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Summary – This paper proposes several methods for computing precise confidence inter-
vals or evaluating the precision of some statistics related to individual food consumption,
based on complex household food survey datas. We show how it is possible to obtain
asymptotic confidence intervals for non-linear functionals thanks to the delta method
and the notion of Hadamard differentiability. However asymptotic confidence intervals
may not be very precise and to not take into account the dissymetries of the statistics or
the underlying distributions. We develop two different methods based on resampling
ideas to obtain precise confidence intervals. The first one is a transposition of the
weighted bootstrap to survey sampling. The second uses the universal properties of sub-
sampling and extrapolation methods to obtain rapidly accurate results. We compare and
apply these methods to the construction of confidence intervals for means, fractiles, dis-
persion indexes of individual food consumptions (with or without null consumptions).
We apply these methods to several products from the 1994 Secodip french panel.

Résumé – Cet article propose plusieurs méthodes pour calculer des intervalles de
confiance précis ou évaluer la précision de statistiques relatives à la consommation
individuelle, lorsqu’on dispose de données de consommation (ou d’achats) par
ménages issues de sondages complexes. Nous montrons comment il est possible
d’obtenir des intervalles de confiance asymptotiques pour des statistiques non-
linéaires complexes grâce à la méthode delta et la notion de différentiabilité au
sens de Hadamard. Les intervalles de confiance asymptotiques peuvent ne pas être
très précis et ne permettent pas de prendre en compte la dissymétrie des statis-
tiques et des distributions sous-jacentes. Nous développons deux méthodes diffé-
rentes basées sur du ré-échantillonnage permettant d’obtenir des intervalles de
confiance plus précis. La première utilise une transposition du bootstrap pondéré
dans le cadre des sondages. La seconde méthode utilise les propriétés universelles
de distributions de sous-échantillonnage et les méthodes d’extrapolation pour
obtenir rapidement des résultats précis. Nous comparons et appliquons ces
méthodes à la construction d’intervalles de confiance pour des moyennes de
consommation individuelle, à partir de données sur les ménages, ainsi que d’inter-
valles de consommations pour les fractiles de consommation par produit et pour
les indices de dispersion (avec ou sans consommation nulle). Ces résultats sont
appliqués à plusieurs produits du panel Secodip 1994.
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CET article a pour but de faire le point sur les méthodes utilisées
dans le laboratoire de recherche sur la consommation (INRA-

CORELA) pour calculer des intervalles de confiance ou la précision de sta-
tistiques, relatives à la consommation individuelle, lorsque l’on dispose de
données de consommation (ou d’achats) par ménage. Ces travaux, réalisés
dans le cadre de contrats avec l’Observatoire de la consommation alimen-
taire (voir Bertail et al., 1995, 1996, 1997, 1998a ; Bertail et al., 1998b),
peuvent également s’appliquer à d’autres types de données. Nous avons
toutefois souhaité les introduire dans le cadre de cette application, qui
peut intéresser des économistes et également les personnes travaillant sur
l’évaluation des risques alimentaires. Le problème de la construction d’in-
tervalles de confiance précis pour des fonctionnelles fortement non li-
néaires (par exemple des fractiles) dans le cadre des sondages est, en effet,
un problème difficile et peu abordé dans la littérature statistique. L’objec-
tif de cet article est de proposer plusieurs méthodes, de fournir les expres-
sions exactes des intervalles de confiance utilisés et de les comparer à la
fois théoriquement et pratiquement, dans le cadre de la description de la
consommation alimentaire en France, à partir des données des panels Se-
codip. Ces données et les problèmes qu’elles peuvent poser sont décrits
dans le travail statistique préliminaire de Bertail et Combris (1997).

Dans une première partie, nous décrivons rapidement le contexte sta-
tistique en nous référant à la théorie des sondages. Nous montrons com-
ment il est possible d’obtenir des intervalles de confiance asymptotiques
pour des statistiques non linéaires complexes grâce à la méthode delta,
qui consiste à prendre la partie principale linéaire de la statistique consi-
dérée comme une fonctionnelle dans l’espace des probabilités. Nous don-
nons brièvement quelques résultats théoriques sur la différentiabilité au
sens de Hadamard, résultats qui peuvent également être utilisés dans de
nombreuses applications économétriques. Nous appliquons ces méthodes
à la construction d’intervalles de confiance pour des moyennes de
consommation individuelle, à partir de données sur les ménages, ainsi
que pour les fractiles de consommation par produit et des indices de dis-
persion. Pour certaines statistiques, il est important de tenir compte des
consommations nulles (soit que l’on s’intéresse à elles en tant que telles
ou que l’on cherche à les éliminer) : les méthodes présentées permettent
de tenir compte de ce facteur supplémentaire.

Les intervalles de confiance asymptotiques ne permettent cependant
pas de prendre en compte la dissymétrie des distributions sous-jacentes
ni la courbure du problème statistique. Il s’avèrent souvent (des études
par simulations peuvent le montrer aisément) très éloignés des inter-
valles de confiance exacts que l’on pourrait construire si tous les para-
mètres du sondage et les distributions sous-jacentes étaient connus (ceci
est impossible dans le cadre des sondages puisqu’alors, toute l’informa-
tion étant disponible, il ne serait pas utile de recourir à une statis-
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tique...). Son principal avantage est de fournir très rapidement des inter-
valles de confiance raisonnables pour de grandes tailles d’échantillons.
Nous proposons deux méthodes différentes à base de ré-échantillonnages,
permettant d’obtenir des intervalles de confiance plus précis. Chacune
fait l’objet d’une nouvelle partie. La première méthode utilise une trans-
position du bootstrap pondéré (voir Barbe et Bertail,1995, pour une
bibliographie complète). Mise au point par Bertail et Combris (1997),
elle a pour but de généraliser au sondage les méthodes du bootstrap
usuel ou du bootstrap généralisé qui ne fonctionnent pas dans ce cadre.
Cette méthode, qui consiste à reproduire l’aléa du sondage à partir de
système de poids aléatoires choisis de manière adéquate, permet d’avoir
d’excellentes approximations en termes de précision des intervalles de
confiance (sauf pour les fractiles). La mise en œuvre de la méthode est
cependant très coûteuse en temps informatique. Elle ne se justifie que
pour des échantillons de petite taille. La deuxième méthode proposée
est, elle aussi, basée sur des méthodes de calcul intensif, plus exactement
sur l’extrapolation de distribution de sous-échantillonnages. Cette idée,
exposée dans Bertail (1997) dans le cadre des champs aléatoires, est très
proche du jackknife et consiste à estimer la valeur de la statistique sur
des sous-échantillons de taille bn de structures identiques pour avoir une
idée de la distribution à bn fixé. Une méthode d’extrapolation ou d’inter-
polation (c.-à-d. de prédiction de la distribution pour une autre valeur n)
permet alors de construire des intervalles de confiance qui possèdent de
meilleures propriétés en termes de précision que les intervalles asympto-
tiques, mais moins bons que ceux obtenus par bootstrap pondéré. En
termes de rapport précision/temps de calcul, cette méthode l’emporte
cependant sur la méthode du bootstrap pondéré, y compris pour les
tailles moyennes d’échantillons (pour les très petites tailles, le bootstrap
pondéré donne de bien meilleurs résultats). Par ailleurs, elle ne nécessite
aucun calcul préalable, quelle que soit la statistique considérée et peut
même être utilisée dans des problèmes où la dynamique du sondage joue
un rôle important (séries temporelles, enquêtes répétées). Dans la der-
nière partie, nous donnons des éléments de comparaison entre les diffé-
rentes méthodes sur plusieurs exemples de produits, à partir du panel
Secodip de 1994. Une description succincte des programmes utilisés,
disponibles sur demande aux auteurs, est présentée en annexe. Nous dis-
cutons brièvement de la généralisation de ces résultats à d’autres modèles
économétriques dans le cadre des sondages.

STATISTIQUES DE CONSOMMATION INDIVIDUELLE

Nous observons (au minimum) dans nos données des vecteurs xi , ici
xi = (ci , ni ), i = 1,..., q affectés de poids pi , où ci est la consommation tota-
le du ménage i d’un certain produit, ni le nombre de personnes dans le



ÉVALUATION DE LA PRÉCISION D’ESTIMATEURS DE FONCTIONNELLES

75

ménage et pi le poids du ménage calculé à partir du plan de sondage et de
divers redressements. Les poids attribués aux ménages dans de nom-
breuses enquêtes, et en particulier dans le panel Secodip utilisé ici, sont
souvent la résultante de divers redressements des probabilités d’inclusion
du plan de sondage et de calage sur certaines marges connues (Deville et
Särndal, 1992). Ceci rend leur interprétation difficile comme l’inverse de
probabilités d’inclusion (dans un sondage, l’aléa ne vient que de la proba-
bilité qu’un ménage soit ou non tiré). Nous serons donc amenés à suppo-
ser d’emblée que le sondage réalisé est convergent, c.-à-d. qu’il rend
compte des distributions réelles des consommations et des tailles des mé-
nages (hypothèses que nous préciserons dans le paragraphe suivant). Nous
supposerons, dans la suite, que le sondage a été effectué dans une popula-
tion de taille Q très grande et l’on note Xi = (Ci , Ni ), i = 1,...,Q, les va-
leurs de la consommation du ménage et du nombre d’individus dans le
ménage, sur l’ensemble de la population. Quitte à re-normaliser les poids,
on peut toujours supposer que Σq

i=1 pi = 1.

Différentiabilité compacte et méthode Delta : un outil
essentiel en économétrie et en sondage

La méthode delta (Green, 2000 ; Manski, 1988, pour des références
en économétrie) est une généralisation de la méthode dite de Slutsky en
économétrie. Nous montrons comment celle-ci se généralise dans le
cadre des sondages, mais aussi pour de très nombreuses fonctionnelles en
économétrie via la notion de différentiabilité au sens de Hadamard (ou
différentiabilité compacte). Pour de plus amples références sur ce
concept, nous renvoyons aux travaux récents de Van der Vaart (1998).
Nous conservons le cadre de l’estimation de paramètre de la distribution
de la consommation, mais ces résultats sont bien sûr valides pour des
fonctionnelles plus complexes et de nombreux modèles économétriques.

Nous ferons l’hypothèse que le sondage a été fait de manière correcte,
de telle sorte que la probabilité empirique des couples xi = (ci , ni),
i = 1,..., q pondérée par les pi , c.-à-d., si l’on note δxi la masse de Dirac
en xi = (ci , ni), la probabilité empirique des observations pondérées par
les poids pi ,

q

Pq = Σ pi δxi
i=1

converge asymptotiquement (au moins en moyenne quadratique) vers

P = lim PQ ,
Q→∞

où PQ est la probabilité empirique des Xi , i = 1,...,Q
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Q

PQ = Q-1 Σ δXi
i=1

Une telle hypothèse ne permet cependant pas la construction d’inter-
valles de confiance. Nous supposerons en outre que le sondage réalisé
satisfait les conditions usuelles des sondages, à savoir :

– que le sondage tient compte de tous les individus de la base de
sondage,

– que le sondage ne charge pas une catégorie particulière de la popu-
lation (pas de biais de sélection),

– que le sondage n’équivaut pas à un recensement et est de taille suf-
fisante ( q—

Q
> µ > 0),

– que les distributions des variables d’intérêt ne sont pas dégénérées
(c.-à-d. qu’il n’y a pas constance d’un facteur),

de telle sorte qu’il y a normalité asymptotique du sondage. Plus exacte-
ment, nous supposons que la probabilité Pq satisfait un principe d’inva-
riance asymptotique, c.-à-d.

√q (Pq – PQ) → B(P)

quand q → ∞ où B(P) est un pont brownien.

Voir Rosen (1972) pour plus de précision sur la convergence asymp-
totique en sondage. On pourra aussi se référer à l’excellent article de Sen
(1988) et au chapitre V de Gouriéroux (1981).

La construction d’intervalles de confiance pour des statistiques com-
plexes relève alors de théorèmes de composition et repose essentielle-
ment sur la différentiabilité de la fonctionnelle associée au paramètre
d’intérêt (envisagée comme une fonction de la probabilité PQ). Cette
approche, due à von Mises (1936), est à la base de la robustesse (Ham-
pel, 1974 ; Huber, 1981) et est connue en économétrie sous le nom de
principe d’analogie (Manski, 1988).

Définition 1 : Une fonctionnelle T(P) définie d’un espace de proba-
bilité Ρ (contenant les masses de Dirac et donc les probabilités empi-
riques) dans R, Rq ou plus généralement tout espace de Banach séparable
Β est dit différentiable au sens de Fréchet en P pour une métrique d sur
P, de premier gradient T(1) (x, P), appelée aussi fonction d’influence, si et
seulement si on peut écrire pour tout R ∈ Ρ dans un voisinage de P

T(R) – T(P) = ∫ T(1) (x, P) (R – P) (dx) + d(R, P) ε (d (R,P)),

où
T((1 – t) P + tδx) – T(P)

T(1) (x, P) = lim (—————————— )t
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et ε est continue nulle en 0. On notera que par construction EpT
(1) (x, P) = 0

(voir Hampel, 1974).

Cette notion permet de généraliser le théorème de Slutsky (qui
repose essentiellement sur la linéarisation de la statistique étudiée) et
d’établir aisément des théorèmes centraux limites. Il est en effet aisé de
voir que si d est une métrique telle que √qd(Pq, PQ) = OP (1), alors on a
pour une fonctionnelle différentiable en PQ

q

T (Pq ) – T (PQ) = Σ pi T(1) (Xi , PQ) + OP (q-1/2),
i=1

de sorte que l’on peut étudier la fonctionnelle en étudiant sa partie
linéaire, c’est-à-dire sa fonction d’influence. Pour un sondage convergent
et si T (1) (Xi , PQ)2 est équi-intégrable par rapport à P, on aura alors :

q1/2 (T(Pq ) – T(PQ)) → N(O, VP (T (1) (X, P))

quand q,Q → ∞. Le principal problème est en fait le choix de la métrique
qui doit rendre simultanément la fonctionnelle différentiable et être com-
patible avec la condition √qd(Pq, PQ) = OP (1). Cet aspect est étudié dans
un cadre i.i.d. dans Barbe et Bertail (1995) où plusieurs métriques (de la
famille des métriques indexées par des classes de fonctions) sont propo-
sées. Il existe néanmoins une notion plus faible que la différentiabilité au
sens de Fréchet qui permet d’obtenir par l’utilisation de simple propriété
de continuité des théorèmes centraux limites sans avoir à choisir de mé-
trique : la différentiabilité au sens de Hadamard par rapport à un espace
tangent approprié (voir Van der Vaart, 1998 pour de plus amples réfé-
rences et une introduction moderne à la statistique). La différentiabilité au
sens de Hadamard est la notion de différentiabilité la plus faible qui
conserve la continuité de la composition (c.-à-d. telle que la composée de
fonctions Hadamard différentiables soit Hadamard différentiable) et l’effi-
cacité (la transformée d’une statistique efficace par une fonction Hada-
mard différentiable est efficace). De très nombreuses fonctionnelles consi-
dérées en statistique et en économétrie dans les applications courantes
(sauf la densité par rapport à une certaine mesure) sont Hadamard diffé-
rentiables, ce qui devrait en faire un outil privilégié de l’analyse de ces
problèmes. Nous en donnons une définition simplifiée ci-dessous.

Définition 2 : T est Hadamard différentiable en P par rapport à
l’espace tangent BP si et seulement si il existe une fonctionnelle dTP
linéaire continue telle que pour toutes suites hn telles que hn → h ∈ BP ,

T((P + tnhn)) – T(P)
———————— – dTP.h → 0 quand tn → 0

tn

Cette notion permet en particulier de généraliser la méthode delta au
sondage de la manière suivante.
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Propriété 1 : Si le sondage est convergent au sens où √qd (Pq, PQ) →
B(P), quand q → ∞ et si T est continûment Hadamard différentiable en
P par rapport à un espace BP contenant les trajectoires de B(P), alors
si  q—

Q → 0, on a :

q1/2 (T(Pq ) – T(PQ)) → dTP .B(P)

quand Q et q → ∞. En particulier si la fonction d’influence existe et est
non dégénérée, c.-à-d. VPT (1) (X, P) > 0, alors dTP.h = ∫ T (1) (x, P)h(dx)
et la limite est gaussienne N(0, VPT (1) (X,P)).

Idée de la démonstration : Il suffit de choisir respectivement n = q,
tn = q-1/2, hn = √q (Pq – PQ). Si √q (Pq – PQ) → B(P), alors on a :

q1/2 (T(PQ + (Pq – PQ)) – T(PQ)) = q1/2 (T(Pq) – T(PQ)) → dTP .B(P)

lorsque Q et q → ∞, par continuité de la différentielle. Par ailleurs si
dTP.h = ∫ T (1) (x, P)h(dx) l’intégrale stochastique ∫ T (1) (x, P)B(P)(dx) se
réduit à une gaussienne de variance VPT (1) (X, P). Une démonstration
rigoureuse nécessiterait d’introduire des notions de convergence (Hoff-
mann-Jorgensen convergence), de contrôle de la mesurabilité des événe-
ments concernés, qui dépassent largement le cadre de cet article. Voir
Van der Vaart (1998) pour de plus amples références.

Nous donnons, dans la suite, des applications à la construction
d’intervalles de confiance pour des fonctionnelles importantes en analyse
de la consommation et des risques potentiellement liés à la consomma-
tion. Ces calculs montrent que la technique utilisée permet très simple-
ment d’obtenir des estimateurs de la variance et des intervalles de
confiance pour des quantités parfois complexes.

Intervalle de confiance pour la moyenne
des consommations individuelles

En faisant l’hypothèse (certes réductrice, mais que l’on pourra facile-
ment relâcher par la suite) que la consommation du produit considéré se
répartit uniformément entre les différents membres du ménage, un esti-
mateur naturel de la consommation individuelle est donné par :

Σq
i=1 pi ci c̄r̂q = ———— = —

Σq
i=1 pi ni n̄

où c̄ et n̄ ne sont rien d’autre que la consommation et la taille moyennes
des ménages, calculées sur l’échantillon

c̄ = Σq
i=1 pi ci

n̄ = Σq
i=1 pi ni
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Avec les notations introduites, la consommation individuelle
moyenne peut aussi se réécrire comme le ratio de deux espérances mathé-
matiques.

EPq Cr̂q = ——
EPq n

est un estimateur convergent (sous les hypothèses ad hoc faites aupara-
vant) de la fonctionnelle

EPQ C Q EPQ C ΣQ
i=1 CirQ = —— = —— = —— .

EPQ N Q EPQ C ΣQ
i=1 Ni

Le paramètre fonctionnel associé à rQ , noté

EP Cr (P) = ——,
EP N

pour toute probabilité jointe du couple (C, N), est un ratio qui présente
de fortes non-linéarités mais qui est Hadamard différentiable par com-
position (la moyenne est Hadamard différentiable et la fonction
(x,y)→ x–y Hadamard différentiable en tout point tel que y ≠ 0). La linéa-
risation de cette quantité est facilitée par l’approche explicitée précé-
demment et le calcul de la fonction d’influence de cette fonctionnelle.
Celle-ci est définie par :

E(1-t)P+tδ(c,n) C EP C d
r(1) (c, n,P) = lim t-1 (———— – —— ) = — r ((1- t)P+tδ (c, n))t=0t→0 E(1-t)P+tδ(c,n) N EP N dt

et vaut par un calcul immédiat :

(c – EP C) EP Cr(1) (c, n,P) = ——— – —— (n – EP N).
EP N (EP N)2

Cette quantité donne la contribution d’une observation à la statistique
d’intérêt. On peut alors approcher r̂q par sa partie linéaire sous la forme :

r̂q ≈ r (P)+Σ
q

pi r
(1) (c, n, P)

i=1

et obtenir sa variance asymptotique grâce à la propriété 1

Vr q = Ep (r (1) (C, N, P)2).

En remplaçant P par son estimateur naturel à savoir Pq , on obtient un
estimateur convergent de Vr q (en utilisant simplement la continuité des
fonctionnelles en jeu)
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Vrq

^ = Epq (r (1) (C, N, P)2)

= Σq
i=1 pi r

(1) (ci , ni , Pq )2 (1)

(ci – c–) c–
= Σq

i=1 pi (——— – — (n – n–))2

,
n– n– 2

qui est l’estimateur usuel de la variance d’un ratio.

Un intervalle de confiance asymptotique de niveaux 95 % pour rQ est
alors donné par la traditionnelle formule «plus ou moins deux fois (ou
plus exactement 1,96) l’écart-type»

.

Naturellement, ce calcul se justifie uniquement par des considéra-
tions asymptotiques qui peuvent s’avérer inadéquates si les tailles q et Q
des populations considérées sont trop petites ; d’autres méthodes du type
bootstrap peuvent alors s’avérer plus réalistes et meilleures (Bertail et
Combris, 1997) ; nous y reviendrons ultérieurement.

Intervalle de confiance pour un fractile d’ordre α
de la consommation individuelle

Un calcul similaire permet d’obtenir des intervalles de confiance pour
les fractiles de consommation individuelle. On notera dans la suite 1{A}
l’indicatrice de l’événement A : 1{A} = 1 si l’événement A est réalisé et
0 sinon. La distribution théorique des consommations individuelles est
définie par :

EP ( N 1 { C—N <x})HP (x) = ——————
EP N

et vaut

ΣQ
i=1 Ni 1 { Ci—Ni

<x}HQ (x) = ——————
ΣQ

i=1 Ni

sur l’ensemble de la population (il s’agit donc de la proportion d’indivi-
dus qui ont une consommation par tête inférieure à un niveau x sous
l’hypothèse de répartition uniforme de la consommation au sein du
ménage). Elle est estimée par :

Σq
i=1 pi ni 1 { ci—ni

<x }Hq (x) = —————— ,
Σq

i=1 pi ni

sur la sous-population observée.

1,96 1,96

(ci – c–) c–
= Σq

i=1 pi (——— – — (n – n–))2

,
n– n– 2
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On notera que dans la plupart des enquêtes, Ni est une variable dis-
crète. Le calcul étant similaire (et plus général) dans le cas continu (il
suffit dans le cas discret de remplacer les intégrales sur la seconde com-
posante par des sommes finies dans les calculs suivants), nous ferons
l’hypothèse que Ni est continu et indiquerons les modifications à faire
dans le cas discret.

En utilisant les propriétés de différentiabilité au sens de Hadamard
des fractiles (Dudley, 1994), on en déduit que le quantile d’ordre α de la
distribution des consommations individuelles

FQ (α) = H-1
Q (α) = inf { x, HQ (x) ≥ α }

est Hadamard différentiable. En utilisant la proposition 1, il est donc
estimé de manière convergente par :

Fq (α) = H-1
q (α) = inf { x, Hq (x) ≥ α }

La partie linéaire de la fonctionnelle associée FP (α) = H-1
P (α) est don-

née par la fonction d’influence

n ( 1 { c–n ≤ H-1
P (α) } – α)

Fα
(1) (c, n, P) = —————————— ,

∫ n f(C, N) (nH-1
P (α), n)dn

où f(C, N) désigne la densité jointe du couple (C, N) (voir le calcul en
annexe 1). La variance asymptotique est donc :

EP N
2 ( 1 { C—N ≤ H-1

P (α)} – α)2
VFP (α) = ———————————— .

( ∫ n f (C, N) (nH-1
P (α), n)dn)2

Comme dans le cas de l’estimation de la variance d’un fractile estimé
dans un modèle d’échantillonnage, il est aisé d’obtenir un estimateur
convergent du numérateur, l’estimateur du dénominateur nécessite l’esti-
mation préalable de la densité jointe f(C, N) par une méthode de type non
paramétrique. Par exemple, un estimateur à noyau gaussien de f(C, N) est
donné par :

q (u – ci )
2 + (v – ni )

2

f̂q (u, v) = (2π) -1 h-2
q Σ pi exp ( – ——————— ) , (2)

i=1 2h 2
q

où hq est le paramètre de lissage, que l’on peut choisir de manière quasi-
optimale (au sens de l’erreur quadratique) en prenant hq proportionnelle
à q -1/6 voire de façon optimale par des procédures classiques d’itérations
(Bosq et Lecoutre, 1987). Un estimateur de la variance de Fq (α) est alors
donné par :

Σq
i=1 pi n

2
i (1 { ci—ni

≤ H-1
q (α)} – α ) 2

VF
^

q (α) = ——————————— .
( ∫ n f̂q (nH-1

q (α), n)dn)2
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Le choix d’un noyau gaussien permet de calculer explicitement la
valeur de l’intégrale au dénominateur (voir annexe 2), de sorte que l’on
aboutit à une expression explicite de l’estimateur de la variance :

VF
^

q (x) = (3)

On en déduit alors un intervalle de confiance pour le fractile d’ordre
α de la forme :

Lorsque Ni est discret à valeur dans {1,...,K}, la densité marginale 
de Ni peut être simplement donnée par les proportions empiriques 
f̂j = Σq

i=1 pi 1 {Ni = j } et l’on peut simplifier en utilisant l’estimateur de la
densité par lissage simple de la distribution conditionnelle donné par :

(ci – j H-1
q (α) )2

f
~
q ( nH-1

q (α) \ n = j )= (2π ) -1/2h-1
q Σ

q

i=1
pi exp (– ——————) f̂j 1 {ni = j },2h2

q

de sorte que le dénominateur devient

(ci – j H-1
q (α) )2

( ∫ n f
~
q (nH-1

q (α), n) dn )2
= (2π )-1h-2

q (ΣKj=1
Σ
q

i=1
j f̂j pi exp (– ——————)1 {ni = j })2

2h2
q

Montrer la validité asymptotique de ces estimateurs relève de tech-
niques classiques (voir par exemple Bosq et Lecoutre, 1987) et ne sera
pas abordé ici. On notera cependant que des arguments de différentiabi-
lité au sens de Hadamard ne peuvent être utilisés ici pour l’estimation
de la variance, la densité n’étant pas Hadamard différentiable.

Intervalle de confiance pour des indices de dispersion

La construction d’un intervalle de confiance pour un indice de dis-
persion d’ordre α, défini comme le rapport du fractile d’ordre α à la
moyenne, s’obtient en utilisant l’ensemble des résultats précédents.
Considérons respectivement les quantités théoriques et estimées sui-
vantes, associées à l’indice d’ordre α :

H-1
P (α)

i (P) (α) = ———
r (P)

est construit sur la probabilité théorique P,

1,961,96

.
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H-1
Q (α)

iQ (α) = ———,
rQ

sur l’ensemble de la population,
H-1

q (α)
iq (α) = ———,

rq

sur l’échantillon observé.

La fonction d’influence de i (P) (α) s’obtient aisément à partir de
celles de H-1

P (α) et de r (P), calculées dans les paragraphes précédents et
vaut :

F (1)
α (c, n, P) H-1

P (α)
i (1) (c, n, P) = ————— – ——— r (1) (c, n, P),

r (P) r (P)2

(on notera la similitude avec la fonction d’influence d’un ratio, déjà cal-
culée dans le premier paragraphe).

On en déduit alors immédiatement la forme de l’estimateur de la
variance de iq (α) :

V
^

iq (α) = Σq
i=1 pi i (1) (ci , ni , Pq )2

V
^

Fq (α) H-1 (α)2 H-1
q (α)

= ——— + ——— V
^

rq – 2——— * CORRq (α)
r 2

q r 4
q r 3

q

avec
CORRq (α) = (2π) 1/2 (1+H-1

q (α) ) 3/2

L’intervalle de confiance asymptotique de niveau 95 % pour iQ est
alors donné par :

INTERVALLE DE CONFIANCE BOOTSTRAP PONDÉRÉ

Une méthode complexe mais performante

Lorsque la taille de la population totale ou la taille de la population
observée est trop petite (le problème de savoir où commence l’asympto-
tique, c’est-à-dire à partir de quelles valeurs de q, est un problème déli-

.
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cat. La règle que l’on rencontre parfois dans les manuels selon laquelle
l’asymptotique commence à 30 est non seulement ridicule mais dange-
reuse), les intervalles de confiance asymptotiques peuvent se révéler com-
plètement inadéquats, surtout si la distribution de la population sous-
jacente possède une très forte dissymétrie et/ou si la statistique étudiée
possède des non-linéarités. En effet, les quantités asymptotiques, en tant
qu’effet moyen sur une grande population, ne tiennent pas compte de
ces dissymétries. On peut montrer, sous certaines conditions de régula-
rité, que l’erreur commise sur le niveau initialement choisi et les bornes
d’un intervalle de confiance en prenant une méthode de type asympto-
tique est de l’ordre de q-1/2 fois un certain coefficient d’asymétrie. Cette
erreur peut donc être très grande pour des petites tailles d’échantillons.
Pour pallier ce problème, il est possible d’utiliser des techniques de type
bootstrap, techniques de ré-échantillonnage qui permettent d’obtenir
des distributions des estimateurs et des intervalles de confiance à dis-
tance finie. Il existe une très vaste littérature sur le bootstrap en statis-
tique : nous renvoyons à Shao et Tu (1996) pour un panorama très large
de cette technique et de plus amples références. Malheureusement, ni le
bootstrap usuel ni les méthodes de double bootstrap (voir par exemple
Letson et McCullough, 1998) ne fonctionnent dans le cadre des sondages
(Deville, 1987). Bertail et Combris (1997) ont proposé d’adapter une
procédure de type bootstrap généralisé au problème de sondage aléatoire
simple ou au sondage poissonien, qui permet d’obtenir des intervalles de
confiance plus précis dans les cas évoqués précédemment. L’idée princi-
pale est de pondérer les observations (ci , ni ) par un ensemble de poids
aléatoires, appelé plan de ré-échantillonnage, qui restitue en quelque
sorte la variabilité du sondage initial, et de déterminer par du calcul de
Monte-Carlo la distribution des estimateurs sous la loi du plan de ré-
échantillonnage. Il est possible de caractériser, selon différents critères
d’estimation (critères de sans biais, critère de maximisation de la proba-
bilité de couverture, etc.), la forme optimale des poids. Nous renvoyons
à Bertail et Combris (1997), Bertail et Barbe (1995) pour plus de préci-
sions sur le sujet. Cette méthode est lourde d’un point de vue informa-
tique et nécessite des calculs préalables pour chaque statistique d’intérêt.
Son principal avantage est de permettre d’obtenir des intervalles de
confiance très précis, en particulier pour des moyennes et des rapports.
Pour donner un ordre de grandeur, l’erreur commise peut être réduite de
q-1/2 à q-3/2 voire q-2. Par exemple, sur une population de 100 individus
avec un coefficient d’asymétrie de 2 (par exemple pour une loi γ (1)),
l’erreur commise en utilisant l’intervalle asymptotique est de l’ordre de
20 % alors qu’elle est inférieure à 1‰ avec la méthode du bootstrap pon-
déré. Le cas des fractiles est plus complexe : en effet la fonction
d’influence d’un fractile (qui donne une idée du saut que peut faire la
statistique si on rajoute un nouveau point) est une variable qui prend des
valeurs discrètes de sorte que les approximations usuelles (développe-
ments d’Edgeworth) à la base de la méthode du bootstrap ne peuvent
être utilisées directement. Le bootstrap usuel donne dans ce cas des
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résultats très mauvais (des erreurs de l’ordre n-1/4) bien pire que les résul-
tats asymptotiques traditionnels. Le bootstrap pondéré permet de
résoudre ce problème par l’utilisation de poids de distribution continue.
Le choix adéquat des poids étant un problème délicat pour ce type de
statistique, nous n’entrerons pas dans les détails : la difficulté de la mise
en oeuvre du bootstrap pondéré qui doit être adapté à chaque situation
pour obtenir des résultats optimaux fait de lui un outil utile pour une
analyse fine mais peu pratique pour sa mise en oeuvre. Pour ces raisons
et pour réduire les temps de calculs informatiques trop importants asso-
ciés à cette méthode, nous avons mis au point une méthode plus flexible,
donnant certes des résultats moins spectaculaires que le bootstrap pon-
déré mais qui peuvent s’appliquer à n’importe quelle statistique sous des
hypothèses minimales dans des temps très raisonnables. Les propriétés de
cette méthode sont étudiées en détails dans Bertail (1997), et Bertail et
Politis (2001).

LES MÉTHODES DE SOUS-ÉCHANTILLONNAGE

Une méthode très générale

L’idée du sous-échantillonnage par bloc, ou le bootstrap par bloc, est
très proche de l’estimateur du jackknife. L’idée est d’ôter systématique-
ment des blocs de population pour obtenir différentes valeurs de la sta-
tistique et ainsi avoir une idée de sa volatilité. Son origine remonte aux
travaux de Carlstein (1986) sur l’estimation de la variance de statistiques
complexes en séries temporelles. Ce dernier a en effet proposé d’obtenir
un estimateur de la variance d’une statistique générale Tn en considérant
la variance empirique des valeurs de la statistique calculées sur des sous-
périodes adjacentes et a montré que, sous certaines conditions dépen-
dances des variables aléatoires en jeu, l’estimateur ainsi obtenu était
convergent, asymptotiquement gaussien. Künsch (1989) (et aussi Liu et
Singh, 1992) a proposé une forme du bootstrap basée sur le ré-échan-
tillonnage de blocs d’observations. L’idée est que pour garder la structure
de corrélation entre les observations, il suffit de ré-échantillonner des
blocs d’observations successives, c.-à-d. les variables Yt = (Xt,...,Xt + h)
(où h est «bien choisi ») au lieu des observations Xt, puis de reconstituer
une population de taille n, ce qui permet d’obtenir une nouvelle estima-
tion. Künsch (1989) a montré que cette procédure permet d’obtenir une
approximation asymptotiquement valide de la vraie distribution. Cepen-
dant Lahiri (1992) a souligné que le fait de ré-échantillonner des blocs
d’observations donnait un poids différent aux extrêmes de la série obser-
vée et que, de ce fait, la distribution bootstrap ne possédait pas de pro-
priétés au second ordre, c.-à-d. n’améliorait pas l’approximation par rap-
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port à l’asymptotique. Une correction explicite (un recentrage adéquat
de la distribution) est possible dans le cas de la moyenne, mais peut
s’avérer plus délicate dans le cas de fonctionnelles plus complexes. Le
choix de la standardisation adéquate rend quant à lui la méthode diffici-
lement utilisable en pratique même pour une moyenne (voir Bertail et
Politis, 2001).

L’approche de Politis et Romano (1994) et Bertail (1997), dans le
cadre très général des champs aléatoires, est de construire la distribution
bootstrap directement sur les sous-blocs et non à partir d’une recons-
truction artificielle de la population. Ceci revient à construire la distri-
bution empirique de toutes les valeurs possibles de la statistique sur tous
les sous-blocs de populations (pouvant se chevaucher) de taille fixe bn
avec bn—n

→0 (distribution qui peut aussi s’interpréter comme l’histo-
gramme du «n – bn delete jackknife» (c.-à-d. un jackknife dans lequel
non pas 1 observation mais n – bn observations sont détruites), introduit
par Shao et Wu, 1989 et Wu, 1990). Cette forme de sous-échantillon-
nage est asymptotiquement valide sous des conditions minimales sur la
statistique et le paramètre considérés, lorsque la vitesse de convergence
de la statistique est connue. Ces résultats ont été généralisés par Bertail,
Politis et Romano (1999) à des statistiques dont la vitesse de conver-
gence est inconnue. Néanmoins Bertail (1997) a montré que les distri-
butions obtenues par sous-échantillonnage ne possédaient pas de bonnes
propriétés au second ordre. Ceci s’explique par le fait que cet histo-
gramme est construit sur des sous-échantillons de taille bn beaucoup trop
petite par rapport à n (puisque bn—n

→0 ). Il est néanmoins possible,
lorsque l’on connaît la distribution asymptotique de construire une
extrapolation de Richardson de la distribution qui permet d’obtenir des
propriétés au second ordre. Nous donnons dans la suite les éléments
essentiels des résultats obtenus et indiquons brièvement les techniques
utilisées.

Extrapolation de Richardson des distributions de sous-
échantillonnages

Nous expliquons d’abord brièvement les principes de base de la
méthode dans le cas usuel d’une statistique (quelconque) avec des
variables aléatoires indépendantes identiquement distribuées. Nous
montrons ensuite comment la méthode s’applique aux cas des sondages.

Le cas indépendant identiquement distribué

Soit {X1, X2,...,Xn}n∈N une séquence de variables aléatoires indépen-
dantes de même loi P. Considérons une statistique Tn =Tn (X1, X2,...,Xn)
estimant un paramètre réel θ (P) (le cas général θ (P) à valeur dans un
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espace fonctionnel est similaire) de vitesse de convergence τn (dans les cas
les plus usuels τn = n1/2). Soit S2

n = S2
n (X1, X2, ..., Xn) un estimateur de

la variance asymptotique σ 2 > 0.

La taille de sous-échantillonnage est notée bn < n. Il est possible de
construire Nn = ( n

bn ) sous-échantillons de taille bn, χbn,i , i = 1, ..., Nn.
Il est alors possible de construire l’histogramme de l’ensemble des
valeurs de la statistique construite sur tous les sous-échantillons (centrés
en la valeur de la statistique calculée sur l’échantillon global et correcte-
ment standardisée). Cette distribution est appelée distribution bootstrap
sans remise ou distribution de sous-échantillonnage. Sa fonction de
répartition est donnée par :

K–bn (x\Xn) = N–1
n Σ

Nn

i=1
I {τ bn (Tbn (χbn,i ) – Tn ) /Sbn (χbn,i ) ≤ x },

où I{B} est l’indicateur de l’événement B. Bertail (1997) montre que
cette distribution peut aussi s’interpréter comme une distribution boots-
trap pondérée.

Comme il n’est pas possible en général de construire la distribution
complète car Nn peut être très grand, on peut se contenter d’une
approximation stochastique, c.-à-d. de sélectionner non pas tous les sous-
échantillons de taille bn , mais de choisir au hasard un nombre raison-
nable d’échantillons de cette taille (Bertail (1997) montre qu’un choix Bn
de l’ordre de b2

n est suffisant). Politis et Romano (1994) ont montré que,
sous des conditions minimales (même pour des cas non standard avec
non-normalité asymptotique), cette distribution est asymptotiquement
correcte pourvu que bn soit choisi petit devant n, bn = n1/3 étant dans les
cas standard un choix optimal.

Il est cependant préférable, dans le cas où la distribution asympto-
tique est gaussienne (notée Φ), d’utiliser les approximations normales
usuelles. Pour la plupart des statistiques, l’erreur commise en utilisant la
loi normale est généralement de l’ordre de f1 (n)-1, où f1 est une fonction
croissante. Comme nous l’avons vu précédemment, dans le cas de la
moyenne ou pour des fonctions de moments (variance, coefficient d’asy-
métrie etc.), f1 (n) = n1/2. L’erreur commise en utilisant les quantiles de la
distribution bootstrap sans remise pour construire un intervalle de
confiance est typiquement de l’ordre de f1 (bn)

-1, ce qui se comprend aisé-
ment car les statistiques sont construites sur des sous-échantillons de
taille bn au lieu de n. Cette erreur lui ôte tout avantage pour des échan-
tillons de petite taille. Cependant, la distribution bootstrap sans remise
permet de capter des phénomènes de dissymétrie de la statistique que
l’on ignore totalement avec la distribution gaussienne. Il est clair que
chacune de ces distributions possède des propriétés propres d’où l’idée de
considérer une combinaison linéaire des deux. Cette combinaison s’inter-
prète comme une interpolation au sens de Richardson de la distribution
bootstrap sans remise (Bickel et Yahav, 1988). Elle est donnée par :
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f1 (bn) f1 (bn)
K–*

n (x\ Xn ) = —— K–bn (x\Xn ) +(1 – ——) Φ (x).
f1 (n) f1 (n)

Cette méthode permet d’obtenir des intervalles de confiance plus pré-
cis que l’asymptotique, mais moins précis que le bootstrap pondéré. Il
suffit de prendre les quantiles de cette distribution (c.-à-d. de l’inverser,
ce qui est possible avec n’importe quel outil statistique standard) pour
obtenir un intervalle de confiance possédant de bonnes propriétés, y
compris pour des statistiques complexes. Pour des moyennes, des ratios,
il est même possible d’apporter un facteur correctif de population finie
de la forme (1 – b—n )1/2 à la statistique standardisée pour avoir de
meilleures approximations (Bertail, 1997).

Le second avantage par rapport à d’autres techniques de ré-échan-
tillonnage est qu’elle nécessite beaucoup moins de calculs informatiques,
puisqu’il suffit de recalculer la valeur de la statistique sur des échan-
tillons de taille beaucoup plus faible et en beaucoup moins grand
nombre. Pour comparaison, dans le cas simple de la moyenne, pour une
taille d’échantillon n = 100, le bootstrap usuel ou le bootstrap pondéré
nécessitent le calcul d’au moins Bn = 10 000 valeurs de la statistique Tn,
calculée sur des échantillons de taille n tirés avec remise si l’on souhaite
avoir une correction effective du bootstrap qui ne soit pas perturbée par
la phase de Monte-Carlo. Alors que la technique de sous-échantillonnage
introduite ne nécessite (en théorie) que le calcul de 25 valeurs de la sta-
tistique calculée sur des sous-échantillons de taille inférieure à 100 !
(Bertail, 1997).

Ces résultats se généralisent aisément aux champs aléatoires forte-
ment mélangeants, c.-à-d. présentant une structure de dépendance
asymptotiquement faible. Ceci inclut, entre autres, le cas des séries
temporelles stationnaires univariées et multivariées, ainsi que le cas des
sondages (avec ou sans remise). Pour cela, il convient de construire les
sous-échantillons de taille bn en tenant compte de la structure de dépen-
dance.

L’idée est de découper l’échantillon en sous-blocs de taille bn, ou
encore dans l’optique jackknife, de supprimer kn = n – bn observations
formant un ensemble cohérent (un cluster dans le cas des sondages, une
suite dans le cas des séries temporelles). Sur chacun des sous-blocs pré-
sentant une structure de dépendance similaire à l’ensemble de la série, il
est alors possible de calculer les valeurs de la statistique et sa variance.
On peut alors de manière similaire au cas indépendant construire un his-
togramme des valeurs obtenues : là encore cet histogramme, bien
qu’asymptotiquement convergent, ne possède pas de bonnes propriétés à
distance finie, mais l’extrapolation de Richardson permet de résoudre ce
problème sous des hypothèses minimales sur les statistiques et les séries
utilisées.
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Exemple 1. Cas d’un sondage poissonien (tirages indépendants)

Soit (x1, p1),....(xn, pn), les individus observés affectés de poids que l’on
supposera standardisés à 1 : ∑i pi = 1 (on notera que, dans ce cas, les
poids ne s’interprètent plus comme les inverses des probabilités d’inclu-
sion). Soit

pn = Σ
i

piδx i

la distribution pondérée des individus. On s’intéresse à une statistique
différentiable T (Pn), par exemple la moyenne :

mn = Σ
i

pi xi

ou un fractile de la distribution.

Dans le cas du sondage poissonien, il n’est pas nécessaire de construire
des groupes d’individus à cause de l’indépendance mais il convient de
conserver la structure des poids.

Soit (xi1, pi1), ..... (xibn , pibn) un sous-échantillon de taille bn obtenu en
choisissant bn individus (on peut montrer que si bn est suffisamment
petit devant n, alors le fait de tirer avec ou sans remise n’influe pas sur
la technique). On peut alors calculer la distribution :

Pbn = Σ
bn

j=1
pijδ xij / Σ

bn

j=1
pij

ainsi que ses caractéristiques moyennes, fractiles, etc.

Cas de la moyenne :

En répétant cette opération Bn = b2
n fois, on obtient Bn valeurs de la

moyenne de la forme :

m (k)
bn = Σ

bn

j=1
pij xij / Σ

bn

j=1
pij , K = 1, ... Bn

et Bn estimateurs de l’écart-type associé de la forme :

σ (k)
bn = (b–1

n Σ
bn

j=1
pij (xij – mbn )2/ Σ

bn

j=1
pij )1/2

.

Il suffit alors de construire l’histogramme des valeurs de b1/2
n (m(k)

bn – mn) /
σ (k)

bn puis de les mixer avec la normale dans les proportions bn
1/2

—–
n1/2

et 1 –  bn
1/

—–
n1/2

.
Soit alors cn (α/2) et cn (1 – α/2), respectivement les quantiles d’ordre α/2
et 1 – α/2 de cette distribution. Alors l’intervalle de confiance :

[Tn – cn (1– α /2) Sn /√n ; Tn – cn (α /2) Sn /√n ]

est un intervalle de confiance pour θ correct au second ordre.
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Cas des fractiles :

La procédure est similaire. Les calculs des variances estimées sont donnés
par (3).

Exemple 2. Cas d’un sondage stratifié

Les procédures d’évaluation sont similaires à ce qui précède, mais afin
de tenir compte de la possible corrélation au sein de chaque strate, on
élimine successivement non pas kn = n – bn individus de façon aléatoire,
mais des groupes d’individus dans chaque strate. Supposons que l’on ait
H strates indexées par h = 1, ..., H de taille respective Nh et que l’on ait
sélectionné dans chaque strate nh clusters (typiquement des communes
de tailles quasi-identiques dans le panel Secodip) où nh est suffisamment
grand.

Soit nhi le nombre d’unités tirées dans le groupe i, un individu j
caractérisé par le triplet (h, i, j) est affecté d’un poids wh, i, j . La distribu-
tion estimée d’une variable X sur la population observée est maintenant :

PN = Σ
H

h=1
Σ
nh

i=1
Σ
nhi

j=1
wh,i,jδ xh,i,j /Σ

H

h=1
Σ
nh

i=1
Σ
nhi

j=1
wh,i,j

qui permet de calculer les caractéristiques usuelles.

Soit maintenant bh < nh, h = 1, ..., H. Pour constituer les sous-échan-
tillons, on retient à présent de manière aléatoire seulement bh clusters, au
lieu de nh dans chaque strate, et on construit la distribution des indivi-
dus ainsi obtenus :

Pq = (ΣHh=1
Σ
bh

k=1
Σ
nh,ik

j=1
wh,ik ,jδ xh,ik ,j ) / Σ

H

h=1
Σ
bh

k=1
Σ
nh,ik

j=1
wh,ik ,j .

En répétant cette opération Bn = Π b2
h fois, on obtient une fois de plus

Bn valeurs de la statistique sur des sous-échantillons possédant une struc-
ture identique à la structure de l’échantillon de départ. L’extrapolation
avec un taux convenable (cf. exemple 1) permet une fois de plus de
construire des intervalles de confiance corrects au second ordre.

COMPARAISON PRATIQUE DES DIFFÉRENTES MÉTHODES

Afin de donner quelques ordres de grandeur sur l’intérêt et les per-
formances relatives des méthodes étudiées précédemment, nous compa-
rons dans les tableaux ci-dessous les intervalles de confiance obtenus par
les trois méthodes, d’abord sur des produits dont la consommation est
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très faible, puis sur des produits plus fortement consommés. Il est clair
que dans les deux premiers cas la méthode du bootstrap pondéré apporte
une très nette amélioration de la précision alors que dans les suivants,
les intervalles de confiance asymptotiques et bootstrap donnent des
ordres de grandeurs similaires. Après de nombreuses simulations, nous
avons choisi de faire figurer dans l’annuaire (Bertail et al., 1995, 1996,
1997, 1998) les intervalles de confiance bootstrap au lieu des inter-
valles asymptotiques pour les produits consommés par moins de 500
ménages.

Tous les calculs ont été effectués en Splus 2001, sur une station
biprocesseur, avec 512 Mo de mémoire (dans une situation optimale
d’utilisateur unique). Les procédures sont décrites en annexe 3. Pour
donner des ordres de grandeurs des temps de calculs, pour le tableau 1,
la procédure asymptotic (calcul des intervalles de confiance asymptotiques)
s’exécute en 1 à 2 s, tandis que les procédures wboot (bootstrap pondéré)
et extrapol (extrapolation de distribution de sous-échantillonnage) met-
tent en moyenne respectivement 10mn32s et 2mn10s. Il est donc clair,
au vu de ces comparaisons, que la procédure asymptotique est la plus
efficace en termes de temps de calcul, mais nous voyons dans les
tableaux suivants que les résultats qu’elle donne ne sont pas très satisfai-
sants lorsque les tailles des populations de consommateurs effectifs sont
très petites. Dans ce cas, c’est la procédure bootstrap pondéré qui donne
les résultats les plus satisfaisants, mais au prix d’une longue attente. Ces
mauvaises performances s’expliquent par la lourdeur du calcul mais aussi
par le fait que le langage Splus, parfaitement adapté au calcul statis-
tique, se prête mal aux boucles (à cause d’une vectorisation systématique
des boucles). La procédure extrapol se présente comme une alternative
moyenne, approximativement équivalente au bootstrap pondéré pour des
tailles d’échantillons moyennes ; elle est nettement moins intéressante
pour des petits échantillons.

Nous donnons ci-dessous quelques éléments de comparaison sur trois
types de produits, les biscottes, le mouton par quartier entier et les
maquereaux frais (le premier étant un produit de consommation cou-
rante du panel Secodip P1, le second étant très faiblement consommé
et le troisième faiblement consommé, ces deux produits étant extraits
du panel Secodip P2). 

La partie entre «Cons. Tot./Pop. Tot» et «% consommateur»
concerne l’ensemble de la population. Fract α % désigne donc le fractile
d’ordre α dans l’ensemble de la population (non-consommateurs com-
pris). S’il y a très peu de consommateurs, comme c’est le cas pour le
mouton, tous ces fractiles peuvent être égaux à zéro. Les résultats sui-
vants ne concernent que la population consommant effectivement le pro-
duit. Nous donnons la valeur de l’estimateur (Est.) et les intervalles de
confiance bilatéraux à 95 % de la forme [Wb2,5 %, Wb97,5 %] pour le
bootstrap pondéré, [Ext2,5 %, Ext97,5 %] pour l’extrapolation, et
[As2,5 %, As97,5 %] pour l’asymptotique.
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Tableau 1. Comparaison des intervalles de confiance pour la consommation de biscottes : 1994,
données Secodip

Est. Wb2,5% Wb97,5% Ext2,5% Ext97,5% As2,5% As97,5%

Cons.Tot./Pop.Tot 1,404 1,349 1,460 1,336 1,465 1,328 1,481
Fract 50% 0,596 0,550 0,634 0,509 0,691 0,465 0,727
Fract 75% 1,629 1,505 1,760 1,425 1,836 1,327 1,931
Fract 90% 3,625 3,343 3,840 3,224 4,002 3,038 4,212
Fract 95% 5,505 5,174 5,946 4,919 6,028 4,682 6,328
Fract 97,5% 8,160 7,355 8,875 7,125 8,916 6,973 9,347
% Consommateurs 80,4 79,4 81,4 79,1 81,7 78,8 82,0
Cons.Conso/Pop.Conso 1,747 1,681 1,813 1,663 1,826 1,645 1,848
Fract 25% Conso 0,375 0,336 0,400 0,308 0,449 0,272 0,478
Fract 50% 0,862 0,796 0,923 0,753 0,969 0,694 1,030
Fract 75% 2,025 1,911 2,158 1,799 2,250 1,667 2,383
Fract 90% 4,176 3,840 4,503 3,705 4,597 3,524 4,828
Fract 95% 6,412 5,642 6,828 5,680 7,070 5,425 7,399
Fract 97,5% 9,070 8,177 9,967 7,921 9,878 7,757 10,383

Tableau 2. Comparaison des intervalles de confiance pour la consommation de mouton
par quartier entier : 1994, données Secodip

Est. Wb2,5% Wb97,5% Ext2,5% Ext97,5% As2,5% As97,5%

Cons.Tot./Pop.Tot 0,051 0,038 0,064 0,028 0,068 0,030 0,071
Fract 50% 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Fract 75% 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Fract 90% 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Fract 95% 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Fract 97.5% 0,000 0,000 0,000 0,000 0,000 0,000 0,000
% Consommateurs 1,2 0,9 1,6 0,8 1,5 0,8 1,7
Cons.Conso/Pop.Conso 4,085 3,567 4,602 0,000 11,408 0,000 11,639
Fract 25% Conso 2,362 1,950 3,500 0,631 3,933 0,000 4,915
Fract 50% 3,656 3,250 3,825 2,097 5,223 1,241 6,071
Fract 75% 4,767 3,667 5,500 2,376 7,215 1,096 8,438
Fract 90% 6,000 4,875 8,500 2,918 8,886 1,524 10,476
Fract 95% 8,500 5,500 10,800 1,145 14,137 0,000 17,393
Fract 97,5% 9,000 6,500 12,000 2,245 14,274 0,841 17,159
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Tableau 3. Comparaison des intervalles de confiance pour la consommation de maquereaux frais : 1994,
données Secodip

Est. Wb2,5% Wb97,5% Ext2,5% Ext97,5% As2,5% As97,5%

Cons.Tot./Pop.Tot 0,103 0,093 0,112 0,089 0,115 0,088 0,118

Fract 50% 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Fract 75% 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Fract 90% 0,238 0,185 0,289 0,000 0,000 0,201 0,275

Fract 95% 0,595 0,532 0,723 0,472 0,653 0,506 0,684

Fract 97,5% 1,148 1,000 1,317 0,745 1,267 0,940 1,356

% Consommateurs 14,2 13,2 15,1 13,0 15,3 12,7 15,6

Cons.Conso/Pop.Conso 0,724 0,667 0,782 0,568 0,872 0,522 0,927

Fract 25% Conso 0,208 0,183 0,244 0,120 0,305 0,062 0,354

Fract 50% 0,445 0,362 0,500 0,321 0,554 0,263 0,627

Fract 75% 0,920 0,737 1,000 0,717 1,115 0,631 1,209

Fract 90% 1,600 1,390 1,850 1,288 1,876 1,187 2,013

Fract 95% 2,261 2,000 2,530 1,732 2,653 1,661 2,861

Fract 97,5% 2,975 2,500 3,291 2,137 3,476 2,202 3,748

CONCLUSION

Cet article présente et compare plusieurs méthodes statistiques de
construction d’intervalles de confiance pour des fonctionnelles non
linéaires dans le cadre de sondages pouvant être complexes. Ces
méthodes ont été mises en oeuvre systématiquement depuis plusieurs
années pour construire des intervalles de confiance permettant de décrire
précisément la consommation à partir du panel Secodip. La méthode
asymptotique, basée sur la linéarisation des fonctionnelles (méthode
delta), s’avère souvent mauvaise pour des échantillons de taille moyenne.
Par ailleurs, l’utilisation du bootstrap naïf d’Efron n’est pas valide dans
le cadre des sondages. Nous présentons deux méthodes permettant de
généraliser les résultats du bootstrap à ce cadre : le bootstrap pondéré et
les méthodes d’extrapolation de distribution de sous-échantillonnage.
Ces méthodes peuvent aisément se généraliser à des fonctionnelles et des
modèles plus complexes que ceux utilisés ici. Avant de poursuivre, il
convient de noter que l’approche économétrique est très différente de
l’approche sondage, les «variables» n’étant en elles-mêmes jamais aléa-
toires dans un sondage, l’aléa ne venant que du tirage de l’échantillon. Il
est cependant possible d’introduire un modèle économétrique dans le
cadre de sondage, en considérant ce dernier comme un sur-modèle auxi-
liaire (on parle de manière incorrect de modèle bayésien, dans la mesure
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où l’on peut voir les «variables» non observées comme des paramètres à
estimer pouvant être prédits par le sur-modèle). L’effet d’un sondage sur
un modèle linéaire même simple peut se révéler catastrophique, si l’on
ne sait pas comment il a été réalisé et en particulier, pour un sondage
stratifié, si l’on ne connaît pas les variables utilisées pour la stratification
(voir, par exemple, Gouriéroux, 1987). Lorsque les variables ayant servi
au plan de sondage sont introduites par défaut dans le modèle économé-
trique, il n’y a généralement pas lieu de tenir compte du plan de son-
dage (ceci dépend bien évidemment de la forme du modèle et des hypo-
thèses retenues). Une telle pratique n’est possible que si l’on sait
comment le sondage a été réalisé (et redressé) et si la variable explicative
n’a pas elle-même servi à l’élaboration du plan de sondage, auquel cas il
y a un problème de sélection endogène. Il convient alors de redresser,
lorsque c’est possible, l’effet de cette sélection par des méthodes appro-
priées. Une solution envisageable est l’utilisation de méthodes de type
vraisemblance empirique (voir l’excellent ouvrage d’Owen, 2001) que
l’on peut considérer comme une généralisation des méthodes de calage
sur marge, employées en sondage pour tenir compte de l’information
externe (Deville et Särndal, 1992). L’idée des vraisemblances empiriques
est d’incorporer non seulement les contraintes du sondage et l’informa-
tion extérieure (par exemple, les valeurs de marges déterministes sur des
caractères observés de manière exhaustive), mais aussi les contraintes
induites par le modèle. On cherche alors à pondérer les observations par
des poids proches des poids du plan de sondage (pour une certaine
métrique, distance de Kullback ou distance du χ2) qui vont réaliser
simultanément les contraintes d’informations et les contraintes du
modèle (Bertail, 2002). L’utilisation de techniques de type bootstrap
pondéré et/ou d’extrapolation par strates peut alors s’avérer intéressante
dans ce cadre et devrait faire l’objet de développements ultérieurs.
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ANNEXE 1

Un exemple de calcul du gradient d’ordre 1

En tout point P la fonctionnelle H–1
P (α) vérifie

On en déduit que pour tout t ∈ [0,1], la fonctionnelle prise en la contami-
née (1- t) P + tδ (c, n), satisfait

On en déduit que

et par dérivation en t = 0 :

(1)

mais, on a par un calcul formel sur les distributions

(2)

d’où

(3)

On déduit de (1), (2) et (3) que
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ANNEXE 2

Une expression explicite de l’estimateur de la variance de H-1
P (αα)

Un estimateur de f(C, N) (u, v) est donné par f̂q (u, v) en (2). On a alors par
un calcul direct

avec

du

avec les notations

et

On en déduit que

d’où le résultat annoncé.
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ANNEXE 3

Description des programmes Splus

Les méthodes décrites ici étant utilisées par plusieurs organismes de
recherche, nous ne décrivons que succinctement les procédures Splus utilisées.
Ces procédures sont disponibles auprès du laboratoire de Recherche sur la
consommation, INRA-CORELA, Ivry-sur-Seine.

Intervalles de confiance asymptotiques

Le programme asymptotic permet de calculer les intervalles de confiance
pour des moyennes de consommations totales ou non nulles et pour des frac-
tiles à partir des données du panel Secodip. Les paramètres du programme en
sont quant, la matrice des quantités, code, le code du (des) produit(s) sélec-
tionné(s), fichpoids, le fichier contenant les caractéristiques du ménage, à savoir
le poids attribué après calage sur marge, le nombre de semaines d’activité (uti-
lisé pour le redressement annuel) ainsi que le nombre de personnes dans le
ménage, cc, un paramètre de lissage utilisé dans le calcul des intervalles de
confiance des fractiles par la méthode du noyau. Ce paramètre, par défaut égal
à 1, permet de tester la robustesse des résultats lorsque les échantillons sont de
tailles très petites ; la plupart du temps, il n’est pas nécessaire de le modifier.
L’appel du programme se fait de la manière suivante : asymptotic(quant, code, fich-
poids, cc) ou asymptotic(quant, code, fichpoids). Les quantités sont d’abord corrigées
par une simple règle de trois pour rapporter la consommation Secodip annuelle
du ménage à une activité de 52 semaines ou de 13 périodes selon les années. La
procédure fait essentiellement appel à trois sous-programmes qui peuvent être
utilisés indépendamment : moyb, calcul de la moyenne pondérée des consomma-
tions individuelles, ayant pour paramètres fich, le fichier des consommations
redressées, nbp, le nombre de personnes dans le ménage, et poids la pondération
du ménage (la somme des poids est rapportée à 1). Le programme sbp calcule la
variance associée à moyb avec les mêmes paramètres en utilisant la formule (1).
Les fractiles associés et leur écart-type sont calculés grâce à la procédure smpond
qui utilise la relation (3). La constante de lissage hq est choisie de la forme 
cc∗q-1/6. Le reste du programme affiche les résultats sous forme d’un tableau
donnant l’estimation et l’intervalle de confiance à 95% associé, en utilisant la
formule standard « plus ou moins 1,96 fois l’écart-type».

Intervalles de confiance par bootstrap pondéré

Le programme wboot utilise les estimateurs asymptotiquement convergents
étudiés dans la première partie. Il s’utilise sous la forme wboot(nboot, quant, code,
fichpoids), où nboot est le nombre de ré-échantillonnages utilisés (en général
supérieur à 1 000). Les autres paramètres sont identiques à asymptotic. Le pro-
gramme se présente sous la forme d’une boucle sur le nombre de rééchantillon-
nages. À chaque itération est généré, grâce à la procédure mgs, un nouveau sys-
tème de poids calculé en fonction du système original. Puis les statistiques
asymptotiques sont recalculées avec ce nouveau système de poids, en faisant
appel aux programmes moyb, sbp, smpond. Les quantités sont toutes standardisées



ÉVALUATION DE LA PRÉCISION D’ESTIMATEURS DE FONCTIONNELLES

101

par leur écart-type (cette méthode est connue dans la littérature sur le boots-
trap comme méthode t-percentile). La collection des nboot valeurs obtenues per-
met de construire une distribution dont les quantiles d’ordre 97,5 et 2,5 sont
obtenus grâce à la procédure fractile. Ces valeurs sont alors utilisées à la place
du traditionnel +-1,96 pour construire l’intervalle de confiance sur la base de
l’estimateur initial de la statistique et de son écart-type. La forme finale des
résultats est identique à celle d’asymptotic, dont les résultats sont aussi fournis
comme des éléments de comparaison.

Intervalles de confiance par extrapolation de distributions
de sous-échantillonnage

La fonction extrapol qui met en œuvre la méthode de construction d’inter-
valles de confiance par extrapolation se présente sous la forme :

extrapol(quant,code,fichpoids,nboot,sousech,cc), où les paramètres quant, code, fich-
poids sont, comme dans les procédures précédentes, respectivement la matrice
des quantités, le code du produit et le fichier des caractéristiques des ménages
(poids, nombre de semaines d’activité, nombre de personnes dans le ménage et
éventuellement la région et la commune pour tenir compte de la stratification).
nboot est le nombre de répétitions de la procédure de ré-échantillonnage.
Lorsque l’on tient compte du facteur correctif de population finie, la taille opti-
male du sous-échantillonnage pour des fonctions de moments est de la forme
sousech*q2/3. Le paramètre sousech permet donc de moduler la taille du sous-
échantillonnage dans une optique de robustesse. Le paramètre cc est lui aussi
utilisé dans cette perspective lors du lissage des fractiles (cf. la procédure asymp-
totic). Les paramètres nboot, sousech et cc sont optionnels et peuvent être omis, la
procédure peut donc être utilisée directement sous la forme extrapol(quant, code,
fichpoids), auquel cas les valeurs par défaut des paramètres optionnels sont
nboot = 1000, sousech = 1 et cc = 1. La forme finale des résultats (estimation et
intervalles de confiance) est similaire à celle de asymptotic et wboot.
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