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Abstract
This study analyses the indica rice, winter wheat, and corn production response to
prices, rainfall, temperatures, and other parameters for the agriculturally most important
provinces in China. System and difference GMM estimators are used as the number of
groups is large compared to the time periods and the production response is a dynamic
process. We find that all crops strongly respond to prices around planting time and
shortly after while prices further away from the time of planting turn out insignificant.
Furthermore, rainfall affects the production positively and high temperatures negatively
for all crops. The results for other variables differ between the crops. Mixed outcomes
are found for irrigation, fertilizer prices, area affected by droughts and interaction terms.
Results suggest that irrigation is only partly able to compensate for impacts of weather
variability. The presented method for analyzing the price response at different points in
time may also be used for general model specification tests.

1 Introduction
Unexpected high and volatile food prices during the 2007-2008 world food crises and
thereafter have reemphasized the question of how countries can protect themselves from
supply shortages. In view of the various trade restrictions imposed by some major exporting
countries, governments tend once again to focus more on self-sufficiency and food storage.
China furthermore has to increase its yields due to the rise in population, total grain
demand, and meat consumption given the limited possibilities of area expansion.
The primary purposes of analyzing supply response in this paper are threefold. First,

identifying different factors that can affect the production, including market prices, bio-
physical conditions and infrastructures. Second, analyzing differences in these effects
between the different crops. Third, analyzing how the predictive power of prices evolves
over time and therefore to prices of which point in time farmers react. Hence, a clear
understanding of the farmers’ planting behavior is needed. Generally in the context of
empirical estimation, farmers’ decision making process is modeled as a two-step process
[Colman, 1983]: First farmers will choose the crop type combing previous weather condition
and decide their cropping area based on expectation of the prices they will receive several
month later. Second, after planting they will change farmland management measures
according to the market prices and weather condition to achieve a high yield. Our focus
lies on the production response of winter wheat, indica rice, and corn as these crops are
the main staple foods in China. China is the biggest producer of rice and wheat and on
of the biggest of corn. The results of the research can also be used as the basis for a
short-term forecasting tool for monitoring Chinese food security or as part of a worldwide
food availability monitoring tool. However, timely data availability would be needed which
usually is not possible for data from the Chinese Agricultural Yearbooks.
In China, early works in this field have investigated the spreading of hybrid rice after

the institutional change from a collective team system to a more market-oriented, so-called
“household responsibility system” [Lin, 1991]. Decollectivization was found to account for
about half of the output growth from 1978 to 1984 while adjustments in procurement
prices, in contrast to other market-related reforms, also contributed significantly [Lin,
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1992]. However, other results suggest that the household responsibility system was not the
main driver of yield increases [Ghatak and Seale, 2001]. Nevertheless, Chinese agriculture
was found to respond to prices and price-risks at the national level whereas significant
differences at the regional level occurred (ibid.). The next major reform in 2004 included
the change from a policy of taxing farm households to providing subsidies. Received by
almost all producers, these subsidies are now low per-person but high on a per-area basis
[Huang et al., 2013]. Except for the machinery subsidies, which influenced the purchase
of machineries, most other grain, input, and seed subsidies were found to not influence
area allocation decisions (ibid.). Increased outputs in later years were partly attributed to
land reallocation to grain production [Yu and Jensen, 2010]. With the help of a dynamic
panel approach, the acreage and yield responses to output prices have been analyzed in a
case study for Henan [Yu et al., 2011]. However, evidence from other provinces is missing.
On a world-wide level, price volatility, and therefore price risk, was found to reduce the
supply response [Haile et al., 2015b]. However, as prices are comparably stable in China,
price volatility was not considered as an important factor in this study.

With increasing concerns regarding global warming, its impact to agriculture are among
expected to be huge and are already documented. The general findings of these studies
are that crop yields will fall in China like those in other developing countries [Tao et al.,
2006]. By employing farm-level data and the Ricardian method, the average impact of
higher temperatures was found to be negative whereas the average impact of more rainfall
was found to be positive [Wang et al., 2009]. Overall, weather conditions, market prices
and infrastructures can be seen as the three most important conditions for agriculture
production. This study provides an important contribution in evaluating how such weather
related variables affect the production of the considered crops on the province level.
Furthermore, to our knowledge this is the first study which addresses the response to prices
at different periods in time in order to analyze the farmers’ price expectation formation
process.

2 Data description and usage
Data for acreage, production, output market prices, procurement prices, fertilizer prices,
rainfall, consumer price index (CPI), irrigated area, temperatures, sunshine, effective
irrigated area, and prices of competing crops were collected from the Chinese agricultural
and statistical yearbooks and from the for the years from 1996 to 2012. Province level
data was used whenever possible but whenever such data was scare, data on the national
level was used. Own crop prices were deflated by the CPI, other prices were deflated by
the own crop price to account for possible autocorrelation. Table 1 provides an overview
over the aggregation level, frequency, and transformations of the data. The summary
statistics of the variables are presented in table 2 for the individual crops.
A panel data set was created for each crop where the provincewise production of a

crop is used as dependent variable to be explained by the other variables. The provincial
production data, collected from National Bureau of Statistics of China, ranges from 1995
to 2012 and includes 20 provinces planting winter wheat, 29 provinces planting corn, and
around 13 provinces planting early and late indica rice while 15 provinces are included
with data on middle indica rice. For indica rice, the early, middle, and (double) late
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Data China ... yearbook Scale Frequency Transformation
Production rural statistic Province Yearly logged

CPI statistical Province Monthly Continuous CPI build
from yearly changes

Total farm crop area rural statistic Province Yearly -

Irrigated area water conservancy Province Yearly Devided by total farm
crop area and logged

Non-Irrigated area - Province Yearly log(1 - irrigated area/
total farm crop area)

Wholesale prices grain National Monthly Devided by continuous
CPI and logged

Fertilizer prices price National Monthly Devided by wholesale
price and logged

Rainfall water conservancy Province Monthly logged
Hours of sunshine 1 Province Monthly logged
Lowest temperature 1 Province Monthly -
Average temperature 1 Province Monthly -
Highest temperature 1 Province Monthly -

Area affected by drought water conservancy Province Yearly Devided by total farm
crop area and logged

Table 1: Overview of the data used for the regression analysis. The second column shows the
source, i.e. from which of China’s yearbooks the data is taken. The 1 means that it is
not taken from any yearbook but from the national meteorological information center in
China

seasons were pooled in order to get more observations. That way, it could be ensured that
the number of observations never falls below 249.
The planting season, complementing and substituting crops may differ slightly in the

different provinces. For winter wheat, the planting season is September to October and the
harvest takes place in late April or May of the next year. The main substitute is rapeseed,
followed by cotton while corn is a complementing crop. Corn is mainly planted during
April to June and harvested between August and October. The main substitutes are
soybean and cotton and the main complementing crops are wheat and rapeseed. Based on
farmers’ production behavior, we focus on three aspects factors that is market input and
output price, weather conditions and infrastructure. For crop prices, monthly wholesale
prices are used. This is justified by the easier availability of wholesale prices compared to
farmgate prices and by the high transmission from wholesale to farmgate prices which was
reported in the literature [Liu et al., 2012]. As land and labor are limited, the planting
behavior can be affected by the price of competing or even complementing crops. Fertilizer
prices are chosen as the main input market price. Wages were also included but their time
series is short and as a result so is the number of observation. Due to this and the fact
that they turned out insignificant, they are not reported in this paper. The agricultural
production system is sensitive to weather effects and there are very few measures available
to farmers to compensate for such weather effects. Therefore, weather conditions are
a very important independent variable in our analysis. We have temperature, rainfall
and sunshine provincial and monthly data from the national meteorological information
center in China. In addition, the yearly area affected by drought on a provincial level
were collected there and used as fraction of area affected by droughts to see the weather
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Observations Mean SD Min Max

Corn

Production (1000 tons) 552 458.68 549.54 0.89 2675.80
June WSP (CNY/kg) 465 1.42 0.40 0.87 2.32
Irrigation (1000 ha) 589 1810.98 1400.49 144.20 5342.12
Rainfall@growing (mm) 690 14.53 12.91 1.46 301.04
A-temp@growing (◦C) 690 298.86 3.47 285.29 304.85
Drought area (1000 ha) 499 445.08 543.03 1.00 3133.00
Fertilizer price (CNY/kg) 496 1915.06 670.66 1186.00 3140.00

Winter wheat

Production (1000 tons) 360 464.3 686.8 0.2 3177.4
March WSP (CNY/kg) 330 1.5 0.4 1.0 2.2
April’s sunshine hours 506 5.6 1.9 1.7 9.4
Irrigation (1000 ha) 418 1939.5 1458.5 153.0 5205.6
Rainfall@growing (mm) 506 6.3 4.9 0.2 25.3
H-temp@flowering (◦C) 506 300.5 4.3 290.7 311.5
Rainfall@planting (mm) 506 3.6 5.1 0.1 105.1
Drought area (1000 ha) 352 377.2 470.1 1.0 2573.0
Fertilizer price (CNY/kg) 352 1879.4 662.3 1184.0 3000.0

Indica rice

Production (1000 tons) 707 406.1 433.0 0.0 2161.1
WSP@planting (CNY/kg) 1395 1.5 0.4 0.9 2.5
Sunshine hours@planting 2139 6.4 1.7 1.5 10.7
Irrigation (1000 ha) 1767 1811.0 1399.7 144.2 5342.1
Rainfall@growing (mm) 2139 7.8 6.6 0.2 196.0
Rainfall@planting (mm) 2139 3.0 4.4 0.1 105.1
H-temp@growing (◦C) 2139 306.2 3.5 295.7 316.7
Drought area (1000 ha) 1497 445.1 542.7 1.0 3133.0
Fertilizer price (CNY/kg) 1488 1895.8 677.8 1126.0 3340.0

Table 2: Summary statistics of the data from all provinces. Data which is only available on a
national basis has been copied for all provinces and therefore is shown to have more
observations than it actually has on the national level.

effect on production. We use the percentage of irrigated cultivated area as a measure of
infrastructure and technology and imputed missing values for this variable (not for any
others). Irrigation also allows to compensate for shortfalls in rainfall and partly even
droughts. As irrigation is always used in combination with the application of chemical
fertilizers, it represents a higher standard of agricultural infrastructure. In order to see
the production’s response to the weather variables at different times during the planting,
growing, and harvesting period, we test the influence of these variables during several
important months. As some of weather data has a high level of autocorrelation, it is
not possible to include every month in econometric analysis. Therefore, only the most
important month is included or, for the rainfall, the sum of the most important months is
calculated.
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Here are some of our hypotheses to test:

1. We expect that own-prices have a positive effect on production, and prices of
competing crops have a negative one. Fertilizer prices are usually expected to have
a negative effect on production but for crops which need relatively little fertilizers
compared to others, the effect may be reverse as high fertilizer prices may incentive
planting these crops.

2. The prices around planting time are expected to have the biggest impact on the
production. Prices one to three month before planting will influence the area
allocation decision while prices at planting and during the growing season may
affect how farmers take care of their fields, e.g. by applying fertilizers or pesticides,
watering their plants, and other management practices which influence the yields.

3. Droughts have negative effect on production.

4. Irrigation has a positive effect on production and it can reduce the negative impact
from adverse weather. Such adverse weather effects may include low rainfall or very
high temperatures.

There are some limitations of this approach. The biggest limitation might be the
aggregation level of data. Some price data are only available on a national level but as
price transmission within Chine is usually large, this might not be a big problem[Huang
and Rozelle, 2006]. But for the biophysical variables, even though they are available
at the provincial level, this aggregation might be more problematic as rainfall, hours of
sunshine, or temperatures may vary in different parts of the same province. Therefore, we
are likely to underestimate the influence of these biophysical variables do to the high level
of aggregation. Furthermore, important variables may not be considered which can be an
issue if they fluctuate a lot in the short term. If instead they mostly consist of a long term
trend, then they will be captured by the orthogonal deviations as well as by the lagged
production and, as a result, will not cause any problems.

3 Methodology
Strictly speaking, the farmer’s decision making process consist of two steps, the area
decision, and the yield decision [Colman, 1983]. The considered variables are mostly the
same but may differ slightly as, for example, competing crop prices are not that important
after the area decision was made. However, they still may be important because they may
affect the input allocation decision for fertilizers, pesticides, water and other variables. On
the other hand, not all variables which influence the yields also matter for the are allocation.
Unexpected rainfall shocks after planting cannot be anticipated and therefore cannot affect
the area decision but may affect the farmer’s fertilizer application and therefore the yield.
Therefore, modeling the production is a combination of the area and yield processes and
only allows investigation a sum of the affects of the two. Nevertheless, it is important to
see the combined effects as in the end we care about the total production volume and
want to know which variables have an influence and in which way. Another reason to look
at the combined effect on production is that statistical issues arise when looking at area
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and yield separately as they influence one another and therefore one has to deal with this
additional endogeneity.1
The Arellano-Bond difference GMM and system GMM estimators [Holtz-Eakin et al.,

1988, Arellano and Bond, 1991, Arellano and Bover, 1995, Blundell and Bond, 1998] are
used for a number of reasons. Firstly, the time period is rather short, usually around 14
years, while the number of observations per time period is comparatively large, ranging
from 20 for wheat over 29 for corn to around 40 for rice. The difference and system GMM
estimators control for such dynamic panel bias. Secondly, the production response is a
dynamic process, i.e. current realizations depend on past ones. Thirdly, fixed effects across
groups allow for a heterogeneity of these. Finally, idiosyncratic disturbances may have
individual-specific patterns of heteroskedasticity.

For all three crops, three different specifications are shown which differ in the variables
which are considered. Including more variables allows controlling for more factors but also
decreases the degrees of freedom, the significance of variables which are strongly correlated
and even the number of observations as many variables could only be obtained for a
limited amount of years. Comparing the different specifications also allows checking the
consistency of the estimations as huge deviations, such as the same variables sometimes
being positive and significant and at other times negative and significant, would indicate a
model misspecification. For all three specifications, the results for both system as well as
difference GMM estimations are shown. In general, we think that the difference GMM
estimator might be more appropriate as it cannot be ruled out that first differences of the
instrument variables are uncorrelated with the group fixed effects. This hypothesis shall be
supported by our findings as will be seen in the next chapter. The Windmeijer finite-sample
correction for standard errors is used [Windmeijer, 2005]. We use the xtabond2 command
in Stata which is written by David Roodman and follow the application guidelines in his
accompanying paper [Roodman, 2009]. Instead of first differencing, forward orthogonal
deviations are used [Arellano and Bover, 1995, Roodman, 2009], i.e. the average of all
available future observations is subtracted. These remove fixed effects, just like differencing,
but because lagged observations are not used, these remain orthogonal to the transformed
errors. That way, the number of observations will not be reduced by gaps in the dataset.
As suggested, time dummies for all years are included in all model specifications (ibid).

For proper usage of the GMM techniques, a number of test need to be run to check the
consistency of the estimations (ibid.). The joint significance of the variables is evaluated
with an F-Test for which we expect the p-value to be clearly below 0.1 (ibid.). While
the first lagged residuals are expected to be correlated (AR1<0.1), the twice lagged
residuals must not (AR2>0.1) [Arellano and Bond, 1991]. Considering the null hypotheses,
this means the p-value of the AR1 has test in the result tables to be smaller than 0.1
while the p-value for AR2 must be higher than 0.1 (for significance at the 10%-level).
Furthermore, the Hansen-J test allows checking if the model specification and all over-
identifying restrictions are correct [Baum, 2006]. It is suggested that the p-value should be
above 0.25 but at the same time not perfectly match 1 for this test [Roodman, 2009]. The
difference-in-Hansen test is used to investigate the exogeneity of instruments. The null
hypothesis is that they are exogenous, so to not to reject the hypothesis the respective
p-values have to be above 0.1. The number of instruments were chosen to provide robust

1Yet, in a later stage it is planned to additionally include the area and yield decisions in this paper.
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test statistics. There are no clear rules about how many instruments are appropriate.
However, the number of instruments should always clearly be lower than the number of
observations which is the case for all our specifications. All the test statistics were fulfilled
in all specifications except for the first two specifications for winter wheat, which fail to
reject the second order autocorrelation at the 10% level but nevertheless do so at the 5%
level, and the second specification for indica rice which fails to reject the Hansen-J test
and the difference-in-Hansen test.
Apart from evaluating the production response with price at a predetermined point in

time, we are interested in seeing how the price response when using prices at different
points in time. Therefore, the regressions are conducted with prices at different months
before and after planting (from 20 month before up to 20 month after planting) and it is
graphically illustrated how this changes the results.
Fore indica rice, the three different seasons were pooled together. Hence, there is no

fixed planting month but instead depending on the season, the appropriate planting month
was chosen. All the other variables are also chosen relative to the month of planting for
that season in that province. This means, for example, that the planting time price is
April for early, Mai for middle and July for late indica rice. Similarly, rainfall during the
growing season considers April and Mai for early indica, May and June for middle indica,
and July and August for late indica rice.
All variables were logged and therefore the effects can be interpreted as elasticities.

The only exception are the temperatures which exhibit also negative values and are more
intuitive to interpret in their non-logged form.

4 Results
The results for the production of corn are shown in table 3, for winter wheat in table 4,
and for rice in table 5.
The results for corn, illustrated in table 3 show that all of the six specifications seem

to be valid specifications based on the provided test statistics. A significant amount of
the variation in production is explained by last years production (which also accounts for
unobserved variables), ranging from 0.772 to to 0.956. All of them are significant at the
1% level. The wholesale price in June turns out to be also always highly significant and
has a major contribution regarding its elasticity of around 0.2. This implies that a 1%
increases in prices will lead to a 0.2% increase in production which seems reasonable and
is comparable to other studies. The fraction of irrigated area is only significant in two
specifications but has a huge impact in these. Indeed, it is only significant for the difference
GMM specifications where the interaction terms are included which could possibly be
attributed to a collinearity in these variables (their correlation coefficient is -0.79 for corn,
-0.17 for wheat and -0.46 for rice). In addition, the total effect of irrigation is the elasticity
of irrigation multiplied by the interaction term of irrigation times the average temperature
and this interaction term takes the value of -20.69 at the sample mean. Despite its need
for rainfall during the growing season, we cannot find any effect of this variable on the
corn production. In contrast, high average temperatures during the growing season which
is in mid-summer have a small but significant negative impact. When interacted with the
non-irrigated area, i.e. the fraction of the agricultural area which is not irrigated, we find

8



(1) (2) (3) (4) (5) (6)

L.Production .949∗∗∗ .807∗∗∗ .954∗∗∗ .772∗∗∗ .956∗∗∗ .902∗∗∗

(.05) (.166) (.047) (.143) (.034) (.143)
WSP June .202∗∗∗ .296∗∗∗ .184∗∗ .291∗∗∗ .177∗∗∗ .226∗∗∗

(.069) (.077) (.067) (.055) (.051) (.067)
Irrigated -.055 -.115 4.69 20.2∗∗ 1.61 16.9∗∗

(.049) (.131) (5.78) (8.15) (6.61) (8.05)
Rain@growing -.032 -.059 6.3e-03 -.013 -7.4e-03 -.076

(.029) (.063) (.035) (.06) (.033) (.083)
A-Temp@growing -.016∗∗∗ -.029∗ -.034 -.095∗∗∗ -.014 -.058∗∗

(4.2e-03) (.015) (.022) (.026) (.023) (.028)
Drought area -.027∗∗ -.032∗∗∗ -.027∗∗ -.033∗∗∗ -.014 -.035∗∗∗

(.01) (8.6e-03) (.011) (9.1e-03) (.013) (.01)
Non-Irrigated .046∗ .077∗ .066∗∗∗ .071∗

X Rain@growing (.023) (.045) (.02) (.039)
Irrigated X -.016 -.067∗∗ -5.4e-04 -.052∗

A-Temp@growing (.019) (.027) (.022) (.027)
Fertilizer@planting -.231∗∗∗ -.203∗∗

(.066) (.076)
Irrigated X -.191∗∗∗ -.182∗∗

Fertilizer@planting (.058) (.071)
Substitute@planting 6.4e-03 .018

(.018) (.025)
Constant 4.95∗∗∗ 10.4 6.31

(1.34) (6.49) (6.87)

Estimator system difference system difference system difference
Groups 29 29 29 29 29 29
Instruments 29 27 31 29 30 28
p:F-Test 3.0e-24 1.7e-19 8.0e-29 1.3e-23 3.2e-37 1.3e-27
p:AR1 8.6e-05 1.5e-03 9.3e-05 1.1e-03 3.2e-04 1.1e-03
p:AR2 .591 .919 .571 .685 .581 .949
p:Hansen-J .361 .291 .403 .326 .535 .286
p:Diff-Hansen .653 .812 1 .9 1 .436
Observations 413 384 413 384 325 296
Standard errors in parentheses
WSP=Wholesale price; X indicates interaction terms; A-Temp=average temperature
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Results for corn production response with System and Difference GMM for three different
specifications.

that rainfall during the growing season becomes significant. It then has, as expected, a
positive influence on production, even though a small one only. When interacted with
irrigation, high average temperatures area negative and significant for the difference GMM
specification. Therefore, they seem to negatively influence the benefits from irrigation.
In contrast to our expectations, however, we cannot find that irrigation may help to
compensate high average temperatures. As expected, the drought area has a significant
and negative influence in all but one specifications. High fertilizer prices at planting time
reduce the total production and again, this effect seems to be more pronounced provinces
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(1) (2) (3) (4) (5) (6)

L.Production .951∗∗∗ .951∗∗∗ .97∗∗∗ .951∗∗∗ .964∗∗∗ .96∗∗∗

(.032) (.104) (.036) (.11) (.063) (.087)
H-Temp@flowering -.037∗∗ -.043∗∗∗ -.028∗ -.044∗∗ -.037 .061

(.014) (9.6e-03) (.016) (.019) (.122) (.123)
Sun@flowering .327∗∗ .156 .185 .081 .196 .124

(.152) (.092) (.199) (.205) (.293) (.207)
Rain@planting .048∗∗ .054∗∗ .046∗ .045 .047 .04

(.023) (.021) (.023) (.026) (.037) (.042)
Rain@grow -.014 3.5e-04 -.046 -.045 -.133 -.143

(.052) (.032) (.037) (.037) (.091) (.099)
Irrigated -.305∗ -.055 -.281∗ -.344 -.095 -32

(.15) (.483) (.155) (.478) (26.5) (37.3)
Drought area -.038∗∗∗ -.037∗∗ -.025∗ -.026 -.026∗ -.034

(.011) (.014) (.014) (.016) (.014) (.02)
WSP March .268∗∗ .338∗∗∗ .255∗ .292∗∗

(.128) (.116) (.143) (.132)
Non-Irrigated -.177 -.137
X Rain@growing (.165) (.135)
Irrigated X -1.1e-03 .105
H-Temp@flowering (.089) (.125)
Constant 10.4∗∗ 7.9 10.4

(4.13) (4.65) (36.1)

Estimator system difference system difference system difference
Groups 20 20 20 20 20 20
Instruments 28 26 27 25 29 27
p:F-Test 1.9e-21 1.4e-13 9.0e-22 2.0e-12 1.8e-22 2.0e-14
p:AR1 7.0e-03 8.8e-03 .012 .019 .016 .012
p:AR2 .065 .053 .115 .185 .241 .173
p:Hansen-J .523 .595 .676 .463 .744 .805
p:Diff-Hansen 1 .949 1 .847 1 1
Observations 300 280 269 249 269 249
Standard errors in parentheses
WSP=Wholesale price; X indicates interaction terms; H-Temp=high temperature
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Results for winter wheat production

with a high share of irrigated area. This may be due to the usually much higher lever of
fertilizer application on irrigated areas which may be over-proportionally affected. Prices
of competing crops turn out insignificant.

For winter wheat, shown in table 4, the last year’s production is again the most important
driver and consistently significant at the 1% level. Wholesale prices in March have a
similar positive and significant effect as for corn. The elasticity is around 0.29 and hence
even slightly larger than for corn. The first two specifications do not include any prices
in order to see if there are any changes when more observations are included. Indeed,
sunshine at flowering (around two month before harvesting) does have significant and
positive influence only in the first specification. From the literature, we expect wheat to
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(1) (2) (3) (4) (5) (6)

L.Production .936∗∗∗ .913∗∗∗ .938∗∗∗ .914∗∗∗ .879∗∗∗ .778∗∗∗

(.062) (.07) (.055) (.055) (.065) (.112)
WSP@planting .249∗∗ .196∗∗∗ .175∗∗∗ .181∗∗∗ .264∗∗ .163∗∗

(.093) (.067) (.054) (.054) (.098) (.061)
Rain@growing .086∗ .053∗ .336 .152 .5∗ .115

(.046) (.027) (.24) (.139) (.253) (.178)
Sun@growing .099 .174∗∗∗ .06 .167∗∗∗ 8.7e-03 .142∗

(.084) (.061) (.07) (.05) (.102) (.074)
H-Temp@growing 7.9e-03 -.024∗∗ .011 -.026∗∗∗ .028 -.039∗∗∗

(.014) (.01) (.013) (8.5e-03) (.027) (.013)
Irrigated .826 .356 1.28∗ .323

(.698) (.521) (.688) (.674)
Non-Irrigated .604 .294 .861∗ .262
X Rain@growing (.5) (.287) (.484) (.346)
Drought area -4.3e-03 -4.9e-03 6.1e-03 -1.4e-03

(.01) (8.8e-03) (.011) (8.0e-03)
Fertilizer@planting 8.3e-03 .032

(.071) (.078)
Substitute@planting .051 .018

(.044) (.032)
Constant -2.57 -2.6 -7.51

(4.25) (3.82) (8.08)

Estimator system difference system difference system difference
Groups 41 41 39 39 39 39
Instruments 22 20 25 23 24 22
p:F-Test 3.0e-23 2.8e-16 8.2e-31 3.2e-20 4.4e-23 1.2e-15
p:AR1 .073 .073 .093 .098 .091 .118
p:AR2 .195 .174 .184 .171 .124 .142
p:Hansen-J .285 .153 .43 .341 .608 .409
p:Diff-Hansen .967 .088 .704 .102 .353 .227
Observations 589 548 542 503 433 394
Standard errors in parentheses
WSP=Wholesale price; X indicates interaction terms; H-Temp=high temperature
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Results for indica rice production (different seasons are pooled)

need a lot of sunshine during this period [FAO, 2015]. Furthermore, a lot of rain is needed
during and shortly after planting as well as during the flowering and yield formation
(ibid.). The positive influence af rainfall during and after planting can be observed in
the regression and is significant in three specifications. However, the rainfall during the
growing season is always insignificant as well as its interaction term with the non-irrigated
area. This might be a result of the data aggregation as explained above. Surprisingly, the
irrigated area seems to have a negative effect even though it is only significant at the 10%
level and only in two specifications. The underlying reason could be that farmers change
for more profitable but water-dependent crops once they have irrigation available. The
drought area again has a significant negative impact in most specifications, again with a
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very small effect though. The expected negative effect of too high temperatures during
flowering time vanishes once the interaction term with irrigation is included. Then, both
terms are insignificant. Fertilizer prices and prices of competing crops have no significant
effect but reduce the number of observations significantly. Therefore, they are not shown
separately but are available upon request.
Similar to corn and wheat, the lagged production is the most important driver for the

indica rice production as illustrated in table 5. The effect of the wholesale price is similar
to the case of corn, it is always significant and has an affect size of around 0.2. Rain during
the growing season, of which rice needs a lot in order for the areas to be flooded, is positive
but only significant at the 10% level in half of the specifications. But as explained before,
this might be a result of aggregating rainfall data on provincial levels. When interacted
with the non-irrigated area, only in one of four specifications we find this interaction to be
significant and it only is at the 10% level. The same holds for the irrigated area itself which
is consistently positive but only significant in this once specification. For the sunshine, we
find that a 1% increase in the number of hours of sunlight increases the production by
around 0.16% in all the difference GMM specifications but only in those. Similarly, the
damaging effect of too high temperatures during the growing season can be observed in
the difference GMM specifications only but is consistently present in those. The drought
area, fertilizer prices and the prices of competing crops all turn out insignificant. The
underlying reasons might be that the costs of switching are higher for rice, that rice needs
comparatively little fertilizer per unit of output, or that the data is too aggregated to
observe any effect.
Overall, our results are mostly comparable to what other studies have found. In a

non-crop specific analysis Ghatak et al. find a price elasticity between 0.174 and 0.394
[Ghatak and Seale, 2001] which is similar to ours. Looking at the national level only, own
price elasticities of 0.23 for rice, 0.052 for wheat, and 0.164 for corn have been reported
[Haile et al., 2015a]. Our results for rice and corn are comparable whereas we find a higher
price response for wheat. For Henan, Yu et al. found no significant response for wheat but
a surprisingly high elasticity of 0.737 for corn [Yu et al., 2011]. However, the elasticities of
competing crop prices are also high and significant. They also report that rainfall increases
winter wheat production2.

As explained in the section on the methodology, we want to analyze how the production
reacts to prices at different points in time. Therefore, the regressions with same specifica-
tions were run for prices at different month before and after the planting time. For all the
other variables the same values as before were used. For wheat and corn, specifications 3
and 4 were used therefore while specifications 5 and 6 were used for indica rice. For each
crop, these seem to be the specifications with the highest explanatory power. We only
show how the p-value of the price variable changes over time but inspection of the test
statistics indicates that the specifications are valid for the different points in time. Figures
1, 2, and 3 show the results for corn, winter wheat, and indica rice, respectively. On the
x-axis are the month before or after planting while the y-axis shows the p-values from 0 to
0.2 at which the figures are cut off. Both the System-GMM as well as the Difference-GMM
results are shown. We find that in general, the curves follow an U-shape which is what we
expect. Prices far before or after planting do not have any explanatory power. However,

2Multiply the area times the yield effect
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Figure 1: Corn production: Explanatory power of the wholesale prices over time

Figure 2: Winter wheat production: Explanatory power of the wholesale prices over time

prices around planting time are usually highly significant. As explained before, we expect
the Difference-GMM estimator to perform better. This hypothesis is supported by the
graphs. The fluctuations of the System-GMM results are much higher, particularly for
winter wheat and indica rice. In general, the period up to which prices are significant
extents further after planting for the Difference-GMM while in the case of winter wheat
it also starts earlier before planting. Prices after harvest are of course influenced by the
production and this additional endogeneity may lead to non-robust results after harvesting.
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Figure 3: Indica rice production: Explanatory power of the wholesale prices over time

Figure 4: Model robustness check for the corn production regressions using the System-GMM
estimator

Comparing the different corps, we find that farmers seem to react earlier to corn prices
than to winter wheat and indica rice prices. While, as shown above, the elasticity is the
largest for wheat, the response is more significant for corn and rice with the latter lying in
the middle of the former two. For all crops, prices remain highly significant for a while
after planting which indicates that not only the area, but also the yield responds to prices,
may it be due to fertilizer or pesticide application, irrigation, or other ways. Further
analysis to get a more clear picture of this process requires to separately look at the area
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Figure 5: Model robustness check for the corn production regressions using the Difference-GMM
estimator

and yield response which is planned for a later stage of this research. A clear result of
this analysis is, that farmers, at least on average, do not look at last year’s planting or
harvesting prices but indeed consider current prices around planting time to be the more
important.

This method of investigating the prices at different points in time may also be used for
general model specification test. For a robust model, we expect the significance of the
tested variables to consist of low-frequency components implying that there are only slow
and smooth changes and no big short-term fluctuations. The occurrence of big fluctuations,
in particular if some variables consistently change between not significant and significant,
suggest that the specification is not robust. Figures 4 and 5 show the p-values of the
same regression results as before for the System and Difference-GMM estimation for corn,
respectively. This time, some of the other variables were included3 We find that in the
Difference-GMM specification the p-values of all variables only change very slowly over
time (consider the different scale of the y-axis). In contrast, the fluctuations of all variables
are more pronounced for the System-GMM estimation. This supports our hypothesis
that the Difference-GMM estimator is more appropriate. However, the fluctuations still
seem to be mostly on an acceptable level; for problematic specifications much higher
fluctuations are expected. Interestingly, prices around 2 to 5 months before planting time
seem to have such a high explanatory power in the case of the Sytem-GMM, that all other
variables apart from the lagged production become insignificant. This is an indication that
prices before planting might be the most important one for the final production. Looking
separately at the area and yield response will allow to shed more light on this issue.

3Not all variables were included because this would reduce the recognizability of the figure too much.
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5 Conclusion
The corn, winter wheat, and indica production response for the main agricultural provinces
were estimated using the System- and Difference-GMM estimators. Our major findings
include: (1) All crops response strongly to prices at planting time, (2) the effect of the price
response is similar for rice and corn while it is slightly larger for winter wheat, (3) rainfall
is important, for corn in particular on non-irrigated areas and, as for wheat, during the
growing season whereas for rice it is important during and shortly after planting, (4) high
temperatures negatively influence production which may become problematic considering
possible future impacts of climate change, (5) irrigation may partly help to overcome
shortfalls in rainfall but not compensate for the negative effects of high temperatures, (6)
a negative impact of fertilizer prices was only found for corn, (7) prices shortly before
and after planting have a very high explanatory power while prices further away from
planting do not; this also implies that farmers, at least on average, respond to current
prices and not to last year’s planting or harvesting prices. In general, the Difference-GMM
estimator seems to perform better than the System-GMM estimator. Our method to
analyze the importance of prices at different points in time may also be used to test the
general robustness of any type of model using data which is available at a sufficiently high
frequency.
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