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Technological Change and Risk M anagement:

An Application to the Economics of Corn Production

1. Introduction

Technologica change has contributed to large increases in agricultural productivity (e.g.,
Bal et d.; Brennan, Masters et al.; Byerlee). Besides improving productivity, technol ogical
change has also affected production risk (e.g., Antle and Crissman; Binswanger and Barah).
While genetic improvements have increased mean crop yields, they have aso affected yield
variability. For example, while the green revolution generated increases in both mean and
variance of yield, Traxler et a. found that the post-green revolution era exhibited both dower
mean yield growth and declining yield risk. This latter effect can be attributed in part to genetic
improvements targeted to improved pest and disease resistance.

The interest in risk issues is motivated by the empirical evidence that most farmers are
risk averse (e.g., Lin et a.; Binswanger; Antle, 1987; Saha et al.). It suggests that technological
change can a so generate benefits by reducing the farmers' exposure to production risk. In
addition, the empirical evidence indicates that most farmers exhibit decreasing absolute risk
aversion (DARA) (e.g., Binswanger; Chavas and Holt). Thisimpliesthat farmers are averse to
“downsiderisk” (Antle, 1987). Intuitively, this means that farmers are especially averse to being
exposed to unexpectedly low returns (e.g., due to crop failure). This has motivated research on
the role of downside risk in risk management, including the “ safety first” approach (e.g.,
Roumasset). Much research has analyzed agricultura risk. This includes the mean-variance
investigation of input effects (e.g., Just and Pope), and technology (e.g., Traxler et d.). Yet, the
influence of technological change on downside risk exposure (e.g., on the probability of crop
failure) remains poorly understood. There is a need to refine our understanding of the linkages
between technologica change and exposure to risk and downside risk in agriculture, with

implications for the cost of private risk bearing.



Thereis evidence of asignificant increase in yield variability over the last few decades
(e.g., Thompson; Ramirez). Part of thisincrease appears due to climate changes (Baker et al.)
suggesting that farmers are now facing greater production uncertainty. With accumulations of
greenhouse gases (e.g., CO,) contributing to globa warming (IPCC; Houghton and Woodwell;
NOAA), climatic changes have implications for farmers’ risk exposure. Considering that the
impacts of climate change are region-specific (IPCC), it is of interest to examine how the linkages
between climate, technology and production risk vary across regions.

This study presents an economic analysis of risk exposure in corn production and corn
profitability at the edge of the Corn Belt. Following Antle (1983) and Antle and Goodger, our
analysis of production risk involves a moment-based approach. We extend the mean-variance
anaysis presented in Just and Pope, and Traxler et a. by aso examining the third central moment
(the skewness) of the relevant random variables. Under risk aversion, decision makers are
adversaly affected by a higher variance of returns. And under downside risk aversion, the welfare
of decision makersis positively (negatively) affected by an increase (decrease) in skewness of
returns. This paper examines the effects of technological change on the mean, variance and
skewness of corn yield and corn profitability, as they evolve under technological progress.
Relying on Pratt’ s risk premium (as a measure of the cost of private risk bearing), we define
technologica progress to be risk-increasing (risk-decreasing) if it increases (decreases) the
relative risk premium. We investigate empiricaly the tradeoff between risk (measured by both
second and third central moments) and expected profit, with a specia focus on the degree of
farmers exposure to downside risk.

The analysisis applied to corn yield and corn profitability using time series data (1974-
1997) from several research stations in Wisconsin. The panel structure of the data enables us to
investigate the implications of risk (including downside risk) associated with corn profitability on
farmers welfare over time and across space. Econometric estimates are obtained for the first

three central moments (mean, variance, and skewness) of the distribution of corn yield, corn



moisture, and corn profit. The empirical evidence shows how the trade off between expected
return and risk has evolved over time and across sites. Our results indicate that technol ogical
progress has contributed to reducing risk exposure, although such effects vary across space. They
al so stress the importance of relative maturity of corn hybrid as a means of managing production
risk. Finaly, they document the role and evolution of downside risk exposure, and its
implications for the cost of risk.

This paper is organized as follows. Section 2 presents a conceptual framework of
decision making under risk. Under the expected utility model, we analyze the effects of
technology and input use on production risk, profitability. We use the properties of the relative
risk premium to characterize the effects of technology on risk exposure. We aso rely on a
moment-based approach to approximate the risk premium. This guides our econometric
specification for empirical research. The data and application of the model to corn are discussed
in section 4. Sections 5 and 6 present the empirical anaysis. We analyze how the choice of corn
hybrid maturity affects corn yield and corn prof itability, focusing on its effects on expected value,
variance as well as skewness. Corn hybrid maturity is found to have statisticaly significant
effects on production risk. Thisimplies that the choice of hybrid maturity is an important risk
management tool for farmers. We aso find evidence that technologica change contributes to a
significant reduction in risk exposure through its effects on the variance as well as skewness of
profit. In other words, besides increasing yield, technological progress aso lower farmers
exposure to both risk and downside risk. However, these effects are found to vary between farm

types and across space. Finaly, concluding remarks are presented in section 7.

2. Conceptual Framework
Consider afarm producing Y = (Y4, Ya,..., Y,,), avector of outputs under uncertainty.

Under technology t, farm production of output Y; is represented by the stochastic functions Y; =



A; xyi(x, t, ), where A isthe acreage of the i-th commodity, y;(% is the corresponding production
per acre, X; is avector of inputs used to produce y;, and e is a vector of stochastic factorsthat are
not known to the decision maker at the time when the input decisions are made. The vector of
stochastic factorse is treated as a random variable with a given probability distribution G. The
vector e includes unpredictable weather effects as well as the effects of pest and diseases on farm
production. Similarly, under technology t, farm production cost in producing the i-th commodity
is represented by the stochastic function [A; xCi(x;, t, €)], where G(x;, t, €) isthe cost per acre,
depending of input choices x;, technology t, and production uncertainty e. Note that this allows
for cost to depend directly onyidd, eg., G = G(yi(xi, t, €), X, t, €). Examples of ex post costs that
vary with output include storage cost and drying cost. By denoting p the price of output Y;, total
profit associated with farm activities Y is

p=2a {A Xpxik,t e)-Cix,te)}, @)

i=1

subject to é"{ A; = A, where A denotes total acreage available for farm production. The price of
i=1

output, p, can aso introduce a stochastic market environment in the analysis. This alows for
price and weather uncertainty, as well as technology effects in production decisions. Assume that
inputs are chosen to maximize the expect utility of profit EU(p), where E is the expectation
operator based on the information available at the time decisions are made. The von Neumann-
Morgenstern utility function U(p) represents the risk preferences of the decision maker, with
TUAp > 0. Then, we can characterize farm decision-making by the optimization problem: Max
{EU(p)}, where profit p isgiven in (1). The cost of private risk bearing can be measured by the
sure amount R satisfying

EU(p) = U[E(P) - R], @

where [E(p) — R] isthe certainty equivalent of profit (Pratt). The value R defined in (2) is the risk

premium measuring the largest amount of money the decision maker is willing to pay to replace



the random variable p by its expected value E(p). It is a monetary measure of the implicit cost of
private risk bearing. In this context, for non-degenerate risk, risk averson impliesthat R > 0, i.e.
that the decision maker always prefers ariskless world. This corresponds to a concave utility
function: T°UMp® < O (Pratt).

From equation (2), maximizing expected utility is equivalent to maximizing the certainty
equivaent, E[p(x, t, 3] —R(x, t). In generd, the certainty equivaent, E[p(x, t, 3] — R(X, t),
depends on input use x and technology t. Of particular interest are the effects of input use x and
technology t on risk exposure. An input x is said to be risk-increasing (risk-decreasing) if TR(x,
t)/ix > 0 (< 0), i.e. if it increases (decreases) the cost of private risk bearing (e.g., Ramaswami).
Assuming an interior solution, and using the first-order necessary condition {[E(p)-R]/MIx = 0, this
can be expressed equivalently through the effects on the relative risk premium: R(x, t)/[E(p(X, t, ¥
— R(X, t)]. In other words, at the optimum, input X is risk-increasing (risk-decreasing) if it tendsto

é R(x,1) 0
&E(p(x,t3) - R(x, )
X

increase (decrease) the relative risk premium: >0(<0).

In asimilar fashion, we propose to investigate the effects of technological change on risk

exposure. We consider the case of technologica progress associated with an increase in the

technology index t, such that T[E(p (X, t, ¥ — R(x, t)]/ft > O.

Definition: Under risk aversion (where R > 0), technologica progressis said to be risk-increasing

é R(X,1) u
8E(p(x,t,ﬂ>§t)- R, O >0(<0).

(risk-decreasing) if

Assuming that E(p) >0, E(p) - R >0, and R > 0, this definition implies that technological

progressis risk-increasing (risk decreasing) if IN[R(x, t)]/9t > (<) TIN[Ep(x, H)]/Mt, i.e, if



technological progress tends to increase the risk premium relatively more (less) than expected
return. Note that this characterization of linkages between technology and risk exposure depends
on risk preferences as they influence the cost of private risk bearing R. This suggests a need to
assess the risk premium R.

While R can always be obtained as an implicit solution to equation (2), this requires
knowing both the utility function U(p) and the probability distribution of p. Given the empirical
difficulties in obtaining this information, it will be useful to develop some simple approximation
to R. Under differentiability, take afirst order Taylor series expansion on the right-hand side of
(2) with respect to R, and a m-th order Taylor series expansion on the |eft-hand side of (2) with
respect to p. In the neighborhood of the riskless case (wherep = E(p)), this gives the following

approximation to the risk premium R

j U
U - E(p)]lg, 3

—

=2 J:

D E& D
Qo

) j
whereU' = %(E(p)) is the j-th derivative of U with respect to profit p, evaluated at E(p), j = 1,
p

...,m,m?3 2. Notethat E[p - E(p)]' is the j-th central moment of p. Thus, expression (3) provides
an approximate measure of the risk premium as a function of the first m central moments of
profit. This starts with the variance of p (when j = 2), but it can aso include higher moments
(e.g., skewnesswhen j = 3). This provides a framework to assess the relative importance of each
moment in the cost of risk. Under risk neutrality, the utility function U(p) islinear, the risk

premium R is zero, and maximizing (2) reduces to maximizing the sum of expected profit
E[4 pi(xt e)]. However, under risk aversion, T2UMp? < O (Pratt), implying that the risk
i=1

premium R tends to increase with the variance of profit. And under downside risk aversion,
*UMp® > 0, implying that the third central moment becomes relevant: decision-makers prefer a

positive skewness as it reduces their exposure to downside risk (e.g., Antle, 1987).



The model just presented is quite generd: it includes multiple sources of uncertainty
associated with different productions. However, one may sometimes want to focus on the
uncertainty associated with a particular production. Thisis the empirical case presented below,

where we focus on corn production. In this case, we want to adapt the above andysis. For that

purpose, assume that we want to focus on the first commodity (i = 1). Letp = [A; xpi], where

. [o]
1 e

pi = p *vi(xi, t, &) —Ci(x;, t, &) denotes profit per acre of the i-th commodity. Note that (én e)=
i=1

il ) ) n
! el sel xoeh | wherejy, j,, ..., ) are non-negative integers satisfying a j, =j.

é—
ot ! i=1

Letting e; = [A; X(pi — E(p:))], it follows that the risk premium R can be approximated by

1
R @—U1

o %E»CD

oy >{A'>mp +d1§ ®)

J:

where m, = E[(p, — E(p.)Y] isthe j-th central moment of profit per acre of the first commodity,

il ) . )
P, andd, = é %eﬁ el xoel =2, ..., m Expression (3') relates the risk premium R
S LI PL
to the first m central moments of p,, while the d;’s account for the effects of risky returns
associated with other production activities. It follows that the certainty equivaent of profit can be

approximated as

Ep)-R@4 (A E(P)] - Ui

qm%f»cn

o UJ i l\:l
a—A{A]>xm, +d;]u. (4)
=2 J H

Equation (4) identifies the components of the certainty equivalent directly associated with

é .l U
the first commodity. They are: A; xm - & 4 UJ— AA) >mp]u where m = E(p,). This shows
g = ¥

the direct effects of the first m moments of the distribution of profit p;, my,, j =1, ..., m, on the

certainty equivaent. Note that equation (4) applies under very general conditions. It only



requires that the first m moments of p arefinite. As such, it alows for many probability
distribution functions for the random variables e, thus providing a flexible representation of the

uncertainty.

3. Econometric Specification

This section discusses the econometric specification used below in our empirical
investigation of the distribution of corn yield, moisture and profit. Let mp(X1, t) = Ep1(X4, t, €)
denote the mean profit or first moment of profit per acre of the first commodity. And let my,(X, t)
= E[(p1(X1, t, €) - mp(Xy, t))] be the j-th central moment of p,, j =2, ..., m, conditional on input
decisions x; and on technology t. Equation (4) shows how the certainty equivalent of profit
depends on the mean profit my(X4, t), on the variance of profit, m,(X, t), on the skewness of
profit my(Xy, t), etc., and on other interaction effects across activities. This suggests a need to
estimate the moments of profit my(x4, t), ] =1, 2, 3.... For that purpose, we specify a parametric
form for each m,, and estimate the corresponding parameters. Let my, = fj(x4, t, b;), whereb;isa
vector of parameters representing the effects of x; and t on the j-th moment of profit m,,j =1, 2,
3.... Then, consider the econometric model

P1=Tf1(X1,t, by) + Vi 5)
where vy, is an error term distributed with mean zero, E(vyp) = 0. Then, treating (X1, t) as
exogenous variables, equation (5) represents a standard regression model where the parametersb;
can be consistently estimated by the least squares method. Let b;"* be the least squares estimator
of by in (5), giving the least squares residua vi,-° = p; - f1(xy, t, b,"%). Consider the following
model specification

(Vip~9)? = fo(X1, t, D2) + Vo, (6)
Then, the least squares estimation of (6) gives b,®,a consistent estimator of b, (Antle, 1983). It

follows that f,(x1, t, b,°) isaconsistent estimator of Var(vy,). In the presence of



heteroscedagticity, this provides a basis for re-estimating equation (5) by generalized least

squares. The resulting estimator b,°-°

is consistent, asymptotically efficient, and asymptotically
normal. This provides the estimator of expected profit reported below. Next, define vy,°-°=p; -
f1(x, t, b;®-5) and consider

(V1% %Y = fi(xe, t, by) + Vip, j 2 2, (6)
Since v;,°® is a consistent estimator of vy, it follows that the least squares estimator of by in (6')
is consistent and asymptotically norma for j 3 2 (Antle, 1983; Antle and Goodger). However,
noting that Var(v;,) = f5 — (f;)?, the standard errors of b; need to be corrected for
heteroscedasticity. For that purpose, we implement the procedure proposed by White to obtain
consistent estimates of the standard errors of b; in (6"). This provides the empirical framework
used below in the investigation of the distribution of profit (measured through its mean, variance,
and skewness) as it changes with technology t and the input choices X;.

Farm profit p; isafunction of input choice x;, technology t, and uncertainty e. As
indicated in equation (1), it will be of interest to decompose the effects of (x4, t, €) on farm profit
p; into two main effects: (i) production effects through the production function y; (x4, t, €); and (ii)
cost effects through the cost function Cy (x4, t, €).' Both functions are stochastic because they
depend on the random variables e. Following the moment- based approach, they can each be
represented by their central moments: mean, variance, skewness, etc. The empirical anaysis of
these moments can be conducted in away similar to the approach just discussed for the profit
function. For example, the central moments of the production function y; (x4, t, €) can be
parameterized as E(y;) = my = ¢u(X:, t, @,) for the expected value of yield, E[(y, - m,)’] = m, =
O(X1, t, @,) for the variance of yield, E[(y, - m,)®] = my = g(X1, t, @) for the skewness of yield,
etc. Following the estimation method discussed above, the parameters of the functions g(x, t,

a),j =1, 2, ..., can be consstently estimated. Similarly, the central moments of the function

Ci(xy, t, €) can be parameterized as E(C,) = m. = hy(X4, t, @) for expected cost, E[(C; - mo)*] = M



= hy(X1, t, @) for the variance of cogt, E[(C; - m.)®] = m = hy(X4, t, @) for the skewness of cost,
etc. Again, the parameters of the functions h(x1,t, @), j =1, 2, ..., can be consistently estimated

as discussed above.

4. An Application to Corn

We apply the conceptua framework developed in the previous sections to corn
production, with a focus on the risk implications of production uncertainty. In particular, we
examine the effects of technology and climate change at the edge of Corn Belt. Firg,

Mendelsohn et al. has argued that the effects of climatic change are expected to be more
significant in margina areas around the Corn Belt. Second, characterizing the implications of
technological change at the edge of the Corn Belt allows us to examine the differential effects of
technological change on corn production over space.

Our analysis relies on corn production and cost data obtained from three research stations
in Wisconsin: Arlington, Marshfield and Spooner. The Arlington research station is in Southern
Wisconsin, Spooner is in Northern Wisconsin, while Marshfield isin Central Wisconsin. The
Arlington station is located in the Northern Corn Belt. As such, the data from Arlington provide
information on the effects of technology and climatic changes on corn production and costs in the
Corn Belt. In contrast, Marshfield and Spooner are outside the Corn Belt. This means that the
data from Marshfield and Spooner provide useful information on technology and climate effects
in more marginal areas for corn production.

As one moves north in Wisconsin, corn yields decline as the length of the growing season
gets shorter. To deal with this shorter growing season, farmersin Northern Wisconsin plant
short-season corn hybrids for at least two reasons: 1/ they give a higher probability of reaching
maturity before the end of the growing season; and 2/ they require lower drying costs. These

trade-offs are evaluated below. The data set consists of 24 years (1974-1997) of yield and relative
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maturity? (RM) information generated from long-term studies of corn yields conducted by the
University of Wisconsin Agricultural Experiment Station. These agronomic trial studies were
designed to measure corn hybrid performance. They measured yield and grain moisture for a
range of corn hybrids. Because other inputs (including cultural practices) were uniformly
administrated during the experiment at each site, yield variations in each location are mainly due
to the choice of hybrid maturity, genetic improvements and uncontrollable factors (mainly
weather effects). This provides abasis of evauating the evolution of the distribution of corn yield
and cost over time and across space.

Table 1 summarizes the data for the Arlington, Marshfield and Spooner research stations.
Number of observations (N), average GDD (Growing Degree Days)® and its standard deviation,
average yield (bu/acre), average corn moisture at harvest (percent) and the range of maturity
rating (RM) for each location are presented. As expected, as one moves north, average GDD
declines. Below, we will examine the evolution of GDD as a proxy measure of climate change.
The average yield over the sample period decreases as one moves north. Relative maturity ranges
from 85 to 120 in the south, and from 70 to 110 in the north, reflecting the different climatic

conditions.

5. Estimation Results

Focusing on the first three central moments of the distribution of corn yield, corn
moisture, GDDs (Growing Degree Days) and corn profit, this section presents an empirica
investigation of (i) the determinants of the distribution of corn yield, (ii) the distribution of GDDs
and itstrend, (iii) the factors affecting the moisture of corn grain at harvest, and (iv) the

distribution of corn profit and its evolution (both over time and across space).
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5.1. Mean, variance, and skewness of corn yield

As discussed in section 3, we estimate the factors influencing the mean, variance, and
skewness of corn yield. First, we consider the stochastic production function representing corn
yield, y1 = qu(Xy1, t, @1) + viy, Where vy is an error term distributed with mean zero. The expected
yield function g,(¥ is specified and estimated as a linear function of relative maturity (RM), the
square of relative maturity (RM?), and atime trend (T). The introduction of RM? allows for
possible nonlinear relationship between relative maturity and corn yield. Thetime trend T
captures two effects: the impact of technologica change (e.g., genetic progress)* on yield
(Cardwell), as well as the impact of climatic change (Baker et a.; Mendelsohn et a.). The error
term v, accounts for unobserved weather effects and other uncontrollable factors affecting corn
yield.

Second, we consider the variance of yield: my, = (X1, t, @2) + Vo,. We specify and
estimate the variance of corn yield as alinear function of relative maturity (RM) and atime trend
(T). Third, weinvestigate the skewness of yield: my = g(X1, t, @3) + Vs,. Thisfunction is
estimated using a linear specification with relative maturity (RM) and atimetrend (T) as
explanatory variables.

The econometric results are reported in Table 2. From Table 2-A, the coefficient
estimates in the expected yield equation have anticipated signs and a high level of significance.
First, the coefficients associated with RM are all statistically significant. In al three sites, we
find a positive and concave relationship between relative maturity and corn yield: long season
hybrids tend to produce higher expected yield. Second, the coefficients of time trend (T) are al
statistically significant at the 1% level. The positive signs of the coefficients indicate that
expected corn yield increases over time. As discussed, this measures the joint effects of climate

change and productivity growth due to genetic and technological improvements. It is noted that



the magnitude of the time trend effects increases as one moves north, identifying dightly
heterogeneous effects of technology and climate changes on expected corn yield.

Table 2-B reports estimation results for the variance of yield. The fairly low R? value
suggests that alarge part of the variance remains unexplained. However, the variance of yield
tends to increase over time. While not significant in Arlington, this effect becomes positive and
significant as one moves north. This suggests that technological and climatic changes have
increased production risk for corn at the edge of the Corn Belt (but possibly not within the Corn
Belt).

The estimation results for the skewness of yield is reported in Table 2-C. We found no
evidence of statistically significant relationship between relative maturity and the skewness of
yield. While the choice of relative maturity is relevant in dealing with production risk (as
measured by the variance of yield), it suggests that RM choice does not affect exposure to
downside yield uncertainty. At Arlington, positive and significant time trend suggests that
technology and climate changes tend to increase the skewness of yield. Thisimplies that
exposure to downside yield risk has declined over time at Arlington. However, these effects are
not statistically significant outside the Corn Belt (Marshfield and Spooner).

Next, we investigate the nature of the exposure to downside yield risk. For that purpose,
we tested the null hypothesis that the yield distribution is symmetric, using a Wald datistic. The
skewness coefficient measuring symmetry of the distribution is defined as b, = (f,)%/(f,)°?, wheref;
is the i-th central moment of yield (Greene, p310). Under the null hypothesis of symmetry (b, =
0), the test statistic W = N x(b,%/6) is distributed c¢*(1). We tested for symmetry at each site for
different values of RM and at different time periods. For Arlington and Marshfield, the test
results imply that,in most cases, the null hypothesis of symmetry is rejected at the 5 percent
significance level. The test results then provide evidence that the distribution of yield is skewed to

the l€eft (corresponding to a significant exposure to downside risk) in Arlington and Marshfield.
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As one moves north (Spooner), the null is rejected regardless of the maturity length of corn
hybrids. Thus, in generd, we find evidence that the distribution of yield is skewed to the | eft,
implying a significant exposure to downside yield risk. However, one exception is a Arlington,
where we failed to reject the null for medium-season hybrids in the 1990s, while we rejected the
null for the same hybrids in the 1970s and the 1980s. This indicates that yield skewness has

changed and that the exposure to downside risk has declined over timein Arlington.

5.2. Technological change versus climatic change

The estimation results discussed in the previous section show some significant increases
in the mean, variance and skewness of yield over time. The joint effects of technology and
climate changes on the mean, variance and skewness of corn yield (captured by the time trend T),
appear to vary across sites. A question of interest is whether we can assess how much of these are
due to technological change versus climate change.

To address this question, we consider the evolution of the distributions of Growing
Degree Days (GDD) at each site. Since GDD is a temperature-based index providing a summary
measure of the length of the growing season for corn, we use it as a proxy for climate change.
Using the moment-based approach discussed in section 3, the mean, variance and skewness of
GDD are estimated as a linear function of atime trend. The results are presented in Table 3 for
Arlington, Marshfield and Spooner. Asindicated in Table 3-A, the coefficient of the time trend
(T) in mean GDD equation is positive and statistically significant for Marshfield. However, it is
not statistically significant for Arlington and Spooner. Thus, for Arlington and Spooner, there is
no strong evidence of alonger growing season (as measured by GDD). For these stations, this
weak evidence of global warming effects suggests that most of the yield trends could be
attributed to technological change.” For Marshfield, we find strong evidence of alonger growing
season. Thisis consistent with beneficia effects of globa warming in the northern fringe of the

U.S. (Mendelsohn et al.). On the other hand, as indicated in Table 2-A, we dso find strong
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evidence of joint effects of technology and climate changes on productivity gain. Then, how
much of productivity gain a Marshfield can be attributed to technological improvement?
Compared with the annua yield increase of +1.87 bu/acrefyear (+1.13 %/year), 0.42% per year
increase in growing season (associated with an average annual increase in GDD of 11.45°F) is
reported in Table 3-A. To the extent that GDD increases are expected to generate proportional
changes in expected corn yield, this suggests that about 37 percent of productivity gainin
Marshfield would be attributed to alonger growing season. This would suggest that 63 percent of
productivity gain may be associated with technological change. In away consistent with
Thompson (1975, 1986) and Cardwell, this indicates that only a small proportion of yield trend
can be attributed to evolving weather patterns. Thus, for al three sites, technologica progress
seems the dominant factor influencing productivity trends in corn production.

Next, we evaluate the impact of climatic change on production risk (as measured by the
variance of corn yield). Table 3-B reports that the coefficient of the time trend (T) in the variance
of GDD eguation is positive and statistically significant for Arlington and Marshfield. This
suggests that the growing season has become more unpredictable at Arlington and Marshfield.
However, the time trend effect is not statistically significant at Spooner. Thus, at Spooner, thereis
no strong evidence that the length of the growing season has become more unpredictable. This
suggests that, at the edge of the Corn Belt, it is not clear whether globa warming is contributing
to increased corn yield uncertainty. Y et, significant increases in yield risk have been reported in
Table 2-B for Spooner. To the extent that they are not associated with climatic fluctuations, such
changes can be attributed to changing technology. This indicates that, along with higher expected
yields, improved technologies also bring an increased exposure to production risk (e.g., improved
short-season hybrids with better average yield but more sensitivity to weather shocks). In
contrast, in the Corn Belt (Arlington), we find a significant increase in the unpredictability of the
length of the growing season. Yet, asindicated in Table 2-B, there is no statistical evidence that

the variance of yield has increased over time in Arlington. These two findings suggest that
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technological progressin Arlington has contributed to reducing exposure to production risk in the
Corn Belt. This shows that technological progress interacts with production risk in different ways
across regions.

Finally, we inquire about the effects of climatic change on exposure to downside
production risk. Thisinvolves an investigation of the skewness of GDD. Asindicated in Table 3-
C, wefind no statistical evidence that the skewness of GDD has changed over time. To the extent
that the time trend captures climate change, this suggests that the impact of climate change on
exposure to downside risk remains unchanged. Y et, we found statistically significant increase in
the skewness of corn yield at Arlington. We interpret this to mean that, at Arlington, most of the
reduction in downside risk can be attributed to technologica progress (e.g., due to new hybrids
that are more resistant to pests and diseases). In al cases, we conclude that technologica progress

seems the dominant factor influencing the evolving distribution of corn yield.

5.3. Mean, variance, and skewness of corn moisture

This section explores corn grain moisture at harvest. Since the cost of drying depends on
the moisture of corn grain a harvest, we examine the factors affecting the uncertainty involved in
drying cost. Expected moisture, variance of moisture, and skewness of moisture are specified and
estimated. The estimation results are reported in Table 4 for each site. Mean, variance and
skewness of moisture equations are specified as alinear function of relative maturity RM and a
timetrend T. Including atime trend alows us to examine the effects of technology and climatic
changes on the evolution of moisture over time.

Asindicated in Table 4-A, the effects of RM on mean corn grain moisture are positive
and become significant as one moves north. The variance of moisture also exhibits a positive
relationship with RM, suggesting that the risk associated with the unpredictability of corn grain
moisture increases with corn hybrid maturity. This relationship seems to become more important

as one moves north. Asindicated in Table 4-C, we find strong evidence of a Satistically
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significant and positive relationship between RM and the skewness of corn moisture at Arlington
and Marshfield. This suggests that planting alonger season corn hybrid increases the odds of
facing high moisture corn at harvest time.

Next, we evaluate the evolution of the distribution of corn grain moisture. First, at
Arlington, the coefficient of the time trend in the expected moisture equation is positive and
dtatistically significant. This means that technological progress and climatic change tend to
increase expected moisture, thereby increasing drying costs. With no evidence of changesin
climatic trend (Table 3-A), this suggests that most of these effects can be attributed to
technological progress at Arlington. However, as indicated by the statistically significant and
negative relationship between time trend and the skewness of moisture (Table 4-C), technological
progress contributes to lowering the odds of facing high moisture corn at harvest (which would
reduce drying cost). At Marshfield and Spooner, we find no strong evidence of time trend effects
on either expected moisture or skewness of moisture. However, note that these sites show

statistically significant relationships between time trend and the variance of moisture.

5.4. Mean, variance, and skewness of corn pr ofit

Finally, we explore the implications of technology and uncertainty on corn profit. We
measure corn profit as corn revenue minus drying cost on a per acre basis. Corn price is assumed
to be $2.00 per bushe.® The drying cost varies depending on corn moisture at harvest aswell as
farm type. We consider three farm types:. a livestock farmwhere corn is fed directly to livestock
with no drying; agrain farm using on-farm drying facilities; and agrain farm relying on

commercia drying.” The expected value of profit, its variance and its skewness are specified and

estimated as discussed in section 3. The econometric results are presented in Table 5. Table 5-A
summarizes the estimation results for expected income by farm type and by location (Arlington,
Marshfield, and Spooner). The results are consistent with those obtained in the analysis of

expected yield (see Table 2 and the associated discussion). For example, the coefficients
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associated with relative maturity RM and time trend T are statistically significant (except RM? at
Arlington for alivestock farm) and have expected signs. They indicate that technological change
has contributed to increases in expected corn profitability over time, with the rate of increase
being faster as one moves north. However, the patterns of variance in corn profitability become
more complex. For example, it is only in Northern Wisconsin (Spooner) that profit risk increases
significantly over time for al farm types. The rate of increase is largest for the farm using
commercial drying, and smallest for the livestock farm. In the other locations, the results vary
across farms types, indicating the significant role of drying cost.

Using the econometric results presented in Table 5-A, we evauated the RM value that
maximizes expected profit. This corresponds to arisk neutral scenario. At Arlington the optimal
RM equals 125.9 for the livestock farm, 110.9 for on-farm drying, and 98.7 for commercial
drying. These values are 96.0, 90.1 and 84.9 at Marshfield, and 89.0, 87.3 and 85.3 a Spooner,
respectively for livestock farm, on-farm drying and commercia drying. This shows that, as one
moves north, the drying cost effects are important, and maximum expected profit is achieved at
lower value of RM. These results indicate that, under commercial drying, switching to lower
maturity rating provides farmers an opportunity to reduce their drying cost and to increase
expected profit.

Next, we evauate the farmer’ s risk exposure. Table 5-B reports statistically significant
and positive relationship between the variance of profit and relative maturity RM. This suggests a
trade-off between expected profit and the variance of profit. Table 5-C shows no significant RM
effects on the skewness of profit. This suggests that RM is not an effective means of controlling
downside risk. Yet, aWald test statistic suggests that, in general, the distribution of corn profit is
not symmetricaly distributed. For example, at Arlington and Spooner relative skewness values
indicate that the distribution of profit is skewed to the left, implying the presence of a significant
exposure to downside risk. However, in Arlington, we find that the exposure to downside risk has

decreased over time.
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6. Economic Implications

This section discusses the economic implications of our econometric estimates. First, we
explore whether relative maturity is a risk-increasing or risk-decreasing input. We aso investigate
the relationships between technological progress and risk exposure. Second, we examine the
relationship between expected corn profit and the cost of risk (as measured by the risk premium),
and its evolution over time and across space. Finaly, we decompose the risk premium into two
parts. one due to the second moment and the other due to the third moment of corn profit. This
provides some insights on the relative role of variance versus downside risk exposure (as captured

by the third moment) in the evaluation of the cost of risk.

6.1 Technology, relative maturity and risk
The cost of private risk bearing was defined by the risk premium R in equation (2) and

approximated by equation (3) or (3'). From equation (3'), the risk premium per acre of corn can

be approximated by
1 é m Uj _— g
R @———>¢ é-._|>{Aix| is]Y, 7
A1>¢J 8 =2 ] H

where m, is the j-th central moment of corn profit per acre, p;. Expression (7) shows that the risk
premium depends on the first m moments of p, as well asrisk preferences U. We have
information about the first three central moments of p; (see Table 5). To make use of (7) to

eva uate the cost of risk, we need to know the decision maker’ s risk preferences. Below, we
present results obtained assuming that the decision maker’s risk preferences exhibit Constant
Reative Risk Aversion (CRRA), with utility function U(p) = p*', | > 0 being the relative risk
aversion coefficient (Pratt). Note that this is consistent with risk aversion (U? < 0), decreasing

absolute risk aversion (see Pratt), aswell as downside risk aversion (U* > 0). Given the empirical
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evidence that most farmers arerisk averse (Lin et al.; Binswanger; Antle, 1987; Sahaet d.) as
well as downside risk averse (e.g., Binswanger; Chavas and Holt), thisrisk preference
specification seems reasonable. For the purpose of illustration, the results presented below
correspond to a CRRA coefficient| =2.°

Using the approximate risk premium given in (7), we first examine the relationship
between relative maturity (RM) and the cost of risk. Evaluated at 1997, we calculated the change
in the risk premium R; due to a change in relative maturity (RM). We found that, regardless of
stes and farm types, the risk premium R; increased with alonger maturity corn hybrid. This

implies that relative maturity is arisk-increasing input: alonger relative maturity involves a

higher cost of risk.

In asimilar fashion, we explored the relationship between technological change and risk.
In section 2, we defined technological progress to be risk-increasing (or risk-decreasing)
depending on its impact on the relative risk premium. We used expression (7) to evaluate the
relative risk premium comparing 1975 with 1994, for each location and each farm type. With one
exception (commercia farm in Spooner), we found that the relative risk premium was lower in
the 1995 than in the 1975. We interpret this as strong evidence that technological progress has
been risk-decreasing. This is consistent with the results reported in Table 5.

Next, we examine whether these findings are statistically meaningful. First, we tested the
null hypothesis that RM input has no effect on the risk premium. Thisis done by calculating the
change in the risk premium due to a change in RM, and bootstrapping its distribution. The null
hypothesis that RM has no effect on the risk premium was tested for each farm type and each site.
Using a5 percent significance level, we strongly rejected the null hypothesis for each farm type
at Arlington as well as Spooner. This provides statistical evidence that choosing alower RM isa
risk-reducing strategy. At Marshfield, we aso rejected the null hypothesis for on-farm storage
and commercial farm. Again, this provides evidence that short season hybrids generate a lower

risk premium. However, we failed to rgect the null hypothesis for the livestock farm at
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Marshfield (with a p-value of 0.197). This shows that risk exposure varies across sites. It also
illustrates the importance of drying cost in the evaluation of risk management strategies.

Second, we examined the statistical significance of the time trend T on the relative risk
premium. The null hypothesisis that the relative risk premium has not changed over time. Again
we used (7) to bootstrap the distribution of the change in the relative risk premium between 1975
and 1994. Using a 5 percent significance level, the null hypothesis is strongly rejected for al farm
types and all RM at Arlington and Marshfield. We interpret this as strong statistical evidence that
technological progressis risk-reducing at Arlington and Marshfield. However, the tests results
differ for acommercia farm at Spooner. The p-values were 0.32, 0.779, 0.755 and 0.651 for RM
=70, 75, 80, 90, respectively, indicating that we fail to reject the null hypothesis at Spooner. This
suggests that the linkages between technological change and risk exposure vary across sites as

well as across farm types. These issues are further discussed next.

6.2. Trade-off between expected profit and risk premium

The trade-offs between expected profit and the risk premium (obtained from equation (7))
arereported in Figures 1-a, 1-b, 1-c by farm type for Arlington, Marshfield and Spooner,
respectively. They summarize the effects of drying cost and technologica progress on the
expected profit and risk premium by location and by farm type. They aso show the evolution of
the relationship between expected profit and risk premium between the 1970s and the 1990s.
Each point is obtained by changing corn hybrids and their associated RM ratings (expressed in
days). The dope of the lines shows how expected corn profit and risk premium relate to each
other. For example, the positive slope of frontier functions indicates that expected income cannot
be increased without also increasing the risk premium. Alternatively, the risk premium cannot be

reduced without sacrificing expected income.
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In the Corn Belt (represented by the Arlington site), the growing season is longer. Each
farm type exhibits a different slope of its frontier function. For example, the livestock farm shows
relatively large trade-off between expected return and risk premium, whereas the trade-off isless
pronounced under commercial drying. This means that, under commercial drying, the risk
premium can be reduced without much reduction in expected profit by choosing hybrids with
lower relative maturity RM. The relationship indicates that technological progress has alowed
farmers to significantly reduce their risk premium without much reduction in expected return.

In contrast, under a short growing season, Spooner (in Northern Wisconsin) shows
different linkages between technological change and the trade-off between risk premium and
expected return. There, technological progress has not alowed farmers to reduce their risk
premium without significant reduction in expected return. Finally, the results obtained in Central
Wisconsin (Marshfield) are intermediate between the other two sites. The risk premium trade-off

is not as pronounced as in the north, but more pronounced than in the south.

6.3. Decomposition of the cost of risk

This section presents a more detailed analysis of the risk premium. We decompose the
risk premium into its components due to variance versus skewness. Again, this relies on equation
(7), which relates the risk premium to the second and third central moments of corn profit.

The decomposition of the risk premium into its second and third moment effectsis
presented in Figures 2-a, 2-b, 2-c by farm type for different sites. In each figure, the horizontal
axis represents the cost of risk due to the second moment, while the vertical axis measures the
cost of risk due to the third moment. For al sites and all farm types, alarge part of the risk
premium is attributed to second moment effects. Thisis particularly true at Arlington. For
example, the variance effects consist of 67% (when RM = 85) to 91% (when RM = 120) of the
risk premium in commercial farm. Each figure shows the relative effectiveness of RM and farm

type as risk management tools affecting the risk premium.



In the Corn Belt (Arlington) where the growing season is longer, lower relative maturity
RM significantly reduces the cost of risk dueto variance. However, this cannot be achieved
without increasing the cost of downside risk exposure. Risk exposure is more prominent for the
commercia farm in the 1970s. In the 1990s, however, acommercial farm has the |least exposure
to risk attributable to both variance and downside risk. This suggests that technological progress
has contributed to reducing risk associated with the unpredictability of corn grain moisture. For
the other two farm types, risk improvements a so exist, but they are smaller.

Interestingly, under a short growing season, Spooner (in Northern Wisconsin) shows
different evolution patterns of second and third moment effects. In particular, Figure 2-c
indicates that, for acommercia farm, technological improvement has shifted the expected return-
risk premium frontier to the northeast direction (as compared to southwest in Arlington). This
means that, in Spooner, technology has weakened farmers' ability to manage risk (especially
downside risk) in acommercia farm (where drying cost significantly affect the variability of corn
profit). As one moves north, the third moment effects appear important in evaluating risk of corr-
growing farmers. This illustrates the complex interactions between technological progress and

risk exposure over space.

7. Summary and Conclusions

This paper has investigated the distribution of corn yield, grain moisture and profit, with
afocus on the effects of technology and climate changes on the evolution of trade-off between
corn profitability and risk. It used panel data from Wisconsin research stations, covering sites
from the Corn Belt to the Northern fringe of the U.S. Using a moment-based approach, our
empirica analysis examined conditional means, variances and skewness for corn yield, moisture
and profit in different sites in Wisconsin. It shows how corn yield, moisture and profit have

evolved over time, and how technology and climate change have affected them across sites.
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We found evidence that technology and climate changes have increased production risk
in Central and Northern Wisconsin. But our results also show that, in Southern Wisconsin (in the
Corn Belt), these changes have increased the skewness of corn yield and contributed to reducing
exposure to downside risk and to lowering the cost of risk. While we found some evidence of
climatic changes, such effects appear to be dominated by the impact of technological change.
Thus, our findings indicate that technological progress has provided improved means of dealing
with risk in the Corn Belt. This can be attributed in part to genetic improvements targeted to
improved pest and disease resistance. However, we want to stress that such benefits are found to
vary across sites.

Our analysis has stressed the role of risk management in corn production. It has
emphasized the importance of choosing corn hybrids and their relative maturity as a means of
managing risk. Also, it highlighted the role of technologica progressin risk exposure. The
analysis of risk premium and expected profit showed that technology and exposure to risk and
downside risk can interact, and that such effects vary over space. It illustrated the role of
downside risk exposure in the assessment of technological change in agriculture. Further research
is needed to evauate production uncertainty issues for different commodities and in different

|ocations.
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Table 1. Description of Data

L ocation N2 GDD Average | Average Relative Pg:;g'ty (RM)
Yield Moisture
Mean Standard | (bu/acre) (%) Min. Max.
Deviation
South Arlington 2484 2852.9 191.9 166.3 25.9 85 120
Central | Marshfield | 1591 2645.5 186.6 1195 275 75 110
North Spooner 2335 2586.5 202.2 109.0 279 70 110

&N denotes the number of observations.
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Table 2. Estimated relationship between yield and RM in Wisconsin

A- Expected Yield = g;(RM, RM?, T)

Parameter
Location N > R?
Constant RM RM T
-73.51 3.48 -0.014 1.86
Arlington 2484 (100.32) (1.904)* (0.009) (0.068)*** 0.252
-148.80 5.10 -0.026 1.87
Marshfield 1591 (89.40) (1.967)*** (0.012)** (0.092)*** 0.250
-531.02 13.70 -0.077 2.18
Spooner 2335 (90.28)* ** (2.124)*** (0.012)*** (0.085)*** 0.234
B- Variance of Yield = g(RM, T)
Parameter
Location N R?
Constant RM T
-788.71 11.795 3.425
Arlington 2484 (276.3)*** (2.59)*** (2.60) 0.0088
-25.48 5.631 7.753
Marshfield 1591 (259.9) (2.96)* (2.06)*** 0.010
-533.80 13.841 8.80
Spooner 2335 (350.6) (4.07)*** (2.88)*** 0.0067
C- Skewness of Yield = g3(RM, T)
Parameter
Location N R
Constant RM T
-17109 78.29 451.51
Arlington 2484 (18890) (174.04) (182.37)** 0.0033
-19848 256.14 -47.15
Marshfield 1591 (15715) (179.1) (102.9) 0.0001
2427.8 -102.92 45.22
Spooner 2335 (24331) (283.09) (185.66) 0.0001

Note: Standard errors are provided in parentheses. N denotes the number of observations. The symbols*,

** and *** denote significance at the 10, 5 and 1 percent levels, respectively.




Table 3. Estimated relationship between Growing Degree Days (GDD) and T in Wisconsin

A- Expected GDD = di(T)

Parameter
Location N R?
Constant T
2868.5 -1.126
Arlington 25 (59.67)*** (4.84) 0.0023
2500.99 11.45
Marshfield 25 (51.62)*** (4.12)** 0.212
2535.58 3.742
| Spooner 25 (75.69)*** (5.33) 0.0201
B- Variance of GDD = d(T)
Parameter
Location N R?
Constant T
-815.67 2885.5
Arlington 25 (9597) (1055)* ** 0.1654
3299.17 1963.4
Marshfield 25 (9213) (959.3)** 0.1328
30518* 654.83
| Spooner 25 (16020) (1235.3) 0.0092
C- Skewness of GDD = d;(T)
Parameter
Location N R?
Constant T
2577741 -251988
Arlington 25 (3637943) (531405) 0.0075
4278078 -407019
Marshfield 25 (3953626) (456373) 0.0046
-1258625 116721
Spooner 25 (6631540) (533661) 0.0014

Note: Standard errors are provided in parentheses. N denotes the number of observations. The symbols*,
** and *** denote significance at the 10, 5 and 1 percent levels, respectively.




Table 4. Estimated relationship between corn moisture and RM in Wisconsin

A- Expected Moisture = hy(RM, T)

Parameter
Location N R?
Constant RM T
-11.46 0.309 0.323
Arlington 2484 (1.35)*** (0.013)*** (0.011)*** 0.371
0.439 0.341 -0.295
Marshfield 1591 (1.838) (0.021)*** (0.020)* 0.183
-2.278 0.362 -0.024
Spooner 2335 (2.014)*** (0.024)*** (0.0178) 0.091
B- Variance of Moisture = h,(RM, T)
Parameter
Location N R?
Constant RM T
-42.63 0.535 0.023
Arlington 2484 (8.07)*** (0.083)*** (0.089) 0.020
-77.65 1.271 -0.668
Marshfield 1591 (15.82)*** (0.192)*** (0.159)*** 0.045
-83.37 1.156 1.491
Spooner 2335 (21.47)*** (0.250)*** (0.162)*** 0.040
C- Skewness of Moisture = h3(RM, T)
Parameter
Location N R?
Constant RM T
-210.55 2.613 -3.106
Arlington 2484 (119.7)* (1.287)** (1.327)** 0.0073
-723.50 8.601 -1.185
Marshfield 1591 (260.8)** (3.190)*** (2.397) 0.0097
-133.26 1.468 4,915
Spooner 2335 (421.6) (4.884) (2.981) 0.0002

Note: Standard errors are provided in parentheses. N denotes the number of observations. The symbols*,

** and *** denote statistical significance at 10, 5 and 1% levels, respectively.
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Table5. Estimated relationship between profit and RM in Wisconsin

A- Expected Profit = f;(RM, RM?, T)

Parameter
Location Farm Type Coga = e = R?
Livestock -147.03 6.972 -0.0275 3.731
(200.65) (3.808)* (0.018) (0.136)*** 0.252
Arlington On-farm -127.76 7.263 -0.033 2.498
(193.28) (3.669)** (0.017)* (0.131)*** 0.134
Commercial -105.43 7.493 -0.038 1.285
(194.35) (3.692)** (0.017)** (0.132)*** 0.042
Livestock -297.61 10.215 -0.053 3.748
(178.80)* (3.93)*** (0.021)** (0.185)*** 0.249
Marshfield On-farm -284.66 10.039 -0.055 3.860
(173.79) (3.822)*** (0.022)*** (0.1279)*** 0.252
Commercial -277.49 9.999 -0.058 3.944
(174.87) (3.845)*** (0.022)*** (0.1279)*** 0.247
Livestock -1062.0 27.41 -0.153 4.357
(180.56)* ** (4.25)*** (0.025)*** (0.170)*** 0.234
Spooner On-farm -972.10 25.51 -0.146 4.10
(176.77)x** (4.16)*** (0.024)*** (0.165)*** 0.218
Commercial -880.47 23.58 -0.138 3.83
(177.62)*** (4.18)*** (0.024)*** (0.165)*** 0.196
B- Variance of Profit = f,(RM, T)
Parameter
Location Farm Type o = = R?
Livestock -3154.8 47.18 13.70
(1105.1)*** (10.36)*** (10.39) 0.0088
Arlington On-farm -3091.6 48.42 -12.34
(1059.5)* ** (9.97)*** (10.84) 0.0091
Commercial -3661.2 56.17 -28.15
(1122.04)*** (10.65)*** (12.0)** 0.0130
Livestock -101.95 22,52 31.01
(1039.8) (11.83)* (8.25)*** 0.0098
Marshfield On-farm 254.29 19.90 9.53
(956.31) (10.87)* (7.78) 0.0025
Commercial 146.55 23.76 -8.33
(953.02) (10.83)** (8.33) 0.0015
Livestock -2135.2 55.36 35.20
(1402.4) (16.28)*** (11.53)*** 0.0067
Spooner On-farm -2412.7 52.72 61.36
(1412.9) (16.45)*** (10.61)*** 0.0120
Commercial -2999.4 54.78 93.34
(1505.1)** (17.58)*** (10.28)*** 0.0213




C- Skewness of Profit = f,(RM, T)

Parameter
Location Farm Type Sosa = = R?
Livestock -136871 626.35 3612.1
(151125) (1392.3) (1458.9)** 0.0033
Arlington On-farm -218213 1083.2 6485.9
(142750) (1315.5) (1524.4)*** 0.0129
Commercial -298163 1508.3 9280.6
(154627)** (1449.4) (1731.5)*** 0.0214
Livestock -158785 2049.1 -377.18
(125725) (1432.9) (823.18) 0.0001
Marshfield On-farm -35596 833.25 -1955.9
(109204) (1245.3) (741.6)*** 0.0004
Commercial 108668 -579.60 -3065.0
(107465) (1228.6) (809.9)*** 0.0039
Livestock 21982 -823.34 361.76
(194650) (2264.7) (1485.3) 0.0001
Spooner On-farm 38721 -352.67 -2296.2
(198032) (2309.6) (1334.8) 0.0007
Commercial 36328 327.78 -4421.0
(220540) (2528.9) (1338.0)*** 0.0012

Note: Standard errors of the parameter estimates are in parentheses.




Figure 1-a. Expected profit and risk premium at Arlington
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre.




Figure 1-b. Expected profit and risk premium at Mar shfield
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre.




Figure 1-c. Expected profit and risk premium at Spooner
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre.




Figure 2-a. Cost of risk due to second and third momentsat Arlington
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Figure 2-b. Cost of risk due to second and third momentsat Mar shfield
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Figure 2-c. Cost of risk dueto second and third moments at Spooner
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Footnotes

2

3

4

5

For simplicity, we focus our attention on production and cost uncertainty. This neglects the
possible effects of price uncertainty. Incorporating price risk into the analysis would be
straightforward.

Corn relative maturity is measured using the “Minnesota relative maturity rating”, a
standardized index characterizing the number of daysit typically takes each corn hybrid to
reach maturity.

GDD is atemperature-based index commonly used as a summary measure of the length of the
growing season for corn. For example, for a given location and growing season, the GDD
index for corn is defined as GDD = &; {(1/2)[max(Tmin;, 50) + min(Tmax;, 86)] - 50}, where
Tmin, (Tmax) isthe minimal (maximal) temperature on day i (in degree F). It reflectsthe
absence of appreciable corn growth for temperatures below 50°F or above 86°F.

More informative measures of technology can possibly replace time trend. For example, genetic
improvements can be directly measured by different hybrids applied. However, it is not
included in our analysis. Thisis because the number of hybridsis very large and the hybrids
change over time in our data. For example, some of the hybrids used in the early part of the
sample are no longer present in the later part. This makes it difficult to find any ssmple way of
incorporating the hybrid information in our analysis beyond their relative maturity rating, RM.

This requires the impacts of other factors that potentially explain the proportion of the time
trend not associated with weather patterns to be not significant. Including other factorsin the
model would require a more refined analysis of how technological change affectsyield
variations.

Thus, the analysis presented below neglects price uncertainty. The sensitivity of our resultsto
the price scenario was evaluated. While higher corn price increased corn profitability, the
empirical findings presented below were found to be fairly robust to the corn-price scenario.

" On alivestock farm, drying cost are zero and corn moisture variations have no impact on

8

income. In contrast, corn drying affects cost under commercia drying, with adrying cost of
0.03 cent per bushel per percentage moisture in excess of 15.5 percent. On-farm drying
represents an intermediate situation, where a drying cost of 0.015 cent per bushel per
percentage moisture in excess of 15.5 percent.

A sensitivity analysis was conducted on the relative risk aversion coefficient | . We investigated
the following scenarios: | =1, 2, 3, 6. Although the quantitative results varied depending on the
choice of I , we found fairly similar qualitative results across scenarios.



