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Abstract  

The purpose of this paper is to investigate the effect that higher temperatures will have on the size 

of wildfires in the western United States controlling for suppression effort, precipitation, and other 

factors. Using data for 466 wildfires that occurred on U.S. Forest Service land between 2003 and 

2007, I find that an increase in temperature of 1 °C is associated with a 12% increase in wildfire 

size, holding all other factors constant. Given that current climate models predict temperatures to 

rise by 1.6 to 6.3 °C, this estimate suggests mean wildfire size could increase by 20% to 79%. Off-

setting this increase in wildfire size would require an increase in suppression expenditures of at least 

16% to 63%. For the average wildfire, this would translate into an increase in suppression 

expenditures of between $0.5 and $2 million. 
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1. Introduction 

Over the past thirty years, the average size of wildfires in the United States has more than 

doubled, from 15 hectares per fire in the 1980s to 36 hectares per fire in the 2000s (NIFC, 2014). 

Most of this increase was driven by a growing number of catastrophic wildfires that exceed 

~20,000 hectares like the 2002 Hayman Fire in Colorado that burned 55,846 hectares and 

destroyed $38.7 million in private property (USFS, 2013). Policy makers interested in 

responding to these events need to understand what is driving this trend.  

Previous studies by ecologists and other natural scientists suggest that increases in 

wildfire activity have been largely driven by changes in weather variables—namely higher 

temperatures. The first of these studies was McKenzie et al. (2004), which regressed the number 

of wildfire acres burned in 11 western states from 1916-2002 on mean summer temperature and 

precipitation for each state. This study found that years with high summer temperatures were 

associated with more acres burned by wildfire.  

Subsequent studies applied similar analytical methods to more spatially disaggregated 

datasets and found analogous results (Westerling et al., 2006; Littell et al., 2009). However, none 

of these studies controlled for human efforts to suppress wildfire in their regression estimates. 

This is important because one would expect suppression to both have a significant influence on 

wildfire size and be correlated with temperature for a variety of reasons. For example, higher 

temperatures could be associated with less suppression effort if warmer weather made conditions 

more dangerous for fire fighters (e.g. higher risk of heat stroke). Alternatively, higher 

temperatures could be associated with more suppression effort if dryer fuels mean more 

economic resources are threatened by fire. In either case, by excluding suppression effort, these 
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previous studies may have significantly over (or under) stated the impact of higher temperatures 

on wildfire activity due to omitted variable bias.  

However, trying to overcome the omitted variable problem by adding a measure of 

suppression effort to a regression model can introduce new problems. Specifically, wildfire size 

and suppression effort are jointly determined, which means that an instrumental variable 

estimator must be used to avoid the problem of endogeneity bias. This issue was previously 

identified by Johnston and Klick (2011), but they did not attempt to estimate such a model 

themselves.  

The goal of this paper is to fill this gap in the existing literature by estimating the partial 

effect of temperature on wildfire size while controlling for suppression effort using data from 

wildfires on U.S. Forest Service land. First, I develop an economic model where wildfire size is 

determined by the interaction of exogenous natural factors, such as mean temperature and 

precipitation when a fire is ignited and in previous months, and suppression effort applied by 

U.S. Forest Service fire managers. Specifically, I follow Donovan and Rideout (2003) and 

assume the objective of fire managers is to minimize the sum of costs associated with wildfire 

(i.e. the cost of suppression effort plus the cost of net wildfire damages). Next, I estimate the 

structural equations derived from this model using data collected from a pooled cross section of 

466 wildfires that occurred in the western United States between 2003 and 2007 and for which 

there is reliable suppression expenditure data (a proxy for suppression effort). Estimates for 

temperature and precipitation for the area surrounding each fire are estimated using weather-

station level data obtained from the National Climate Data Center from its Global Historical 

Climatology Network (GHCN) Monthly database.   
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The remainder of the paper is organized as follows. First, I discuss the scientific literature 

on wildfire size to identify factors that can influence wildfire size. Second, I develop an 

economic model of wildfire that accounts for human suppression activity. Third, I describe the 

methods used to estimate the economic model I develop. Fourth, I report the results of this 

estimation. The paper concludes with a discussion of the results and limitations of the paper. 

2. How Changes in Temperature and Precipitation and Other Factors Influence Wildfire Size 

The number of hectares a wildfire will burn after it has been ignited primarily depends on 

five factors:  1) the stock of available biomass to burn (i.e. fuel availability), 2) the 

combustibility of that biomass (i.e. fuel flammability), 3) the ecology of the surrounding area, 4) 

the typography of the surrounding area, and 5) how much effort is exerted to suppress the fire. In 

the following section, I will describe how each of these factors influence the size of wildfires.  

The stock of fuel available for wildfires to burn consists of different types of biomass 

such as dead woody material (needles, fallen branches, dried herbaceous vegetation, snags, and 

logs), shrubs, live trees and other vegetation (Bracmort, 2013).  Each of these types of fuel 

contributes to wildfire activity in different ways. For example, fuels that are small in diameter, 

such as needles and leaves, are most important for how quickly a wildfire will spread. This is 

because their small size means they lose moisture quickly and therefor combust more easily 

(Bracmort, 2013). By contrast, larger fuels, such as branches, shrubs, and logs, are more 

important for how intense the wildfire will become (i.e. how much energy a wildfire will release 

as it burns) (Bracmort, 2013).   

How much fuel is accumulated over a particular period of time depends on how much 

fuel is grown over that period and how much is removed.  Biomass growth is supported by 
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environmental factors such as higher precipitation. Precipitation in the months immediately 

preceding a wildfire are most important for determining the quantity of small diameter fuels that 

are available to burn, while atmospheric conditions over longer periods of time are more 

important for larger fuels because they take longer to grow.  

Biomass removal is typically accomplished by two methods: 1) naturally by wildfire or 2) 

artificially by fuel removal efforts by the USFS and other agencies. Prior to the 20th century, 

biomass removal was entirely accomplished through natural wildfires. However, from 1935 to 

1971, the U.S. government was committed to a policy of suppressing all wildfires (regardless of 

potential benefits). This policy was known as the “10AM policy” as it called for the “fast, 

energetic, and thorough suppression of all fires in all locations, during possibly dangerous fire 

weather. When immediate control is not thus attained...the  [suppression] each succeeding day 

will be planned and executed with the aim, without reservation, of obtaining control before ten 

o’clock the next morning” (Donovan et al, 2008). As a result of this complete suppression policy, 

tons of biomass that would have historically been removed by wildfire simply accumulated over 

time, contributing to the growing size of wildfires. This led to growing concerns about the 

sustainability of USFS wildfire policy.  

In 1979, the 10AM policy was abandoned for one where the amount and timing of 

suppression effort was guided by benefit-cost analysis. Specifically, the goal of the USFS service 

became to minimize the sum of costs associated with wildfire (i.e. the cost of suppression effort 

plus the cost of net wildfire damages). However, over time, it became clear that the 

consequences of following the 10AM policy for decades were not eliminated simply by 

abandoning the policy itself. Ecologists argued that many areas suffered from excess fuel loads 

created by the exclusion of wildfires in the past that made the likelihood of larger wildfires in the 
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future even greater. These concerns led the federal government to pursue artificial fuel removal 

starting in the early in 2000s. 

Once fuel has accumulated, its flammability is primarily determined by moisture content. 

Specifically, fuel with a moisture content of up to 20%-30% can be ignited by a match, spark 

from a chainsaw, or more commonly from lightning (Bracmort, 2013). Moisture content is 

primarily determined by weather conditions prior to a fire’s ignition. Higher temperatures will 

increase the drying capacity of the air and lower precipitation levels will make less moisture 

available (Routlet et al, 1992; Flannigan et al, 2009).  For fine fuels, weather conditions in the 

weeks immediately preceding a fire are most important, because they are small and their 

moisture content can therefore change quickly (Bracmort, 2013).  

In addition to fire availability and flammability, the ecosystem surrounding a fire 

determines how fuel availability and flammability interact to influence wildfire size. For 

example, in a relatively dry ecosystem that is dominated by grass and low density shrub 

vegetation types, fuel coverage may be so sparse that in some years the spread of large fires is 

limited by fuel availability. When such an ecosystem receives above normal precipitation, fire 

risks may be subsequently elevated for a time, as excess moisture leads to the growth of 

additional vegetation that can provides more continuous fuel coverage (Westerling and Bryant, 

2008). Westerling and Bryant (2008) refer to these systems as moisture-limited fire regimes. 

The topography of the area surrounding the fire is also important for how large it will 

grow. The three typographical characteristics that are most relevant for fire size are aspect, 

elevation, and slope. Aspect is the direction of the slope and it affects how much solar radiation a 

site receives. For example, south slopes receive much higher solar radiation and are warmer, so 

fuels tend to dry out sooner and more thoroughly during the fire season. Elevation affects fire 



7 

 

behavior by influencing the amount and timing of precipitation, as well as exposure to prevailing 

wind.  Slope influences the speed of a wildfire’s spread. Specifically, as heat rises in front of the 

fire, it more effectively preheats and dries upslope fuels, making for more rapid combustion. 

In addition to the geophysical aspects discussed above, human beings also have 

significant influence over how large a wildfire will grow through the amount of effort they exert 

on suppressing the fire. In the United States, there are multiple local, state, tribal, and Federal 

organizations tasked with fighting wildfires, with each organization being responsible for 

responding first to wildfires occurring within their jurisdiction (very large fires may require 

coordination of resources across multiple organizations). If a fire occurs on a national forest or 

national grassland, it is the responsibility of the USFS to provide an initial response. These USFS 

lands are grouped into nine broad geographic areas known as USFS management regions (Figure 

1). Each region is managed by a “regional forester.” However, the person that is actually in 

charge of controlling a particular fire is the incident commander.  

The incident commander must establish an organization and command structure for 

dealing with the blaze. If the incident commander behaves in accordance with the current USFS 

fire management policy described above, then his ultimate objective will be to minimize the sum 

of all monetized wildfire related costs and damages. The specific costs of wildfire suppression 

will depend on the tactic used to suppress the wildfire. There are two primary fire suppression 

tactics incident commanders can pursue to suppress a fire: direct attack and indirect attack. A 

direct attack is conducted at a fire’s edge and involves applying treatments directly to burning 

fuel such as wetting, smothering, or chemically quenching the fire.  An indirect attack is 

conducted a distance from the fire and typically involves actions like creating a gap between the 

fire and unburned fuel in order to break or slow the progress of wildfire. In either case, the costs 
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of suppression can include the labor cost of paying fire crews and the material and capital costs 

of using and maintaining equipment like helicopters, planes, and bulldozers (Holmes and Calkin, 

2012).  The damages of wildfire include value of lost timber and in some cases property damages 

(Donovan et al, 2008). In the next section, I formalize this general discussion about wildfire size 

into an economic model that can be estimated.  

 

3. An Economic Model of Wildfire Size 

Based on the discussion in the previous section, we can say that changes in temperature and 

precipitation in the weeks prior to a fire’s ignition influence its size through their effect on fuel 

flammability, while changes in these variables over a longer time period influence fire size 

through fuel availability. In addition to temperature and precipitation, fire size is also influenced 

by the level of effort exerted in suppressing the wildfire as well as the ecology and topography of 

the surrounding area. A general function determining wildfire size can be expressed as 

𝑆𝑖𝑧𝑒𝑖 = 𝑓(𝑇𝑖, 𝑃𝑖, 𝐹𝑢𝑒𝑙𝑖, 𝑆𝑢𝑝𝑝𝑖, 𝐸𝑐𝑜𝑙𝑜𝑔𝑦𝑖 , 𝐴𝑠𝑝𝑒𝑐𝑡𝑖, 𝐸𝑙𝑒𝑣𝑖, 𝑆𝑙𝑜𝑝𝑒𝑖)                (1)                  

where Sizei is the number of hectares burned by wildfire i, T is the average temperature for the 

area surrounding wildfire i in the month the fire occurred, P is the total precipitation for the area 

surrounding wildfire i in the month the fire occurred, Fueli is the fuel stock of the area 

surrounding wildfire i,  Suppi is the level of suppression effort applied in controlling wildfire i, 

Ecologyi is a dummy variable indicating which ecological region the fire occurred in, Aspecti is 

the aspect at the point of ignition, Elevi is the elevation the point of ignition, and Slopei is the 

slope at the point of ignition.  
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Note that all of the factors included in this function are exogenous except for suppression 

effort. Suppression effort is necessarily jointly determined with the number of wildfire hectares 

burned. Therefore, if we wish to model how many hectares will be burned each period, we must 

also model the decision for how much suppression effort is applied each period.  

As previously discussed, the USFS has determined that suppression must be applied to 

minimize the total cost (TC) of wildfire. Here, TC is defined as fire-suppression costs plus net 

fire damages, where net fire damages can include destruction of private property, destruction of 

harvestable timber, etc. (Husari and McKelvey, 1997; Donovan and Rideout, 2003). Under this 

assumption, the incident commander solves the following cost minimization problem: 

min 𝑇𝐶(𝑆𝑢𝑝𝑝𝑖) = 𝑊𝑆𝑆𝑢𝑝𝑝𝑖 + 𝑁𝐷(𝑆𝑖𝑧𝑒𝑖(𝑆𝑢𝑝𝑝𝑖), 𝑋𝑖
𝑁𝐷)                         (2)                  

where Ws is the price of suppression effort, Suppi is the level of suppression effort, and ND is the 

level of net damages from wildfire. I assume that ND is a function of Sizei (which is itself a 

function of suppression effort) as well as numerous other exogenous factors, Xi
ND, that may 

influence the value of damages associated with a fire of a given size (e.g. the value of property in 

a wildfire’s path).  

The first and second order conditions for this cost minimization problem are:  

FOC:     𝑊𝑆 +
𝜕𝑁𝐷

𝜕𝑆𝑢𝑝𝑝𝑖
= 0                                                           (3) 

SOC:              
𝜕2𝑁𝐷

𝜕𝑆𝑢𝑝𝑝𝑖
2 > 0                                                           (4) 

The first order condition implicitly defines the optimal level of suppression effort that will 

be applied to controlling wildfire in accordance with USFS policy goals. Intuitively, this 
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condition says that suppression effort will be applied until the marginal cost of that effort (Ws) 

equals its marginal benefit in terms of avoided damages ( −
𝜕𝑁𝐷

𝜕𝑆𝑢𝑝𝑝𝑖
 ). The second order condition 

tells us marginal benefit must be decreasing with additional suppression effort (−
𝜕2𝑁𝐷

𝜕𝑆𝑢𝑝𝑝𝑖
2 < 0). 

Figure 1 illustrates the cost minimizing choice of suppression effort.  

<<Insert Figure 1 About Here>> 

Assuming that the conditions of the Implicit Function Theorem are satisfied, we can solve 

the first order condition for the optimal level of suppression effort, which will be a function of 

exogenous variables:  

𝑆𝑢𝑝𝑝𝑖
∗(𝑊𝑠, 𝑋𝑖

𝑁𝐷 , 𝑇𝑖, 𝑃𝑖, 𝐹𝑢𝑒𝑙 𝑖, 𝐸𝑐𝑜𝑙𝑜𝑔𝑦𝑖, 𝐴𝑠𝑝𝑒𝑐𝑡𝑖, 𝐸𝑙𝑒𝑣𝑖, 𝑆𝑙𝑜𝑝𝑒𝑖)                   (5) 

Substituting this level of suppression back into Eq.1 yields the optimal wildfire size, which 

is the wildfire size we would observe in the data. 

𝑆𝑖𝑧𝑒𝑖
∗ = ( 𝑇𝑖, 𝑃𝑖 , 𝐹𝑢𝑒𝑙𝑖, 𝑆𝑢𝑝𝑝𝑖

∗, 𝐸𝑐𝑜𝑙𝑜𝑔𝑦𝑖 , 𝐴𝑠𝑝𝑒𝑐𝑡𝑖, 𝐸𝑙𝑒𝑣𝑖, 𝑆𝑙𝑜𝑝𝑒𝑖)                     (6) 

4. Estimating the Economic Model 

 In order to estimate the theoretical model derived above, one must choose which 

variables to include in the estimated model, the parametric functional form that will be used, and 

select an estimator to estimate the parameters themselves.  

 In terms of which variables to include in the estimated model, this question is largely 

answered by the economic model itself. However, some of the variables included in the 

economic model could not be included in this study model due to data limitations, so I had to use 

suitable proxies. First, actual suppression effort cannot be observed, so I use inflation-adjusted 
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suppression expenditures. Expenditures make a reasonable proxy for suppression effort, since I 

would expect that more money being spent suppressing a fire would indicate more resources 

being applied to fight the fire.  

Second, an explicit measure of the fuel stock present at each fire is not available, so I use 

average precipitation anomaly for the area surrounding the fire’s point of ignition. Precipitation 

anomaly estimates should make a reasonable proxy for fuel stock surrounding a particular fire, 

because (as previously discussed) higher than normal precipitation levels will support fuel 

growth and therefore be associated with greater fuel stocks. Calculating this variable is 

completed in two steps. First, precipitation anomaly for each month prior to the fire’s ignition is 

calculated as the difference between precipitation that was actually observed in that month and 

the mean precipitation for that month from 1980 to 2000. Second, a simple average is taken for 

the estimated precipitation anomaly across each of the six months prior to the fire’s ignition.  

Third, the ecological characteristics of the area surrounding each fire are also difficult to 

determine. For the purposes of this study, I categorize fires based on whether or not they 

occurred in a “dry” ecosystem, which I define as a region where annual losses of water through 

evaporation at the earth's surface exceed annual water gains from precipitation. To capture 

ecological differences closer to the fire itself, I included a categorical variable for the type of 

vegetation observed at the fire’s point of ignition.  

In addition to these proxies, I also included categorical variables for the USFS 

management region the fire was located in and the year in which the fire occurred to capture 

unobserved factors that differ across geographic regions that unobserved factors that are common 

to all regions but vary across time.   
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  A log-level functional form is used for this model specification because inspection of the 

model residuals suggested that the underlying disturbances better approximated a normal 

distribution.  Therefore, in this analysis, I estimate the following model: 

𝐌𝐨𝐝𝐞𝐥 #𝟏: ln (𝑆𝑖𝑧𝑒𝑖) = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑃𝑖 + 𝛽3𝑃_𝐴𝑛𝑜𝑚𝑖+𝛽4 ln(𝑆𝑢𝑝𝑝𝐸𝑥𝑝𝑖) + 𝛽5𝐷𝑟𝑦𝑖 + 𝛽 𝐺𝑟𝑎𝑠𝑠𝑖 +

 𝛽8𝑆𝑙𝑜𝑝𝑒𝑖 + 𝛽9𝐴𝑠𝑝𝑒𝑐𝑡𝑖 + 𝛽10𝐸𝑙𝑒𝑣𝑖 + ∑ 𝛽𝑗𝑈𝑆𝐹𝑆𝑗𝑖
4
𝑗 + ∑ 𝛽𝑘𝑌𝑒𝑎𝑟𝑘𝑖

4
𝑘 + 𝑢𝑖                  (7) 

The variables are defined as follows: 

 ln(Sizei) = the natural log of the number of hectares as burned by fire i,  

 T = average temperature (measured in °C) of the area surrounding fire i in the in 

the month it was ignited,  

 P = total precipitation (measured in millimeters) in the area surrounding fire i in 

the month it was ignited, 

 ln(SuppExpi) = natural log of federal suppression expenditures incurred fighting 

fire i,  

 P_Anom = average monthly precipitation anomaly for area surrounding fire i for 

the six months prior to its ignition.   

 Dry = a dummy variable equaling 1 when fire i occurred in a dry ecoregion,  

 Grass  = a dummy variables equaling 1 when vegetation at the fire’s point of 

ignition was recorded as “grass,”  

 Aspect = recorded aspect at the point of ignition,  

 Elev = recorded elevation of the point of ignition in feet,  

 Slope = recorded percentage slope at the point of ignition,  

 USFS = dummy variable equaling 1 when fire i occurred in USFS region j,  
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 Year = is a dummy variable equaling 1 when fire i occurred in Year k, 

 u = a disturbance term that is assumed to heteroskedastic.  

In addition to estimating this main effects model, I also estimate a model where the variable 

for precipitation anomaly is interacted with the “dry” categorical variable. I estimate this model to 

see whether the partial effect of precipitation is different for moisture-constrained ecological 

regions. Specifically, I estimate the following model: 

𝐌𝐨𝐝𝐞𝐥 #𝟐: ln (𝑆𝑖𝑧𝑒𝑖) = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑃𝑖 + 𝛽4𝑃_𝐴𝑛𝑜𝑚𝑖 + 𝛽4(𝑃_𝐴𝑛𝑜𝑚 ×

𝐷𝑟𝑦𝑖)+𝛽5 ln(𝑆𝑢𝑝𝑝𝐸𝑥𝑝𝑖) + 𝛽6𝐷𝑟𝑦𝑖 + 𝛽7𝐺𝑟𝑎𝑠𝑠𝑖 +  𝛽8𝑆𝑙𝑜𝑝𝑒𝑖 + 𝛽9𝐴𝑠𝑝𝑒𝑐𝑡𝑖 +  𝛽10𝐸𝑙𝑒𝑣𝑖 +

∑ 𝛽𝑗𝑈𝑆𝐹𝑆𝑗𝑖𝑗 + ∑ 𝛽𝑘𝑌𝑒𝑎𝑟𝑘𝑖𝑘 + 𝑢𝑖  (8) 

Based on the scientific discussion above, I would expect that changes in P_Anom would have a 

greater impact on the size of wildfires in “dry” ecological areas that are moisture-constrained. 

Estimating these two models requires the use of an instrumental variables estimator, 

because including suppression effort as an independent variable likely introduces endogeneity 

bias. I use a two-stage least squares (TSLS) estimator with heteroskedasticity-robust standard 

errors. The instrumental variable that is used in this estimation is the distance from a fire’s point 

of origin to the nearest populated area.   

The Choice of Instrument 

A valid instrumental variable must satisfy two conditions. First, the instrument must be 

correlated with the endogenous variable. Second, the instrument must be uncorrelated with the 

error term in the explanatory equation (in this case ui in Eq.9). I chose distance as an instrument 

because I believe it satisfies both of these conditions.  
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The first condition is satisfied because there are strong theoretical reasons to suspect that 

less suppression effort will be applied to fires occurring father away from populated areas.  

Specifically, a fire that is farther away from a population center may result in fewer damages, 

since there would be fewer homes and businesses to destroy. This would lower the marginal 

benefit of suppression (represented in the model above as a decrease in  XND ) and therefore 

reduce the optimal level of suppression effort applied. Alternatively, a wildfire that occurs 

farther away from a population center may be harder for firefighters to access and thus more 

costly to fight. This would increase the marginal cost of suppression (represented in the model 

above as an increase in WS) and therefore reduce the optimal level of suppression effort applied. 

In either case, the theoretical model predicts that less suppression effort will be exerted in 

fighting fires that are further away from population centers. This model prediction can be 

directly tested by looking at the first-stage results of the two-stage least squares regression.  

It is more difficult to demonstrate that the second condition that a fire’s distance from the 

nearest populated area is uncorrelated with the error term because this cannot be tested 

empirically. However, there are strong reasons to believe this second condition is satisfied. 

Specifically, this is because the scope for distance to influence wildfire through any pathway 

other than suppression effort is quite limited. There is no reason to suspect that fires farther away 

from populated areas face systematically different temperatures or precipitation than fires closer 

to populated areas. Similarly, there is no reason to suspect that fires farther from populated areas 

have systematically different typographical characteristics.  

The only path through which distance could directly influence wildfire size is fuel loads. 

Specifically, it is possible that fuel loads closer to populated areas are systematically lower 

because there are more human-caused ignitions in these areas happen more frequently. This is 
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due to the fact more people can visit forests that are closer to population centers, which increases 

the likelihood of fires being caused by campfire, misplaced cigarettes, arson, etc. Although no 

study has been conducted on whether fuel loads are systematically different in forests close to 

population centers, there are two reasons to doubt that more human-caused fires would 

significantly impact fuel loads of forests included in my analysis. First, human-caused ignitions 

are much rarer in the western United States, which is the focus of this study, than other parts of 

the country. Specifically, from 2000-2008, human-caused ignitions accounted for only 35% of 

total ignitions with an identifiable cause in western USFS regions, compared with 71% in eastern 

regions (Prestemon et al, 2013). Second, when human-caused wildfires do occur, they tend to be 

significantly smaller than naturally-caused wildfires, which would limit their impact on fuel 

availability. There are three reasons why human fires stay small: 1) they often occur outside the 

fire season, 2) they occur in vegetation that does not sustain large fires, and 3) they occur in areas 

where fires are immediately suppressed (Calef et al., 2008).   For these reasons, I argue that 

distance to the nearest population center can be considered exogenous to the size of wildfires 

included in this analysis. 

 

 

5. Data  

The primary data source for this study is the National Interagency Fire Management 

Integrated Database (NIFMID), which contains data on characteristics of all wildfires controlled 

by the USFS including the number of acres burned by each fire, the geographic coordinates of 

the fire’s point of origin, and various measures of the suppression effort that was expended 
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controlling the fire. However, previous analyses have found that suppression expenditures 

estimates included in the NIFMID cannot always be taken at face value. For example, in FYs 

2000 and 2002 the Forest Service spent more than $1 billion on suppressing wildfires. Yet, the 

sum of suppression expenditures included in the NIFMID only totaled $655 and $629 million, 

respectively (Gebert et al. 2007). This discrepancy was partly driven by the fact that many fires 

do not have suppression expenditure estimates recorded for them.  

Therefore, for purposes of this study, I use a subset of the database that was used in 

Donovan et al. (2011). The Donovan et al. database only includes data for wildfires occurring 

between 2003 and 2007 where the USFS was the recorded protection agency or the majority of 

the acres burned were under USFS jurisdiction and where reasonable estimates of suppression 

expenditures could be obtained. Specifically, I analyze data for the 466 of these fires that 

occurred in USFS Regions 1, 3, 4, 5, and 6. I focus on these five regions for two reasons. First, 

understanding fires that occur in this region would be of greatest interest to policy makers 

because they account for over 75% of wildfire acres burned between 1978 and 2009. Second, by 

narrowing my focus to a particular region of the United States, I reduce some of the policy and 

ecological heterogeneity across fires. The location of each of the 466 fires is illustrated in Figure 

2. 

<<Insert Figure 2 about Here>> 

Descriptive statistics for each of these variables used to estimate the models described 

above are reported in Table 1. Sources and methods for collecting this data are provided below. 

<<Insert Table 1 about Here>> 

Exogenous Variables 
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Measures of the average temperature and precipitation for the area surrounding each fire 

were constructed using weather-station level data obtained from the National Climate Data 

Center from its Global Historical Climatology Network (GHCN) Monthly database.1 

Specifically, I took an inverse-distance weighted average of monthly temperature and 

precipitation means for every station within 250 miles of a wildfire’s point of origin. I chose to 

use an inverse-distance weighted average to reflect the fact that weather conditions closer to the 

origin of the fire is more important to wildfire size. I chose a radius of 250 miles to make sure 

that all weather observations that are relevant to a wildfire’s size are included in my estimates. 

Although the exact radius of 250 miles was arbitrary, it is possible that precipitation that fell 

many miles from the origin of a fire could still support the growth of fuel surrounding a fire by 

traveling along streams, rivers, and underground.  

Data on whether a fire occurred in a “dry” ecosystem or not was obtained by intersecting 

the coordinates of a fire’s point of origin with the Ecological Provinces geographic information 

systems (GIS) layer developed by the USFS ECOMAP Team. A dry ecosystem is defined in this 

dataset as a region where estimated annual losses of water through evaporation at the earth's 

surface exceed annual water gains from precipitation. 

Data on the topography and other characteristics of the area at each fire’s point of 

ignition were obtained from the National Interagency Fire Management Integrated Database 

(NIFMID) by Donovan et al (2011). Specifically, data were collected on degree of the slope, the 

aspect, and the elevation at the fire’s point of origin as well as whether the fire occurred in a 

grassy area or not.   

                                                           
1 The GHCN Monthly database includes monthly averages of weather observations from over 70,000 surface 
stations across the world dating back to the year 1900. 
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Endogenous and Instrumental Variables 

Data on suppression expenditures were obtained from Donovan et al. (2011). These 

suppression expenditure estimates were adjusted to 2002 dollars using the Consumer Price 

Index. Data on distance was also obtained from Donovan et al. (2011). Specifically, they 

calculated distance from each fire to the nearest census-designated place (this is an area of 

concentrated population, such as towns or cities, which the United States Census Bureau 

designated for statistical purposes).   

6. Results  

Testing Instrument Strength 

The first-stage results for Model 1 and Model 2 are reported in Table 2 in columns 2 and 

3 respectively. As theory would predict, suppression expenditures are negatively associated with 

a wildfire’s distance to the nearest population center in both models. Specifically, in both 

models, a 10 mile increase in the distance from a fire’s point of ignition to the nearest population 

center is associated with a 20% decrease in suppression expenditures. This relationship is 

statistically significant in both models.   

The strength of the instruments is more formally tested by using the procedure described 

in Stock and Yogo (2005). Specifically, they show that for a single endogenous variable model, 

the bias of the IV estimator relative to that of the OLS estimator can be tested by comparing the 

first stage F-test statistic on the excluded instrument to critical values that they calculated. For 

the purposes of this paper, I use the Stock and Yogo method to test the null hypothesis that the 

maximum bias of the TSLS estimator relative to the OLS estimate is at least 20%. Stock and 

Yogo report that the 5% critical value for this test is 6.66. Because I estimate the F-statistic on 
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the excluded instrument to be 7.44 in Model 1 and 7.34 in Model 2, I reject the null hypothesis 

for both models. I take this as evidence that weak instrument bias is not a major problem for my 

coefficient estimates.  

<<Insert Table 2 about Here>> 

 

The Partial Effect of Temperature and Precipitation on Wildfire Size 

The TSLS results for the first model specification are reported in Table 3 in column 4. I 

find that fires were larger in areas that had higher temperatures in the month they ignited. 

Specifically, a 1 degree increase in temperature is associated with a 12% increase in wildfire size 

on average, holding everything else constant.  

<<Insert Table 3 about Here>> 

 Also as expected, I find that fires were smaller in areas that had less precipitation in the 

month the fire was ignited. Specifically, a decrease in total precipitation of 1 millimeter during 

the month a fire occurs will increase wildfire size by 37% on average, holding everything else 

constant. This result is consistent with the notion that contemporaneous precipitation levels are 

most important for fuel flammability.  

 In addition to the contemporaneous effects of precipitation on wildfire size, we also see 

that precipitation in previous periods had a significant impact on wildfire size. Specifically, a 1 

millimeter average precipitation anomaly over the previous six months increases wildfire size by 

46% on average, holding everything else constant. This result is consistent with the notion that 
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heavy precipitation in the months prior to a fire’s ignition can lead to larger wildfires by creating 

more fine fuels.   

The Influence of the Surrounding Ecosystem on Sensitivity to Changes in Weather Variables 

 The results of the second model specification are reported in Table 3 in column 5. As 

expected, dry ecosystems are much more sensitive to changes in precipitation than non-dry 

ecosystems. One can see this by looking at the interaction effect between precipitation anomaly 

and ecosystem type. Specifically, a 1 millimeter increase in the average precipitation anomaly 

over the previous 6 months will increase wildfire size by 95% in dry ecosystems as opposed to 

only 29% in non-dry ecosystems. A joint hypothesis test conducted using the Wald test statistic 

reveals that this result is significant at the 1% significance level.  

 

Comparison to OLS Estimation Results 

 In addition to the TSLS estimates of Models 1 and 2, I also provide OLS estimates of 

each model in Table 3 in column 2 and 3 respectively. As we can see, these estimates are 

markedly different from each other. This is not what we would expect from two consistent 

estimators. The sign on the coefficient for suppression effort is also positive and strongly 

significant, which is the opposite of how we would expect suppression to influence wildfire size. 

Similarly, the wildfire size seems less sensitive to changes in temperature and wildfire size when 

looking at the OLS estimates than the TSLS estimates. A Wu-Hausman test formally confirms 

that we reject the null hypothesis that the OLS estimates are consistent at the 5% level. This 

makes sense given that we would expect wildfire size and suppression effort to be jointly 

determined, which would make OLS biased and inconsistent.  
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7. Conclusion 

 The results presented in this paper can be of great use to USFS policy makers that want to 

anticipated how higher temperatures from Climate Change will influence wildfire size. For 

example, according to the PCM-B2 and HadCM3 climate models, temperatures in the western 

United States are expected to increase between 1.6 C and 6.3 C in the period 2070 to 2100 

relative to temperatures in the 1970-2000 period (McKenzie, 2004). Given that the results 

presented above predict that a 1 C increase in temperature will increase wildfire size by 12%, 

this would imply current climate projections suggest the mean wildfire size will increase by 20% 

to 79%. To put this into perspective, we can calculate a lower-bound for how much suppression 

expenditures would have to increase to off-set this increase in wildfire size. Specifically, based 

on the results of Model 1 in Table 3, we can construct a 95% confidence interval for the 

population parameter for the coefficient ln(SuppExp) that ranges from -1.24 to 0.47. Using the 

lower bound of this interval suggest that if the USFS wanted to increase suppression efforts to 

completely offset an increase in wildfire size of 20-79% they would need to increase suppression 

expenditures by at least 16-63%. In my dataset, mean suppression expenditures was estimated to 

be $3.3 million. This means suppression costs on the average wildfire could increase $0.5-$2 

million.  

  It is important to understand the limitations of these results. Specifically, these results 

hold fuel and ecosystem characteristics constant, when in fact these might change over time. For 

example, as wildfires become larger, this could result in more fuel being removed from national 

forests over the long run, which could mitigate the effects of higher temperatures on wildfire 
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size. Measuring the importance of such changes is beyond the scope of this study, but they do 

suggest that caution should be taken when using these results to extrapolate impacts of climate 

changes in the distant future.  

  

  

 

.   
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9. Figures and Tables 

Figure 1. Illustration of Economic Model 
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Figure 2. Location of Wildfires Included in Dataset
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Table 1. Descriptive Statistics  

Variable 
N Mean 

Standard 
Deviation 

Minimu
m 

Maximum 

Size (acres) 466 10,118.54 27,753.53 100.00 280,059.00 

T (°C) 466 19.36 4.49 1.91 29.42 
P (millimeters) 466 1.57 0.87 0.02 5.19 
P_Anom (millimeters) 466 0.22 0.81 -3.26 3.59 
SuppExp ($2006) 466 3,366,152.00 7,129,091.00 1,305.31 98,700,000.00 
Dry (1=dry region) 466 0.21 0.41 0.00 1.00 
Grass (1=grass fuel) 466 0.36 0.48 0.00 1.00 
Aspect (degrees) 466 4.68 2.35 0.00 9.00 
Elevation (feet) 466 5,284.74 1,971.12 43.00 10,000.00 
Slope (% slope) 466 38.95 23.93 0.00 150.00 
USFS Region 3 466 0.20 0.40 0.00 1.00 
USFS Region 4 466 0.25 0.43 0.00 1.00 
USFS Region 5 466 0.20 0.40 0.00 1.00 
USFS Region 6 466 0.17 0.37 0.00 1.00 
2003 466 0.02 0.15 0.00 1.00 
2004 466 0.15 0.35 0.00 1.00 
2005 466 0.18 0.39 0.00 1.00 
2006 466 0.34 0.47 0.00 1.00 

Distance 466 15.96 10.61 0.39 70.14 
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Table 2.  Results From First-Stage of TSLS Regression (n=466) 

Variable Model 1 Model 2 

T        0.1*** 
(0.02)  

         0.09***  
  (0.02)  

P    -0.23**  
(0.10)  

     -0.24** 
(0.1)  

P_Anom 0.07 
(0.12)  

-0.02 
(0.13)  

P_Anom×Dry 
(-) 

0.33 
(0.2)  

Dry -0.44 
(0.28)  

-0.45 
(0.28)  

Grass      -1.31*** 
(0.18)  

    -1.34** 
(0.18)  

Aspect 0.01 
(0.04)  

0.01 
(0.04)  

Elevation <0.01* 
(<0.01)  

<0.01*  
(0.01)  

Slope <0.01 
(0.01)  

<0.01 
(<0.01)  

USFS Region 3 -0.41 
(0.34)  

-0.32 
(0.35)  

USFS Region 4 0.04 
(0.29)  

0.05 
(0.29)  

USFS Region 5 0.32 
(0.31)  

0.32 
(0.31)  

USFS Region 6       1.23*** 
(0.28)  

     1.26*** 
(0.28)  

2003 0.49 
(0.64)  

0.55 
(0.65)  

2004 0.03 
(0.26)  

0.04 
(0.26)  

2005 -0.07 
(0.28)  

-0.08 
(0.28)  

2006 0.03 
(0.23)  

0.07 
(0.23)  

Distance      -0.02*** 
(0.01)  

-0.02** 
(0.01)  

Constant    12.08***  
(0.63)  

12.14*** 
(0.63)  

R^2 0.26 0.26 

Note: *** denotes p-value < 0.01, **p-value < 0.05, *p-value <0.10.  
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Table 3.  OLS and TSLS Estimations of Wildfire Size Model (n=466) 

  Dependent Variable: ln(Size) 

 OLS Coefficients TSLS Coefficients 

Variable Model 1 Model 2 Model 1 Model 2 

ln(SuppExp) 
0.64*** 
(0.04) 

0.63*** 
(0.04) 

-0.39   
(0.44) 

-0.40   
(0.44) 

T 
0.02   

(0.02) 
0.02   

(0.02) 
0.12**  
(0.05) 

0.12**  
(0.05) 

P 
-0.14*  
(0.09) 

-0.16*  
(0.09) 

-0.37** 
(0.16) 

-0.4**  
(0.17) 

P_Anom 
0.41*** 
(0.11) 

0.34*** 
(0.12) 

0.46*** 
(0.16) 

0.29*  
(0.18) 

P_Anom×Dry (-) 
0.31   

(0.19) 
(-) 

0.66**  
(0.33) 

Dry 
0.12   

(0.22) 
0.1   

(0.22) 
-0.28   
(0.41) 

-0.32   
(0.42) 

Grass 
0.06   

(0.16) 
0.04   

(0.16) 
-1.26** 
(0.62) 

-1.32** 
(0.63) 

Aspect 
-0.04   
(0.03) 

-0.05   
(0.03) 

-0.03   
(0.05) 

-0.03   
(0.05) 

Elevation 
<0.01  
 (0.01) 

<0.01  
 (0.01) 

<0.01  
 (0.01) 

<0.01  
 (0.01) 

Slope 
<0.01   
(0.01) 

<0.01   
(0.01) 

<0.01   
(0.01) 

<0.01   
(0.01) 

USFS Region 3 
0.45   

(0.27) 
0.53*  
(0.28) 

0.05   
(0.48) 

0.23   
(0.47) 

USFS Region 4 
0.26   

(0.21) 
0.26   

(0.21) 
0.23   

(0.35) 
0.24   

(0.36) 

USFS Region 5 
-0.78*** 

(0.24) 
-0.77*** 

(0.24) 
-0.36   
(0.4) 

-0.35   
(0.41) 

USFS Region 6 
-0.45*  
(0.23) 

-0.43*  
(0.23) 

0.83   
(0.65) 

0.89  
(0.66) 

2003 
0.55  

(0.47) 
0.6   

(0.48) 
1.16   

(0.94) 
1.27  

(0.96) 

2004 
-0.94*** 

(0.22) 
-0.94*** 

(0.22) 
-0.96*** 

(0.33) 
-0.96*** 

(0.33) 

2005 
-0.93*** 

(0.23) 
-0.95*** 

(0.23) 
-1***  
(0.36) 

-1.04*** 
(0.36) 

2006 
-0.61*** 

(0.18) 
-0.56*** 

(0.18) 
-0.61**  

(0.3) 
-0.52*  
(0.30) 

Constant 
-1 .00  
(0.67) 

-0.89  
(0.67) 

11.04** 
(5.22) 

10.39*  
(5.31) 

Note: *** denotes p-value < 0.01, **p-value < 0.05, *p-value <0.10.  
 


