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AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICY UNDER 

ERROR-TERM NON-NORMALITY 

 
 
 
 
 
 

ABSTRACT 

This paper explores the impact of error-term non-normality on the performance of the 

normal-error Generalized Autoregressive Conditional Heteroskedastic (GARCH) model 

under small and moderate sample sizes. A non-normal-, asymmetric-error GARCH model 

is proposed, and its finite-sample performance is evaluated in comparison to the normal-

error GARCH under various underlying error-term distributions. The results suggest that 

one must be skeptical of using the normal-error GARCH when there is evidence of 

conditional error-term non-normality. The conditional distribution of the error-term in a 

previous mainstream application of the normal GARCH is found to be non-normal and 

asymmetric. The same application is used to illustrate the advantages of the proposed non-

normal-error GARCH model. 

Keywords: Error- term non-normality, skewness, autoregressive conditional 

heteroskedasticity.  
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1. Introduction 

The Generalized Autoregressive Conditional Heteroskedastic process (GARCH) 

(Bollerslev, 1986) and its predecessor, the Autoregressive Conditional Heteroskedastic 

process (ARCH) (Engle, 1982) have proven useful for modeling a variety of time series 

phenomena. Many time series variables follow complex autocorrelation structures and are 

conditionally heteroskedastic. Some, however, are also non-normally distributed. 

Bollerslev (1986) indicates that the maximum likelihood (ML) estimator for his 

GARCH model, which assumes error-term normality, is strongly consistent and 

asymptotically normal under any true conditional error-term distribution. The asymptotic 

covariance matrix for the estimator, however, is contingent upon the true error-term 

distribution. The finite-sample performance of the normal-GARCH model under non-

normal true conditional error-term distributions has not been explored. This is important 

since most time-series applications involve small or moderate sample sizes. In this paper 

we use standard Monte Carlo simulation procedures to explore the impact of error-term 

non-normality on the performance of the normal-error GARCH model of Bollerslev (1986) 

under small and moderate sample sizes. 

Partially adaptive estimators parametrically model error-term non-normality to 

improve efficiency in the estimation of the slope parameters of regression models in finite-

sample applications (McDonald and White, 1993). Bollerslev (1987) and Yang and 

Brorsen (1992) proposed and applied a non-normal-error GARCH model based on the 

Student-t distribution, which is symmetric but leptokurtotic. We advance a more flexible 

non-normal-, asymmetric-error GARCH model based on Ramirez and Shonkwiler (2000) 
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partially adaptive inverse hyperbolic sine (IHS) estimator and evaluate its finite-sample 

performance in comparison to the normal-error GARCH under a variety of true underlying 

error-term distributions, and through a mainstream empirical example. 

2. The Non-Normal IHS-GARCH(p,q) Process 

A non-normal-error GARCH(p,q) process analogous to Bollerslev (1986) normal-

error GARCH(p,q) process is: 

(1) yt = x’tb + ε t,   ε t ∼ NN(0,ht), 

ht = α0 + ∑
=

q

i 1

αiε2
t-i + ∑

=

p

i 1

β iht-i 

where NN(0,ht) represents a family of non-normal distributions with mean zero and 

variance ht. This process is fully defined by assuming a specific family of non-normal 

distributions for ε t. One possibility is Ramirez and Shonkwiler’s (2000) expansion of 

Johnson’s (1949) Su family of distributions, which is obtained by letting:  

(2) ε t = [{ht/G(Θ,µ)}1/2{sinh(Θvt)−F(Θ,µ)}]/Θ,  vt ∼ N(µ,1), 

F(Θ,µ) = E[sinh(Θvt)] = exp(Θ2/2)sinh(Θµ), and 

G(Θ,µ) = {exp(Θ2)−1}{exp(Θ2)cosh(−2Θµ)+1}/2 

where Θ>0, −∞<µ<∞, and σ>0 are distributional parameters. Using the results of Johnson, 

Kotz and Balakrishnan (1994), it can be shown that in this model: 

(3) E[ε t] = 0,  Var[ε t] = ht, 

Skew[ε t] = E[ε t
3] = S(Θ,µ) = −1/4w½(w−1)2[w{w+2}sinh(3Ω)+3sinh(Ω)]/G(Θ,µ)3/2 

Kurt[ε t] = E[ε t
4] = K(Θ,µ) = {1/8{w−1}2[w2{w4+2w3+3w2−3}cosh(4Ω)+4w2{w+2} 

cosh(2Ω)+3{2w+1}]/G(Θ,µ)2}−3 
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where w = exp(Θ2) and Ω = −Θµ. The results in (3) imply that E[yt] = x’tb regardless of 

the values of ht, Θ, and µ, and that the variance of ε t is the same as in Bollerslev’s normal-

error GARCH process. The conditional error-term skewness and kurtosis are determined 

by the parameters Θ and µ. If Θ>0 and µ approaches 0 the error-term distribution becomes 

symmetric, but it remains kurtotic. Higher values of Θ cause increased kurtosis. If Θ>0 and 

µ>0, ε t has a kurtotic and right-skewed distribution, while µ<0 results in a kurtotic and left 

skewed distribution. Higher values of µ increase both skewness and kurtosis, but kurtosis 

can be scaled back by reducing Θ (Ramirez and Shonkwiler, 2000). 

An advantage of the non-normal-IHS model specification is that the degree of 

skewness and kurtosis of the conditional error-term distribution can be assumed variable 

across observations without interfering with the estimation of the linear regression and 

GARCH process parameters. This is achieved by making Θ and/or µ a function of time or 

any other potentially relevant factor. Also notice that when µ = 0 the IHS-GARCH model 

defined above is reduced to the following nested specification: 

(4) yt = x’tb + ε t,  

ε t = [{ht/G(Θ,0)}1/2{sinh(Θvt)}]/Θ,  vt ∼ N(0,1). 

(5) E[ε t] = 0,  Var[ε t] = ht, 

Skew[ε t] = E[ε t
3] = S(Θ,0) = 0, 

Kurt[ε t] = E[ε t
4] = K(Θ,0) = J(Θ), 

which implies a symmetric but leptokurtotic error-term model. As Θ goes to zero, ε t 

approaches ht
1/2vt and J(Θ) becomes zero, indicating that Bollerslev’s normal-error 
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GARCH(p,q) model is nested to the restricted IHS-error GARCH specification in 

equations (4) and (5) and to the full IHS-error GARCH specification in equations (1), (2) 

and (3). In practice, under error-term normality, both µ and Θ would approach zero and the 

proposed IHS-error GARCH estimator would approach Bollerslev’s normal-error GARCH 

estimator. Thus, under the full IHS-error GARCH model specified in equations (1), (2) and 

(3), the null hypothesis of normality vs. the alternative of non-normality is Ho: Θ=µ=0 vs. 

Ha: Θ>0. The null hypothesis of symmetric non-normality versus the alternative of 

asymmetric non-normality is Ho: Θ>0, µ=0 vs. Ha: Θ>0, µ≠0. 

Given equations (1) and (2), the concentrated log-likelihood function that would 

have to be maximized when estimating the IHS-GARCH model is obtained using the 

transformation technique (Mood, Graybill, and Boes 1974): 

                       n                         n                                           
(6) LL = Σ ln(Gi) −0.5×Σ Hi

2 ; where: 
                      i=1                    i=1 
 

Gi = {ht/G(Θ,µ)(1+Ri
2)}-1/2, 

Hi = {sinh–1(Ri)/Θ}−µ, 

Ri = [Θ(yt-x’tb)/{ht/G(Θ,µ)}1/2]+F(Θ,µ). 

i=1,…,n refers to the observations, sinh–1(x) = ln{x+(1+x2)1/2} is the inverse hyperbolic 

sine function, and ht, F(Θ,µ), and G(Θ,µ) are as given in equations (1) and (2). 

3. Properties of the IHS-Error GARCH Estimator 

If the distribution of the true conditional error-term (e.g. the error-term underlying 

the data-generating process) belongs to the expanded form of Johnson’s SU family defined 
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in equation (2), then E[sinh(Θvt)] = F(Θ,µ). This implies that E[ε t] = 0 and E[yt] = xtb, 

regardless of the values of ht, Θ, and µ. Otherwise: 

(7) E[yt] = xtb + {ht/G(Θ,µ)}1/2{E[sinh(Θvt)]−F(Θ,µ)}/Θ = xtb + C, 

Since C is constant with respect to xt, if the regression equation includes an 

intercept (bo), the estimator for the intercept will be biased by that constant amount −C. If 

the regressors are fixed in relation to the error-term, the estimators for the slope parameters 

will remain unbiased. Also, as McDonald and Newey (1988) point out, as long as the 

error-term is independent of the regressors, any ML-estimator of the location measure of 

the distribution of yt conditional on xt would be a consistent estimator for the regression 

slopes. Thus, there is no need to assume that ε t is a member of the expanded SU family to 

guarantee unbiased or at least consistent slope parameter estimators. 

 As any partially adaptive estimator, the proposed IHS-error GARCH estimator 

would be asymptotically efficient if and only if the true distribution of the conditional 

error-term is a member of the expanded SU family and its autocorrelation structure has 

been properly specified. Under these conditions, standard likelihood theory also guarantees 

that the maximum likelihood estimators would be asymptotically normal, and that the 

standard error estimators obtained from the information matrix of the likelihood function 

would be consistent. When working with finite samples, however, the asymptotic 

properties are not applicable. In small to moderate sample size applications, the key is to 

use an estimator based on a flexible family of densities that can accommodate a wide 

variety of distributional shapes (Ramirez and Shonkwiler, 2000). 
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Johnson, Kotz and Balakrishnan (1994) indicate that both the log-normal and the 

normal (Gaussian) family of densities are limiting cases of the SU family, which also 

provides for a close approximation for the Pearson family of distributions. They present 

the Abac for the SU family and demonstrate that there is an appropriate SU distribution for 

any shape factor (e.g. skewness-kurtosis) combination below the log-normal line. Since 

these shape factor results apply to the proposed expanded form of the SU family, it is clear 

that the expanded SU family allows for any mean and variance, as well as any combination 

of right/left skewness-leptokurtosis values below the log-normal line. Under zero 

skewness, it allows for any possible mean-variance-leptokurtosis combination, i.e. it can 

precisely fit the first four central moments of any symmetric “thick”-tailed distribution. 

3. The Monte Carlo Simulation 

 Monte Carlo simulation is the only alternative to evaluate the finite sample 

performance of relatively complex models such as the normal and IHS-error GARCH 

estimators. The basic sample design of Hsieh and Manski (1987), Newey (1988), and 

McDonald and White (1993) is adopted for the Monte Carlo simulation. A GARCH(1,1) 

process is assumed for simplicity: 

(8) yt = b0 + b1xt + ε t = −1 + xt + ht
1/2ε t,          ht = α0 + α1ε2

t-1 + β1ht-1,          h1 =1. 

where xt = 1 with a probability of 0.5 and xt = 0 with a probability of 0.5, and xt is simulated 

independently of ε t. This regression model can be interpreted as estimating a shift parameter 

that separates two distributions that are identical except for a location parameter. The 

GARCH(1,1) process is simulated under two sets of true parameter values: α0 = 1.00, α1 = 

0.50, and β1 =0.25; and α0 = 1.00, α1 = 0.25, and β1 =0.50. 
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 Three specifications for the conditional error-term distribution are taken from 

McDonald and White (1993): Normal {N(0,1)}; Mixture of normals or variance-

contaminated normal {0.9*N(0,1/9)+0.1*N(0,9)}; and Lognormal. Another three non-

normal error-term distributions are considered to broaden the spectrum of third-fourth central 

moment combinations evaluated: A Student-t distribution with three degrees of freedom (as 

in Phillips, 1998) and two standard normal polynomials {N(0,1)-abs[N(0,1)]3 and N(0,1)-

2[N(0,1)]2}. An IHS-distributed error-term is also considered, to be used as a benchmark in 

the evaluation of this model’s performance under the alternative error-term distributions 

discussed above. All error-term distributions are re-scaled and shifted, when necessary, to be 

drawn from a parent population with zero mean and unitary variance. 

 Both the mixture of normals and the Student-t are unimodal, thick-tailed, symmetric 

distributions, with kurtosis coefficients of about 20 and 75, respectively. The log-normal is 

both thick-tailed and right-skewed, with kurtosis and skewness coefficients of about +5 and 

+75, respectively. The standard normal polynomials are also thick-tailed and asymmetric, 

but they are left-skewed instead, exhibiting skewness coefficients of –5 and –2.5, and 

kurtosis coefficients of about +50 and +10, respectively. The IHS distribution assumed in 

this case exhibits kurtosis and skewness coefficients of about –4 and +60, respectively. 

 Different Monte Carlo simulation experiments were conducted with 1000, 200 and 

100 samples of sizes of 200, 1000 and 2500, respectively, generated using the same xt values 

for each sample. GAUSS 386i programs were used to simulate the data, and the Newton-

Raphson algorithm (under a cubic step-length calculation method) preprogrammed within 

GAUSS 386i constrained maximum likelihood (CML) application module was used for 
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estimating all models. A convergence tolerance level of 10-5 was established for the 

gradients. With few exceptions the CML programs converged properly and produced both 

parameter and standard error estimates based on the Hessian matrix. The programs utilized 

are available from the authors upon request. 

4. Results 

Table 1 presents the Monte Carlo results for the normal and IHS-GARCH models 

under the smallest sample size of n=200. Both models produce unbiased estimators for the 

slope parameter regardless of the true error-term distribution being assumed. In the case of 

the normal GARCH, however, the recommended information-matrix estimator for the 

standard error of the distribution of the slope-parameter estimator (Bollerslev, 1986) is 

biased, underestimating the RMSE of the 1000 estimates by an average of 46.6% (Table 

4). The analogous information-matrix standard error estimator from the IHS-GARCH 

model also underestimates the RMSE, but only by an average of 3.2%. 

On average, the RMSE of the slope-parameter estimator under the normal GARCH 

is 314% larger than the RMSE under the IHS-GARCH model. The RMSE differences 

range from 61% to 702%, depending on the underlying error-term distribution assumed. 

Under error-term non-normality, both the normal and the IHS-GARCH models are biased 

estimators for the GARCH(1,1) parameters α1 and β1, even when the true error is IHS, 

which means that the IHS-GARCH is the true maximum likelihood estimator (MLE). In 

this case, knowledge of the true MLE does not reduce the amount of bias on the estimation 

of the GARCH(1,1) parameters at n=200. 
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The IHS-GARCH estimator for α1, however, appears to be less biased than the 

normal GARCH estimator for this parameter. The IHS-GARCH yields averages of the α1 

parameter estimates that are closer to the true α1 value under each of the six underlying 

non-normal error-terms evaluated, producing an overall average of α1 estimates of 0.5493 

versus 0.7751 when α1=0.50, and of 0.3027 versus 0.5195 when α1=0.25 (Table 1). The 

average bias in the estimation of β1 appears to be similar under both models. When the 

simulated error-term is normally distributed, the IHS-GARCH converges to a normal 

GARCH, producing an unbiased estimator for α1. At n=200, however, the estimator for β1 

still biased (Table 1).  

 The RMSE’s for both of the normal and the IHS-GARCH estimators for the 

GARCH(1,1) process parameters α1 and β1, which were calculated with respect to the true 

parameter values, are substantially larger in the case of the normal GARCH (Table 1). This 

causes a relatively high proportion of normal GARCH models with α1-β1 parameter 

estimate combinations adding up to one or more than one (27.7% versus 8.2% in the case 

of the IHS-GARCH), which renders the estimated models non-stationary (Bollerslev, 

1986). The large RMSE’s also produce a relatively larger share of GARCH rejections due 

to zero-valued parameter estimates for B1 (an average of 18.6% versus 7.6% in the IHS-

GARCH model).  

In short, across the 12 non-normal-error GARCH(1,1) combinations evaluated 

under a sample size of 200, less than 50% of the models estimated using the normal 

GARCH are stationary with non-zero α1 and B1 parameter estimates. In contrast, 83.4% of 

the models estimated with the proposed IHS-GARCH fulfill these two conditions. If the 
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underlying error-term is normally distributed, an average of 91.6% of the estimated models 

are stationary with non-zero α1 and B1 parameter estimates (Tables 1 and 4).  

Another concerning result when using the normal GARCH model under non-

normally distributed errors is that the recommended information matrix standard error 

estimators grossly underestimate the RMSE’s of the estimators for α1 and B1. When α1 = 

0.5 and β1 = 0.25, for instance, the averages of the RMSE’s across the six underlying non-

normal errors evaluated are 0.9331 and 0.2493, while the averages of the standard error 

estimates are 0.2260 and 0.1376, respectively. In contrast, the IHS-GARCH model 

produces average RMSE’s of 0.2795 and 0.1464 versus average standard error estimates of 

0.2529 and 0.1148, respectively (Table 1).  

The performance of the normal and the IHS-GARCH models under a considerably 

larger sample size of n=1000 can be assessed from the statistics in Table 2. As expected, 

the RMSE’s of the slope parameter estimators are substantially smaller than at n=200. The 

IHS-GARCH slope-parameter estimator again has a substantially lower RMSE than the 

normal GARCH slope-parameter estimator. In the 12 cases evaluated (six non-normal error 

distributions by two α1-β1 value combinations) the RMSE’s are 78% to 1302% larger 

(457% larger on average) under the normal GARCH (Table 4). 

The normal GARCH information-matrix estimator for the standard error of the 

distribution of the slope-parameter estimator shows a slightly higher bias than at n=200, 

underestimating the RMSE of the 200 estimates by an average of 54.7% (Table 4). The 

analogous IHS-GARCH information-matrix standard error estimator only underestimates 

the RMSE by an average of 1.2%. The amount of bias in the estimators for the 
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GARCH(1,1) process parameters is still substantial at n=1000. On average, the IHS-

GARCH again produces less biased estimates for α1 (0.4908 vs. 0.6074 when α1=0.5, and 

0.2508 vs. 0.3317 when α1=0.25). 

When β1=0.25, the average bias in the estimation of this second GARCH process 

parameter is again similar under the normal and the IHS-GARCH models. When β1=0.50, 

the IHS-GARCH produces less biased estimates for this parameter in all cases. If the 

underlying error-term is normally distributed, the amount of bias in the estimator for β1 is 

reduced but not totally eliminated at n=1000 (Table2). The RMSE’s of the estimators for 

the GARCH(1,1) process parameters are again substantially larger in the case of the 

normal GARCH (Table 2). As a result, even at this larger sample size, the normal GARCH 

yields a high proportion estimated models that are non-stationary (16.4% vs. 0.25% in the 

case of the IHS-GARCH). Also, under the normal GARCH, Bollerslev’s lagged 

conditional variance component is rejected an average of 4.8% of the times due to zero-

valued parameter estimates for β1. 

In short, across the 12 non-normal-error GARCH(1,1) combinations evaluated at 

n=1000, only 78.8% of the models estimated using the normal GARCH are stationary with 

non-zero α1 and β1 parameter estimates, while 99.8% of the models estimated with the 

proposed IHS-GARCH fulfill these two conditions (Table 2). At this larger sample size, 

under non-normally distributed errors, the normal GARCH underestimates the RMSE’s of 

the estimators for α1 and B1 by larger % margins than at n=200. The average of the 

RMSE’s of the α1 estimators under the six error-term distributions evaluated is 397% 

larger than the average of the six 200-model averages of the corresponding standard error 
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estimates. The average of the RMSE’s of the B1 estimators is 234% larger. In contrast, the 

IHS-GARCH RMSE averages are only 10% and 14% larger than the average of the six 

standard error estimate averages (Table 4). 

The previously discussed patterns continue at the largest sample size (n=2500). The 

standard error estimator from the normal GARCH underestimates the RMSE of the slope 

parameter estimator by the largest average (65.4%) across the three sample sizes evaluated. 

The average % RMSE underestimation by the IHS-GARCH remains low (2.8%) and stable 

across sample sizes (Table 4). The efficiency gains in the estimation of the slope parameter 

by the IHS vs. the normal GARCH range from 88% to 1381% and average 499%, i.e. they 

appear to increase slightly with sample size. 

Both the normal and the IHS-GARCH estimators for α1 and B1 show a lower 

amount of bias at this largest sample size, with the IHS-GARCH again being less biased in 

general and on the average. As in the smaller sample sizes, knowledge of the true MLE 

(i.e. using the IHS-GARCH under an IHS error-term) does not show a particular advantage 

in this regard (Table 3). Due to the lower RMSE’s, the % of estimated normal and IHS-

GARCH models that are stationary with non-zero estimates for α1 and B1 increases to 89% 

and 100%, respectively. In the case of the normal GARCH, however, these RMSE’s are 

now underestimated by a larger 474% (α1) and 270% (B1), respectively (Table 4). 

5. Empirical Example 

 Finding an application that unambiguously illustrates all of the results from the 

Monte Carlo simulation discussed above would be a challenging task. Instead, the example 

in Engle and Kraft (1983), also used by Bollerslev (1986) to illustrate his (GARCH) 
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expansion of Engle’s (1982) ARCH process is adopted. In their models, the rate of growth 

in the implicit U.S. GNP deflator is explained in terms of its own past: 

(9) π t = b0 + b1π t-1 + b2π t-2 + b3π t-3 + b4π t-4 + ε t 

where π t = 100x(GDt/GDt-1), GDt is the implicit price deflator for the GNP (U.S. 

Department of Commerce, June 2000). The model in equation (9) is estimated using the 

original time span in Bollerslev (1986) (1948.2 to 1983.4) and an expanded data set 

(1948.2 to 2000.1), assuming Bollerslev’s (1986) normal-error GARCH(1,1) and the 

proposed IHS-GARCH(1,1) model.  

Specifically, an IHS-GARCH model where both the kurtosis and the skewness 

parameters (θ and µ) are linear functions of time (θ = θ0 + θ1t and µ = µ0 + µ1t) is initially 

assumed. In the case of θ0, θ1, µ0 and µ1, single-parameter likelihood ratio (χ2
(1)) tests are 

conducted to verify the asymptotic t-tests results reported in Table 5. The µ1 parameter is 

not statistically significant under either the 1948.2 to 1983.4 or the 1948.2 to 2000.1 data. 

Therefore, this parameter is set equal to zero in the final IHS-GARCH models. Under 

either data set, both θ0 and µ0 are statistically different from zero at the 1% level, 

indicating that the conditional error-term distribution is leptokurtotic and right-skewed, i.e. 

that upward inflation spikes are more likely than downward spikes. Since θ1 is statistically 

significant as well, the conditional error-term distribution exhibits different levels of 

kurtosis and skewness through time. 

Since both the kurtosis and the skewness coefficients {equation (3)} are 

monotonically increasing functions of |θ| (|θ0 + θ1t| in this case), the parameter estimates 

for θ0 = 0.5152 and θ1 = −0.0060 (1948.2 to 2000.1 data) indicate that the conditional 
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error-term distribution is more kurtotic and right-skewed at the beginning and at the end of 

the time period under analysis, and that it is nearly normal at t = 0.5152/0.0061 ≈ 84, 

which corresponds to 1969.2 (t = 0.4332/ 0.0046 ≈ 94, which corresponds to 1971.4, in the 

case of the 1948.2 to 1983.4 data). The formulas in equation (3) can be used to calculate 

the conditional variance, skewness and kurtosis coefficients of ε t at any time period. The 

late 1940s, for instance, is a period characterized by relatively large conditional variances 

(ranging from 4 to 8), skewness (1.6 to 1.8) and kurtosis (5 to 6) coefficients; while the 

early 1990s exhibit relatively low conditional variances (ranging from 0.9 to 1.1) but 

similarly large skewness and kurtosis coefficients. 

 Under both the original and the expanded data sets, the final IHS-GARCH model is 

statistically superior to the normal GARCH model, according to standard likelihood ratio 

tests (χ2
(3) = 140.7356−128.9413 = 11.7951, and χ2

(3) = 307.2192−282.7756 = 24.4436, 

respectively). In addition, the standardized residuals (ε t/ht) from the final IHS-GARCH 

models fail the powerful D’Agostino-Pearson (D’Agostino et al., 1990) normality test 

(χ2
(2) = 82.3106, and χ2

(2) = 28.9622, respectively), while the IHS-transformed 

standardized residuals {i.e. the vt’s from equation (2)} do not fail this test (χ2
(2) = 0.9462, 

and χ2
(2) = 3.6569, respectively) (Table 5).  

 The estimates for the GARCH process and for the intercept and slope parameters of 

the regression equation are not radically different in this application. However, as expected 

from the Monte Carlo Simulation results, the corresponding standard error estimates are all 

substantially lower under the IHS-GARCH (Table 5). The IHS-GARCH advantage in this 

regard is furthered by the previously discussed simulation evidence about the tendency of 

   ^  ^ 

 ^  
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the normal GARCH standard error estimators to substantially underestimate the true 

standard errors when applied under non-normal error-term distribution conditions, as in 

this case. Inferences based on normal GARCH parameter and standard error estimates 

would undoubtedly be less reliable. 

 In regards to forecasting, the two modeling procedures yield different predictions 

and conditional variance estimates. The average of the inflation rate predictions under the 

IHS-GARCH (3.4767) is closer to the average of the 205 inflation rates observed during 

the 1949.1 to 2000.1 period (3.5091) than the average of the predictions under the normal 

GARCH (3.4472). The root mean square error of the inflation rate predictions is 2.9912 

under the normal GARCH vs. 2.9999 under the IHS-GARCH, i.e. it is practically the same 

under both models. The average of the 205 conditional variance estimates is higher under 

the IHS-GARCH (1.463 vs 1.418). The difference in the average conditional variance 

estimates is highest (1.019 vs. 0.906) during the last two decades, when the estimated 

conditional error term distribution is markedly non-normal. 

However, given the simulation evidence discussed above, the IHS-GARCH 

predictions and conditional variance estimates should be considered more reliable. These 

factors, in addition to the more realistic assumption about the shape of the conditional 

error-term distribution, should be reflected on improved confidence intervals for the 

predictions. True confidence intervals that take in to account the uncertainty due to the 

estimation of the regression equation and GARCH process parameters as well as the 

uncertainty arising from the inherent stochastic nature of the true data-generating process 

can be obtained through standard Monte Carlo Simulation procedures. Specifically, 50,000 
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sets of parameter values are simulated using the maximum likelihood parameter and 

covariance matrix estimates. Each set of simulated parameter values is used to generate a 

vector of 205 inflation rate and conditional variance “predictions” for the last 205 time 

periods in the analysis.   

In the case of the normal GARCH, each of the 50,000 vectors of conditional 

variance “predictions” is used in conjunction with 205 independent draws from a standard 

normal distribution to simulate 50,000 vectors containing 205 draws from the conditional 

error-term distributions corresponding to the last 205 time periods in the analysis. The 

50,000 vectors of inflation rate predictions are then added to the corresponding 50,000 

vectors of conditional error-term distribution draws to obtain m=50,000 simulated inflation 

rate values for each of the time periods in the analysis. Then, the boundaries of a true (1-

α)% confidence interval for the inflation rate realizations through time are obtained by 

finding the (α/2) x mth and the [(1-α)+α/2] x mth largest of these m simulated values for 

each of the last 205 time periods in the sample. The same process is followed for the IHS-

GARCH, except that the conditional (non-normal) error-term distributions are simulated 

on the basis of equation (2).  

The boundaries of the 80% confidence intervals for the inflation rate realizations 

implied by the normal and IHS-GARCH models are compared with the data in Figures 1 

and 2. The difference between these two confidence intervals is best perceived in the 

relatively inflation stable 1984-2000 period. In the normal GARCH, the inflation rate 

observations tend to be closer to the middle of the interval, only four observations trespass 

the lower bound, while nine observations surpass the upper bound of the 80% confidence 
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interval. Given this pattern of observations, the symmetry of the assumed conditional 

error-term distribution requires a lower bound that is unnecessarily low in order to avoid 

more of the observed inflation peaks surpassing the upper bound. In the IHS-GARCH, the 

flexible asymmetry (right-skewness in this case) in the assumed conditional error-term 

distribution allows for a noticeably higher lower bound, which is very close to the bulk of 

the observations, coupled with an upper bound that is still high enough to avoid a 

theoretically excessive number of observations surpassing it. 

A similar pattern is observed during the 1949-1960 period. Only during the 1965-

1975 period, when the conditional error-term distribution estimated under the IHS-

GARCH is nearly normal, are the boundaries of the confidence intervals from the two 

models almost identical. In addition to these visual patterns, the numerical evidence is 

clear: Under the normal GARCH, only 14 out of 205 observations (6.8%) are below the 

lower bound, while 30 (14.6%) exceed the upper bound of the 80% confidence interval. 

The average width of the confidence interval is 3.68. Under the normal GARCH, 19 

observations (9.3%) are below the lower bound and 22 (10.7%) above the upper bound, 

while the average width of the confidence interval is 3.54. 

Similar patterns arise in the case of the 81% through the 95% confidence intervals 

(Table 6), although the average width of the 95% confidence interval becomes larger under 

the IHS-GARCH, presumably due to the pronounced right tail of the estimated IHS 

conditional error-term distribution. Cumulatively for the 80% to 95% confidence intervals, 

the normal GARCH results in 388 observations beyond the boundaries of these 16 

intervals, which is 5.4% lower than the number that would be theoretically expected 
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(205x ∑
=

20

5

100/
i

i  = 410). In addition, only 117 (57.1%) out of the theoretically expected 

410/2 = 205 (100%) observations are below the lower bounds, and 271 (132.2%) exceed 

the upper bounds. Under the IHS-GARCH, a total of 410 observations exceed the 

boundaries of the 16 intervals, 219 (106.8%) being below the lower bounds and 191 

(93.2%) surpassing the upper bounds (Table 6). The cumulative average width of the 16 

confidence intervals is smaller (70.91 vs. 72.32) in the case of the IHS-GARCH model. 

In short, under the same application originally used to illustrate the normal ARCH 

and GARCH models, the IHS-GARCH confidence intervals are shown to be more 

consistent with theoretical expectations than the confidence intervals implied by a normal 

GARCH model. This should be expected given the Monte Carlo Simulation results 

presented in the previous section. 

5. Conclusions and Recommendations  

 A main conclusion from this research is that one must be skeptical of using the 

standard normal-error GARCH model when there is evidence of conditional error-term 

non-normality. The Monte Carlo simulations suggest that the IHS-GARCH model 

proposed in this study could perform better than the normal-error GARCH model under a 

variety of non-normal underlying error-term distributions. The RMSE’s of the IHS-

GARCH estimators for the slope and for the GARCH process parameters are substantially 

smaller than the RMSE’s of the corresponding normal GARCH estimators, for all 

underlying non-normal error-term distributions and sample sizes evaluated. Under error-

term non-normality the IHS-GARCH is a more efficient estimator for these three 
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parameters. Efficient slope-parameter estimators are obviously desirable in applied 

modeling/forecasting work. 

The inefficiency of the normal GARCH estimators for α1 and B1 translates into a 

relatively large number of unwarranted GARCH rejections due to apparent non-stationarity 

and zero-valued estimates for α1 and B1. These rejections would prevent modelers from 

identifying the correct error-term autocorrelation structure. Further, with the normal 

GARCH, the usual standard error estimates substantially underestimate the RMSE’s (i.e. 

the true standard errors) of the estimators for the slope and for the GARCH process 

parameters, providing a false sense of security about the precision with which these 

parameters have been estimated and invalidating any statistical test based on these standard 

error estimates. Such a problem, which has clear implications for applied modeling work, 

does not diminish with sample size. The proposed IHS-GARCH model nearly solves this 

problem regardless of the sample size. 

Both the normal and the IHS-GARCH are biased estimators for the GARCH 

process parameters, even when the underlying error is IHS, in which case the IHS-GARCH 

is the true MLE. The magnitude of the bias is noticeably less with the IHS-GARCH, 

especially at small sample sizes. The magnitude of the bias decreases with sample size and, 

when B1 is estimated using the IHS-GARCH, it becomes very small at n=2500. However, 

at this largest sample size, the 100-sample averages of the α1 estimates from both the 

normal and the IHS-GARCH still depart from the true parameter values, even when the 

underlying error-term distribution is IHS. 
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The mainstream empirical example demonstrates that some conditional error-term 

distributions encountered in applied research are not only non-normal but also asymmetric, 

and therefore the need for the proposed modeling technique. Some of the conclusions from 

the Monte Carlo simulations, such as increased parameter estimation efficiency, are clearly 

reflected in the empirical example. The example also illustrates other practical advantages 

of modeling conditional error-term distribution non-normality, when present, such as more 

theoretically consistent confidence intervals for the GARCH predictions. 

 Finally, when comparing the performance of the proposed IHS-GARCH model 

under IHS errors versus its performance under the other non-normal error-term 

distributions considered in the Monte Carlo simulation, we conclude that the main 

advantage of using the true MLE is increased efficiency in the estimation of the slope and 

of the GARCH process parameters. Since, knowledge of the true MLE is impossible, in 

practice, the next best alternative is to develop other non-normal-error GARCH models 

based on flexible non-normal distributions and use testing procedures for non-nested 

hypotheses (Quang, 1989) to identify the GARCH model that best approximates the true 

data generating process. Given that the expanded IHS distribution used as a basis for the 

IHS-GARCH can accommodate any mean and variance together with any skewness-

kurtosis combination below the log-normal line, emphasis should be placed on alternative 

distributions that can do the same above the log-normal line. 
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Figure 1: 80% Confidence Intervals for the Inflation Rate 
Predictions vs. Data under the Normal GARCH Model 
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Figure 2: 80% Confidence Intervals for the Inflation Rate 
Predictions vs. Data under the IHS-GARCH Model 
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