proceeds along the maximum likelihood 

estimation techniques and parameters are estimated by maximizing a joint likelihood function.  

First, we estimate Gaussian copula parameters and Kendall’s tau value to have the glimpse of 

dependence structure that is captured by models in current literature. Estimates of parameters and 

Kendall’s tau from Gaussaian copulas are presented in Table 5.  Second, we choose a copula family 

from wide variety of copulas based on Akaike Information Criterion (AIC) to model pairs of price 

series. Results of copula models based on chosen copula family are presented in Table 6.  

Parameters presented in Table 5 and Table 6 represent copula model estimates of the joint 

distribution of   ∆(𝑝𝑡
𝑖 −  𝑝𝑡−1

𝑖 )  and ∆(𝑝𝑡
𝑗

−  𝑝𝑡−1
𝑗

). 

Parameter estimates from Gaussian copulas (Table 5) have been found to be statistically significant 

for most pairs of the price changes. Table 5 also presents the values of Kendall’s tau statistics. 

Most values of Kendall’s tau are very small, especially for the pairs of prices with rice prices. 



These values suggest a small degree of dependency and, thus, do not support strongly a general 

notion of market integration among international food grain markets. However, the question 

remains, if the dependency is such low, then why do prices for rice and wheat increase so sharply 

in response to a demand shock in corn markets due to increased ethanol production? Use of copulas 

that capture distributions other than the Gaussian and also capture tail dependence answer this 

question.  

Table 5: Parameter Estimates and Kendall’s Tau of Gaussian Copula  

Market Pairs Parameters Standard. Errors Cramér von Mises Kendall’s Tau 

R1R2 0.6266* 0.0782 6.598* 0.4311 

R1W1 0.0417 0.0820 14.33* 0.0266 

R1W2 0.0216 0.0833 15.42* 0.0137 

R1C1 0.0914 0.0858 11.86* 0.0583 

R1C2 0.0743 0.0801 23.69* 0.0473 

R2W1 0.0838 0.0794 49.25* 0.0534 

R2W2 0.0575 0.0801 21.88* 0.0366 

R2C1 0.1101 0.0802 20.99* 0.0703 

R2C2 0.0743 0.0801 36.60* 0.0473 

W1W2 0.8273* 0.0466 0.353* 0.6203 

W1C1 0.4901* 0.0700 5.249* 0.3261 

W1C2 0.4682* 0.0715 5.195* 0.3102 

W2C1 0.5209* 0.0706 4.683* 0.3488 

W2C2 0.4968* 0.0721 2.091* 0.3310 

C1C2 0.7893* 0.0539 0.441* 0.5791 
Note: * indicates significance of the coefficients at 10 percent or lower level. 

 

 

Then maximum likelihood estimation techniques were used to estimate the copula specification 

that relax the assumptions of zero tail dependence and symmetric dependence that minimized the 

AIC across a range of copula specifications that allow for tail dependency and asymmetric 

dependency between market pairs8. The resulting estimates and statistics are presented in Table 6. 

                                                           
8 We also exclude student t copula from consideration as student t copula, when degrees of 

freedom parameter is less than 2, cannot be estimated; while few market pairs are truly ended up 



There are two tests, Kolmogorov–Smirnov (KS) and general Cramer von Mises (CvM), to measure 

goodness-of-fit statistics for copula models. However, the KS statistic tends to be sensitive around 

the median of the distribution and less sensitive to deviations in the tails, while the CvM statistic 

tends to be stable across the distribution, including deviations in the tails (Berg and Bakken , 2006). 

We have, thus, applied the Cramér von Mises (CvM) statistics with 100 bootstraps to test the 

goodness-of-fit of the estimates. 

 Cramér von Mises statistics strongly support the selected copula family over a Gaussian copula. 

Cramer von Mises statistics indicates that parameter estimates from the selected copula family for 

twelve market pairs out of fifteen, are favorable than parameter estimates of Gaussian copula. 

Estimates of upper and lower tail dependencies for the estimated copula for each pair of market 

prices are also presented for the in Table 6. In many cases, significant dependency has been 

revealed in one or the other tail, which imply the fact that the Archimedean copulas impose zero 

dependency in one tail. In most cases, the dependence is tighter in one tail, indicating more 

adjustment for extreme values of the price differentials. 

The estimates of Kendall’s tau for the estimated copula of each pairs of market prices are also 

presented in Table 6. We see that Kendall’s tau values improve significantly when we choose a 

copula family that captures tail dependence and allows for asymmetric dependence. Dependencies 

are generally large and the values of Kendall’s tau tend to be high for most price pairs. We find 

very high dependence between all the market pairs except between 100% broken rice prices in 

                                                           

with degrees of freedom parameter less than 2. However, it should not weaken the results as we 

have estimated Gaussian copula separately to compare with the selected copula family. 



Thailand and the price of winter hard wheat in the USA9. Excluding this exception, we see high 

dependence among prices for all three cereal grains. Especially A1 Super rice in Thailand is well 

integrated with the wheat and corn markets in USA and this strong dependency explains the quick 

shock transmission from corn market in the USA to Rice markets in the Asia region during 2008 

price boom due demand shock in corn market from increased ethanol production. We also find 

some tail dependence are high for some pairs of markets. The results imply that improvements in 

the accuracy of price forecasts could be possible from considering an alternative copula to the 

Gaussian copula currently applied in most research. 

Table 6: Parameter Estimates, Kendall’s Tau and Tail Dependence Estimates of Selected Copula Family 

Market 

Pairs 

Copula  Family 
Param. 

I 

Std. 

Err. I 

Param. 

II 

Std.  

Err. II 

Cramér 

von Mises 
Kendall

’s Tau 

Tail Dependence 

L. Tail U. Tail 

R1R2 Survival Joe-Clayton  2.333* 0.117 4.722* 0.3986 10.41* 0.7093 0.654 0.863 

R1W1 Joe  1.047* 0.075 0.994* 0.0047 26.39* 0.0266  0.062 

R1W2 Joe-Frank 3.344* 0.241 0.965* 0.0188 14.78* .5255   

R1C1 Joe-Frank 2.868* 0.193 0.977* 0.0133 10.17* 0.4793   

R1C2 Joe  1.049* 0.077    0.0277   

R2W1 Survival Joe-Gumbel 1.626* 0.002 2.444* 0.0893 25.68* 0.6968 0.809  

R2W2 Joe-Gumbel 1.628* 0.407 3.182* 0.5260 32.89* 0.7673  0.857 

R2C1 Survival Joe-Frank  6.00* 0.329 0.927* 0.019 22.56* 0.6801   

R2C2 Survival Joe-Frank 3.141* 0.233 0.966* 0.0193 13.07* 0.5034   

W1W2 Survival Joe-Gumbel 1.626* 0.002 3.649* 0.1313 1.95* 0.7969 0.876  

W1C1 Joe-Gumbel 1.626* 0.002 3.248* 0.1207 11.23* 0.7719  0.8597 

W1C2 Survival Joe-Gumbel 1.626* 0.002 2.780* 0.1051 10.22* 0.7335 0.834  

W2C1 Joe-Gumbel 1.917* 0.518 3.524* 0.6717 11.98* 0.8116  0.8919 

W2C2 Survival Joe-Frank  6.000* 3.022 0.741* 0.2255 3.363* 0.5554   

C1C2 Survival Joe-Gumbel 1.626* 0.002 2.315* 0.0816 1.107* 0.6800 0.798  

Notes: * indicates significance of the coefficients at 10 percent or lower level. Bold Cramer von Mises imply lower 

value corresponding to that for Gaussian Copula.  

 

                                                           
9 The first exception can be explained through low substitutability between 100% broken rice and 

winter hard wheat (best quality wheat), while the second exception may attributes the vast 

distance between these two markets. 



V. Conclusion 

We examined whether spatially distinct agricultural commodity markets are well integrated by 

studying the dependence structure or co-movement between commodity prices. This analysis also 

enabled us to assess the tail dependence and so determine whether the global agricultural 

commodity markets are moving together in times of high volatility. We found strong and 

significant dependence for most price pairs among global food grain markets. Especially A1 Super 

rice in Thailand (R2) and 100% Broken in Thailand (R1) are well integrated with the wheat and 

corn markets in USA, which means that this strong dependence between markets may lead to a 

strong volatility transmission and skewness spillover across markets when any of the markets 

experience demand/supply shock. This strong asymmetric dependence between Thailand’ rice 

markets and the food grain markets in the USA might played crucial role in global commodity 

price boom in the late 2000s. Thus, this high dependence among markets could help as risk 

management tool in future policy formulation and in price forecasting for both speculators in the 

commodity futures markets and policy-makers in the food importing countries.  
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Appendix 

Table A1: Comparison of GARCH (1,1) fit with Normal distributions and Skewed Student t distributions 

 Normal Distribution Skewed  Student t distribution 

Variables Log Likelihood AIC Log Likelihood AIC 

Rice (100%B, Thailand) 1896.827 -5.151 1936.369 -5.253 

Rice (A1 Super, Thailand) 1808.561 -4.910 1860.875 -5.047 

Wheat (Hard, USA) 1448.665  -3.931 1455.209 -3.943 

Wheat (Soft, USA) 1288.273 -3.495 1291.928 -3.499 

Corn (USA) 1380.772  -3.746 1390.952  -3.769 

Corn (Argentina) 1384.113 -3.755 1405.836  -3.809 

  

Table A2: Range of Parameters, Tail dependence, and Kendall’s tau for some commonly used copula models 

Copula Coefficient λL λU Kendall’s τ 

Gaussian 𝜌 ∈ [−1, 1] 0 0 2

𝜋
arcsin (𝜌) 

Student-t 𝜌 ∈ [−1, 1],  
𝜐 ∈ (2, +∞] 

2TV+1(x) where 

x=−√𝑣 − 1√
1−𝜌

1+𝜌
 

= λL 2

𝜋
arcsin (𝜌) 

     

Clayton 𝜃 ∈ (0, ∞) 2−1 𝜃⁄  0 𝜃

2 + 𝜃
 

Gumbel 𝜃 ∈ [1, ∞) 2 − 21 𝜃⁄  0 
1 −

1

𝜃
 

Rotated Gumbel 𝜃 ∈ [1, ∞) 0 2 − 21 𝜃⁄  
1 −

1

𝜃
 

Source: Heinen and Valdesogo (2012).  

 

 

 


