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Abstract

This paper adapts an already existing nonparametric hypothesis
test to the bootstrap framework. The test utilizes the nonparametric
kernel regression method to estimate a measure of distance between
the models stated under the null hypothesis. The bootstraped version
of the test allows to approximate errors involved in the asymptotic
hypothesis test.
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1 Introduction1

Recently, there has been wide interest in testing the significance of a subset
of explanatory variables through a nonparametric regression technique. Al-
though this technique generates estimates robust to misspecification, their

1The author would like to thank Michiel Keyzer not only for his commensts and sug-
gestions on the earlier version of the paper but also for his enthusiastic ideas that pulled
my attention towards this exponentially growing area of econometrics.
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precision varies inversely with the number of explanatory variables (see Härdle,
1991; Cao-Abad, 1991; Yatchew, 1998; among others), and hence parsimony
is important when the nonparametric regression is applied. Researchers have
been aware of this pitfall for some time now, only recently, however, have they
turned to developing hypothesis testing procedures to identify those variables
significant.

The most recent studies in the literature adopt the nonparametric kernel
regression technique as the main element of the hypothesis testing proce-
dure. For instance, Delgado and Manteiga (1999) and Fan and Li (1996)
propose tests based on the conditional expectation function given only those
variables which are significant under the null hypothesis. The latter opts
for the asymptotic approach, while the former develops a test adopting the
bootstrap framework because of an analytically intractable distribution for
the test statistic constructed. Exploiting a traditional approach, Lavergne
and Vuong (1996) base their test on the empirical mean-squared error, which
is very often adopted in parametric hypothesis tests, from the kernel regres-
sion, and suggest a consistent test for discriminating between two sets of
regressors. Remaining in spirit of Lavergne and Vuong’s approach, Hall and
Hart (1990) construct a test for differences between means in nonparametric
regressions and adapt it to the bootstrap resampling scheme. More consis-
tent tests are introduced by Lewbel (1995) who tests Slutsky symmetry using
U.K. survey data and by Gozalo (1993) who constructs a theoretical test for
omitted variables. Last but not least, Yatchew (1992) proposes a test based
on comparison of unrestricted and restricted sums of squares, using residuals
from the nonparametric regression model. One can easily extend the list at
will.

Often adopted in the literature on nonparametric hypothesis tests has
been the approach that approximates the finite-sample null distribution (f.s.n.d.)
of a test statistic by its asymptotic distribution. This is unfortunate since
such approximations are usually subject to serious errors when the empir-
ical distribution of the observed sample significantly departs from the true
unknown distribution (Singh, 1981; Hall and Horowitz, 1996). Efron (1979)
offers the bootstrap resampling scheme as a way to avoid the approximation
errors and to identify some unknown characteristics of the test statistic asso-
ciated with the observed sample.2 The bootstrap assumes that the unknown

2Here is the simplest example to illustrate why and how the bootstrap is applied.
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relationship between the population and the actual sample is preserved in the
relationship between the actual sample and the bootstraped samples. Ac-
cordingly, the f.s.n.d. is approximated through the bootstraped distribution
based on resamples from the actual sample. To date, the bootstrap technique
has found many useful applications especially in situations where variance
or confidence limits of test statistics cannot at all or can only with undue
effort be calculated by analytical means or where test statistics depend on
unknown characteristics of the underlying distribution of variables of interest
or where there is a need to estimate the distribution of test statistics in high
dimensional linear models or to measure the goodness of fit of a regression
model (Delgado and Manteiga, 1999; Stute, Manteiga, and Quindimil, 1998;
Mammen, 1993; among others).

The present study aims at adapting Fan and Li’s (1996) nonparamet-
ric asymptotic hypothesis test procedure to the bootstrap framework as this
framework, as shown by Hall and Horowitz (1996), promises smaller ap-
proximation errors than those associated with the asymptotic analysis. Such
adaptation is relevant because, as proven by Huskova and Janssen (1993), the
bootstrap is consistent for degenerate U − statistics which are the building
blocks of the nonparametric kernel regression we apply. The current study
contributes the literature through the adaptation of an asymptotic test to
the bootstrap framework.

The rest of this study is organized as follows. In the following section we
discuss the main approaches adopted in hypothesis testing and outline the
main advantages of the bootstrap over the asymptotic approximation. In
Section 3, we describe and modify Fan and Li’s test. Section 4 explains how
to calculate the bootstrap test statistic and how to make a decision by using
it. Finally, Section 5 concludes the paper.

Suppose that a real-valued parameter, η, for example, the unknown population mean of
n i.i.d. random variables, can be written as a functional of some common cumulative
distribution function F ; that is, η = η(F ). The objective is to obtain information from
the actual sample {Xi : i = 1, ..., n} on η. Put differently, a relationship is sought between
η and the sample, and the bootstrap method approximates this relation by utilizing the
relationship between η̂ (i.e., the sample mean) and a bootstrap sample {X∗

i : i = 1, ..., n}.
But, as is clearly seen, this approximation is possible only through the approximation of
F , and hence the bootstrap is applied to approximate F .
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2 Motivation for the bootstrap

How robust is a decision if it is based only on one sample of data? This has
been the most prominent research question in statistical theory and still occu-
pies the first seat in the theory. To date, decision rules have been constructed
as follows. First of all, the sample at hand is reduced to a single observa-
tion, which is in statistical theory called test statistic; next, the asymptotic
distribution of that statistic is obtained as the number of observations goes
to infinity; and finally, an arbitrary confidence level, conventionally set at
the 5 percent, is used to make a decision as to whether the statement under
the null hypothesis is valid. What is unfortunate in this context is the fact
that that single test statistic contains no information in the continuous sam-
ple space, giving rise to different approaches to the development of a robust
decision rule.

The classical and Bayesian approaches are often adopted in the literature
as a way to bridge the gap between the actual observation and a decison
rule. The fundamental difference between these approaches lies in the way the
parameters of the model of interest are treated. The classical approach treats
them as unknown constants to be estimated, and the OLS method provides
the best linear unbiased estimators. These estimators are then evaluated
for qualities, such as unbiasedness and consistency, by repeated sampling
from the population assumed to be available. On the contrary, the Bayesian
approach treats them as random variables about which the analyst has or
can obtain information before observing the actual sample. This information,
called prior information, is characterized by a prior probability distribution.
The task then becomes to incorporate this information into the analysis, but
unfortunately its update might vary across individuals.

Research on establishing ”good” decison rules has not yet been conclusive
because in practice the population is very often unavailable and because prior
information makes inferences highly subjective. A proper interpretation of
a single test statistic requires knowledge of its f.s.n.d., which is available
only in very specific and less realistic circumstances, and it seems that it
would be wrong if such knowledge is derived from approximations through
its asymptotic distribution. There are few good reasons not to rely on the
asymptotic approximations. First, asymptotic theory pertains to the hypo-
thetical situation of infinitely many observations, while, in fact, there are
only few observations. Second, asymptotic distributions are independent of
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any feedback mechanism, whereas the f.s.n.d. of a test statistic is in gen-
eral affected by such mechanisms. Third, various types of misspecifications,
such as wrong distributional assumptions and dynamic misspecification, may
have important effects on the accuracy of asymptotic distributions.3 All in
all, in his paper, Efron shows that the bootstrap might offer some insights
when situations of the above kinds arise. In this paper, we give it a try
to see whether the bootstrap really generates better results relative to the
asymptotic results.

3 A nonparametric hypothesis test procedure

A statistical test is a decision problem involving unknown parameters that
must lie in a certain parameter space. However, this parameter space can be
divided into two disjoint subsets, and one must figure out, perhaps using a
random sample of data, the subset that is more likely to contain the unknown
parameters. Following Rabinson (1989), we develop a hypothesis test that
involves the seven main steps. In the first step we specify a data-generating
process to characterize the data at hand. A model is constructed in the
second step. The hypotheses of interest are formulated in the third step: a
null hypothesis is maintained until evidence to the contrary is shown, and
an alternative hypothesis is adopted if the null is rejected. In the fourth
step we establish asymptotic distributions of distance measures implied by
the two hypotheses. A test statistic is defined in the fifth step - a single
condensed value that has a known distribution under the null and has some
other distribution under the alternative hypothesis. The test is carried out
using this single statistic rather than by considering the multidimensional
sample space. In the sixth step we define a critical region associated with
those values of the test statistic for which the null will be rejected. Finally,
we establish a decision rule. In the subsequent paragraphs these steps are
explored.

Step 1. The data-generating process (DGP)

3For a more detailed discussion, the reader is referred to Delgado and Manteiga (1999),
Stute, Manteiga, and Quindimil (1998), Giersbergen (1998), Hall and Horowitz (1996),
Phillips and Park (1988).
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Assumption 1. Let {(Y, X)} be an independent and identically distributed
(i.i.d.) random sample (r.s.) of n observations drawn from (1 + k)−
dimensional distribution with density f(., .), where Y is a scalar and
X ≡ (X1, ..., Xk).

4

Assumption 1 makes explicit the way the data should be generated.
Independence ensures that the product of marginal distributions, fY (y),
fX1(x1), ..., fXk

(x), is equal to the joint distribution,

f(y, x1, ..., xk)
ind.
= fY (y)fX1(x1)...fXk

(xk) for each (y, x) ∈ <k+1,

while identical distribution ensures that the product of all of the marginal
distributions with the same functional form is equal to the joint distribution,

f(y, x1, ..., xk)
i.i.d.
= f(y)f(x1)...f(xk) for each (y, x) ∈ <k+1,

where x ≡ (x1, ..., xk) ∈ <k. The independence imposed is crucial: if the
r.v.’s are normally and identically distributed only they are not necessar-
ily stationary because it is possible to construct different joint distributions
that all have normal marginal distributions. By changing the joint distribu-
tions, we could violate the stationarity condition while preserving marginal
normality. Thus, stationarity strengthens the assumption of identical distri-
bution, since it applies to joint and not to simply marginal distributions.5

On the other hand, stationarity is weaker than the i.i.d. assumption, since
i.i.d. sequences are stationary, but stationary sequences do not have to be
independent.

Step 2. The model

Consider the nonparametric regression model,

yi = r(xi) + εi, (1)

4Formally, a random variable, Xj , j = 1, 2, ...k, is defined as a function of events
denoted by $; that is, xj = Xj($), where xj is a realization of Xj when the event $
occurs, and likewise, (y, x) is a particular realization of (Y,X), where x ≡ (x1, ..., xk).

5A sequence is stationary if the joint distribution of the variables in the sequence is
identical, regardless of the date of the first observation.
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where xi ≡ (xi1, ..., xik) ∈ <k is a vector of k variables, εi the disturbance
term assumed to satisfy E(εi|Xi) = 0 almost surely (a.s.) (or with probability
1). Let r : <k → < be a real valued Borel measurable true but unknown
regression function. The goal is to estimate, r(xi), without making explicit
assumptions about its functional form. Assumption 1 further implies that
Y satisfies E|Y | < ∞ and E(Ȳ ) = µY , and that X satisfies E|X| < ∞
and E(X̄j) = µj for all j.6 These conditions ensure the existence of the
conditional expectation of yi given Xi = xi; that is, E(yi|Xi = xi) = r(xi)
for all xi.

Step 3. The null and alternative hypotheses

We consider a model with k(= q + p) independent variables and aim at
testing the significance of a total of p variables. The null and alternative
hypotheses are expressed as a moment restriction,7

H0 : r(xi) = m(xq
i ) a.s. (2)

H1 : r(xi) 6= m(xq
i ),

where xq
i ≡ (xi1, ..., xiq) ∈ <q. The null hypothesis states that given xi,

the contribution of p variables to the explanation of the variation in yi is
insignificant; that is, E(yi|xi) = E(yi|xq

i ). Defining νi ≡ [yi − m(xq
i )], we

have the following restricted model under H0,

yi = m(xq
i ) + νi, (3)

where E[νi|Xi] = E[(yi−m(xq
i ))|Xi] = E[yi|Xi]−E[m(xq

i )|Xi] = r(xi)−m(xq
i )

= 0. Since E[νi|Xi] = 0 under H0, we have

T ≡ E[νiE(νi|Xi)] = E{[E(νi|Xi)]
2} = 0. (4)

On the contrary, since E[νi|Xi] = r(xi) − m(xq
i ) 6= 0 under H1, we have

T > 0. Using the sample analogue of T , which is some measure of distance
between the two nonparametric regression models, r(xi) and m(xq

i ), we form
a consistent test. This measure has a non-degenerate U− distribution under

6See Theorem 3.1 in White (1984, p.30).
7See Gozalo (1993), Fan and Li (1996), and Delgado and Manteiga (1999) for a similar

formulation of the hypotheses.
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H0, while having a degenerate U− distribution under E[νi|Xi] = 0 for all
Xi.

8

An estimator of T . The idea is to estimate T and test its significance.
Rejection of E[νi|Xi] = 0 would imply rejection of H0. Obviously, if νi and
E[νi|Xi] were available, we could estimate (4) by 1

n
Σn

i=1νiE[νi|Xi]. Unfortu-
nately, they are not available, and therefore to obtain a feasible test statistic,
we estimate it by

Tn ≡
1

n

n∑
i=1

[νif(xq
i )]E[νif(xq

i )|Xi]f(xi), (5)

where f(xq
i ) and f(xi) stand for the joint probability density functions (p.d.f.)

of xq
i and xi, respectively.9 The kernel regression method is applied and (5)

estimated by its sample analogue.10 The term νi is estimated by ν̃i ≡ (yi− ŷi)
and a kernel estimator of m(xq

i ), denoted by ŷi, by

ŷi =
[(n− 1)ηq]−1 ∑n

j=1&j 6=i yjK
q
ij

f̂(xq
i )

, (6)

where f̂(xq
i ) = [(n − 1)ηq]−1 ∑n

j=1&j 6=i K
q
ij, Kq

ij ≡ Πq
d=1k(

xid−xjd

η
), and k(.) a

univariate kernel with band width η ≡ ηn. Next, we calculate E[ν̃if̂(xq
i )|Xi]f̂(xi)

as

[(n− 1)θk]−1
n∑

j=1&j 6=i

[ν̃j f̂(xq
i )]Kij (7)

8It should be noted that H0, a conditional first-moment restriction, is translated into
a conditional second-moment restriction, because this allows for the exploitation of U −
structures.

9A density-weighted version of 1
nΣn

i=1νiE[νi|Xi], which was first introduced by Powell,
Stock, and Stoker (1989), is commonly used in the literature for its two useful conse-
quences. First, its multiplication by f(xq

i ) avoids trimming the small values of the density
function; and second, this multiplication yields a degenerate U −structure, whose asymp-
totic properties have been well-established.

10The nonparametric kernel regression has several advantages. First, rather than im-
posing a particular class of functional and distributional forms to the data which may or
may not be correctly specified, it allows the data to reveal the data-generating process.
Second, it can be designed to keep bias small enough not to compromise the asymptotic
validity of test statistics. Third, in the presence of serial dependence, it is easier to handle
mathematically than some others via estimating the density function by the the drop-one
method. Dropping-one observation at a time yields a density estimate for xi, f̂(xi), which
is independent of xi.
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where f̂(xi) = [(n− 1)θk]−1 ∑n
j=1&j 6=i Kij, Kij ≡ Πk

d=1k(
xid−xjd

θ
), and θ ≡ θn

band width corresponding to the unrestricted regression model (1). Lastly,
substitution of ν̃i, f̂(xq

i ), and f̂(xi) into (5) yields the sample analogue of
Tn :

T̂n = [n(n− 1)θk]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̃if̂(xq

i )
] [

ν̃j f̂(xq
j)

]
Kij, (8)

where ν̃i ≡ (yi− ŷi) = [m(xq
i )+νi]−[m̂(xq

i )+ ν̂i], and m̂(xq
i ) and ν̂i are defined

in the same way as ŷi in which yj is replaced by m(xq
j) and νj, respectively.

Assumption 2. The kernel function K(X) is a Borel measurable real-valued
bounded function on a Euclidean space such that (a)

∫
K(X)dX = 1,

(b)
∫
|K(X)|dX < ∞ (i.e., boundedness), (c) supX |K(X)| < ∞ (i.e.,

K vanishes outside X), and (d) K(X) = K(−X) and lim‖X‖→∞ ‖ X ‖
K(X) = 0, where ‖ X ‖ is the Eucledian norm of X in <k.

Assumption 3. (a) r(X) and f(X) are Lipschitz continuous in their respec-
tive arguments and (b) supX∈X |r(X)| < ∞ and supX∈X f(X) < ∞
(i.e., r(.) and f(.) vanish outside the compact support X).

Assumption 4. Let {θn, ηn} be an a priori chosen sequence of positive
numbers satisfying limn→∞ θn = 0, limn→∞ ηn = 0, limn→∞ nθk

n = ∞,

limn→∞ nηq
n = ∞, limn→∞ nη2δ

n θk/2
n = 0, limn→∞

(
θk
n

η2q
n

)
= 0, where δ =

min(λ + 1, µ), λ > 0, and µ ≥ 0 (Fan and Li, 1996).

Assumption 2 characterizes the kernel K which vanishes outside the Eu-
clidean space X ⊆<k. The test proposed is still valid if X is a finite convex
subset of <k and f(X) vanishes on the boundary of X. However, if X is a
compact subset of <k and f(X) is bounded away from zero on X, then the
proposed test needs some modification. Some trimming method is needed
to overcome the boundary effect. One way to accomplish this is to use a
fixed weight function such that the support of the weight is a proper sub-
set of X. For consistency of such tests, the weight function is required to
be a function of n such a way that its support approaches X as n → +∞
(Fan and Li, 1996). Assumption 3 guarantees that there exists two unique
continuous functions, r(X) and f(X), defined for all values of X such that
their derivatives exist and reduces to r(X0) and f(X0) at X = X0. The first
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four conditions in Assumption 4 simply state that (i) band widths should be
small if n is large, (ii) the kernel estimators involved are consistent, and (iii)
the limiting distribution of nθk/2

n T̂n under H0 ia centered correctly at zero.
Also implied by Assumption 4, as suggested by Rabinson (1988), Fan and
Li (1996), and Delgado and Manteiga (1999), are the necessary conditions,
µ = q/2 and λ = (q/2) − 1, required for bias reduction using higher order
kernels.

Step 4. The asymptotic distribution of T̂n

The asymptotic distribution of T̂n needs to be determined to tell how far
T̂n must be from zero to reject H0, and a value of T̂n far from zero should be
regarded as evidence against H0.

11 The key to establishing
√

n− consistency
and asymptotic normality of T̂n is to note that Equ. (8) can be written as a
U − statistic, whose structure permits proper accounting of the ”overlaps”
in the density estimators. These overlaps result from the fact that each data
point is used in the estimation of several density estimates.12

The finite sample distribution, defined as Dn(x) = P [
√

nθ
k/2
n (T̂n−T )/

√
2σ̂T̂n

< x], has no closed-form expression because it depends on certain features of
the distribution of (Y,X). Luckily, by the central limit theorem the studen-

tized root, [
√

nθ
k/2
n (T̂n−T )/

√
2σ̂T̂n

], is asymptotically standard normally dis-

tributed under weak regularity conditions. Define Ẑn ≡ nθk/2
n T̂n

d→ N(0, 2σ2
T )

since T = 0 under H0. Next, a law of large numbers is invoked to show con-
sistency in probability of Ẑn for Z (i.e., E(Ẑn)

p→ Z) and unbiasedness in
probability of Zn to center Ẑn correctly at zero (i.e., P [{[E(Ẑn) − Z] < ε}]
= 1 where ε > 0).13

11A lengthy proof for the existence of the asymptotic distribution of T̂n is given in
Fan and Li (1996). The proof heavily exploits the key features of U − statistics which
are commonly used in the literature when the kernel regression is utilized for hypothesis
testing purposes, see, for example, Powell, Stock, and Stoker (1989), Lee (1990, 1992),
Horowitz and Hardle (1994), Sherman (1994), Zheng (1996), and Fan and Li (1996). For
the arguments in the following paragraphs, the reader is referred to Definitions 1 and 2
and Assumption A, stated by Rabinson (1988) and Fan and Li (1996).

12See Appendix for more on the structure of U−statistics. and on how one can translate
the kernel estimator as a U − statistic.

13For bias reduction, Robinson (1988), Powell, Stock, and Stoker (1989), and Liu and
Singh (1992) suggest the use of a higher order kernel or the generalized jackknife estima-
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Estimation of the consistent variance of T̂n. Typically, the variance σ2
T

is unknown. The goal is then to find a consistent estimator σ̂2
T̂n

such that

(σ̂2
T̂n
→ σ2

T )
p→ 0 as n goes to ∞. Utilizing the U − structure, Fan and Li

(1996) derive σ̂2
T̂n

, a natural estimator of the asymptotic variance of T̂n,

σ̂2
T̂n

= [n(n− 1)θk]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̃if̂(xq

i )
]2 [

ν̃j f̂(xq
j)

]2
Kij

[∫
K2(u)du

]
. (9)

Step 5. The test statistic

A touchy point is to calculate an ”appropriate” test statistic, τn, where
τn = τ(Ẑn). This functional implies that the distribution of τn should agree
with that of Ẑn. Hence, we opt for a χ2 distribution for τn since degenerate
U − statistics built in Ẑn ordinarily are asymptotically distributed as linear
combinations of χ2 variates (see Horowitz and Hardle (1994)).14

Define

τn =

 Ẑn√
2σ̂T̂n

2

χ2
q (10)

where T = 0 under H0. But τn depends on certain unknown characterisitcs
of the distribution of (Y,X), and an asymptotic test cannot be implemented
except in exceptional circumstances. That is why we propose a bootstrap
test in order to approximate the f.s.n.d. and then estimate the critical values
of τn.15

Step 6. The critical region

A critical region of given size α is defined as Pr[τ ∗n[α(B+1)] < τ obs
n ] = α,

where τ obs
n is the test statistic calculated from the observed sample, τ ∗n[α(B+1)]

the bootstrap critical value, B the number of the bootstrap samples.

tor of T̂n, because both the kernel and jackknife estimators maintain maximum rate of
convergence in distribution.

14Developing an asymptotic test procedure, Fan and Li (1996) define τn =[
nθ

k/2
n T̂n/

√
2σ̂T

]
→ N(0, 1) in distribution under H0.

15See Delgado and Manteiga (1999) for an application of a bootstrap test in a similar
context. They employ the Kolmogorov-Smirnov and Cramer-von Mises test statistics.
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Step 7. The decision rule

For small n, an approximate α−level significance test is to reject H0 if
τ obs
n > τ ∗n[α(B+1)].

4 Algorithm

The bootstrap treats the observed data as if they were the population and,
by repeatedly sampling the data and computing {τ ∗nb : b = 1, ..., B}, from
the resulting bootstrap samples, develops the empirical distribution of the
bootstrap version of τn, τ ∗n. The bootstrap estimate of the α− level critical
value of τn is the 1 − α quantile of the empirical distribution of τ ∗n. Three
main bootstrap schemes are present to accomplish this: the residual-based
bootstrap (RB), the paired-based bootstrap (PB), and the external (or wild)
bootstrap (EB).16 Following Hall and Hart (1990), we opt for the residual-
based bootstrap scheme to determine critical values for testing because the
null postulates E(νi|Xi) = 0 ∀i. Here is the procedure to apply this scheme.
First, the residuals, ν̃i ≡ (yi − ŷi), are centered by ν̂i ≡ (ν̃i − ν̄), where
ν̄ = n−1Σn

i=1νi. Then, a bootstrap resample, {ν̂∗i : i = 1, ..., n}, is drawn from
{ν̂i : i = 1, ..., n} at random, with replacement. Resampling is done from the
centered residuals to ensure E(ν̂∗i |Xi) = 0 under H0 and hence E(ν̂∗i |Xi) =
E(ν̃i|Xi) = 0 ∀i. The centering is especially important as the alternative
hypothesis, E(ν̃i|Xi) 6= 0 ∀i, holds in the nonparametric regression models.17

The residual-based bootstrap test

1. Consider the restricted nonparametric regression model,

yi = m(xq
i ) + νi,

and estimate m(xq
i ) by

ŷi =
[(n− 1)ηq]−1 ∑n

j=1&j 6=i yjK
q
ij

f̂(xq
i )

where f̂(xq
i ) = [(n− 1)ηq]−1 ∑n

j=1&j 6=i K
q
ij.

16See Giersbergen (1998) for a comparison of these resampling schemes.
17The reader is referred to Freedman (1981,1984), Hall (1988), Hall and Hart (1990),

and Li and Maddala (1996) for a discussion of choice of appropriate resampling scheme.
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2. Define ν̃i ≡ (yi − ŷi) and approximate the asymptotic test statistic:

τ obs
n =

 Ẑn√
2σ̂T̂n

2

where
Ẑn ≡ nθk/2

n T̂n

T̂n =
[
n(n− 1)θk

]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̃if̂(xq

i )
] [

ν̃j f̂(xq
j)

]
Kij

Kij ≡ Πk
d=1k(

xid − xjd

θ
)

σ̂2
T̂n

=
[
n(n− 1)θk

]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̃if̂(xq

i )
]2 [

ν̃j f̂(xq
j)

]2
Kij

[∫
K2(u)du

]
∫

K2(u)du ≈
[
(n− 1)θk

] ∫
V ar[f̂(xi)]dxi

f̂(xi) = [(n− 1)θk]−1
n∑

j=1&j 6=i

Kij.

3. Rescale ν̃i as ν̂i ≡ (ν̃i−ν̄), where ν̄ = n−1Σn
i=1ν̃i, and draw the bootstrap

sample {ν̂∗i : i = 1, ..., n} at random, with replacement, from {ν̂i : i =
1, ..., n}.

4. Calculate the bootstrap test statistic:

τ ∗n =

 Ẑ∗
n√

2σ̂T̂ ∗
n

2

where

T̂ ∗n =
[
n(n− 1)θk

]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̂∗i f̂(xq

i )
] [

ν̂∗j f̂(xq
i )

]
Kij

σ̂2
T ∗

n
=

[
n(n− 1)θk

]−1
n∑

i=1

n∑
j=1&j 6=i

[
ν̂∗i f̂(xq

i )
]2 [

ν̂∗j f̂(xq
i )

]2
Kij

[∫
K2(u)du

]
.

Replicate this calculation for B times to obtain

{τ ∗nb : b = 1, ..., B}.
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5. Let τ ∗n[1] ≤ τ ∗n[2] ≤ ... ≤ τ ∗n[B] denote B ordered bootstrap realizations.

Given α, the bootstrap critical value, τ ∗nα, is determined as18

τ ∗nα = τ ∗n[α(B+1)],

such that Pr(τ ∗nb > τ ∗nα) = α.

6. Reject H0 if τ obs
n > τ ∗nα.

7. Choose α such that
α∗n = Pr

[
τ obs
n ≥ τ ∗nα

]
where α∗n denotes the bootstrap p−value (or the rejection probability)
conditional on H0.

5 Conclusion

In this paper we adapted an asymptotic, nonparametric hypothesis test to
the bootstrap framework, applying the kernel regression method for the es-
timation of a measure of distance between the models under the null hy-
pothesis. Furthermore, with an algorithm, the proposed bootstrap test was
operationalized, allowing us to compare the asymptotic with the bootstrap
approximations of the test statistic.

18For convenience in applications, B is usually chosen in such a way that α(B + 1) is
an integer. For example, if B = 99 and α = 0.05, then τ∗nα = τ∗n[5] which is the 5th lowest
value in the ordered τ∗n[M ].
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