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Abstract: 

North and South Dakota have experienced rapid land-use changes in the past decade. Recent 
studies have shown that these land-use changes are mainly characterized by conversions of 
grasslands to crop production, especially corn and soybeans. Approximately 271,000 hectares of 
grasslands were lost to corn and soy production in 2006-2011 period, almost seven times the 
losses in 1989-2003. The implications of these changing land-uses range from reduced 
biodiversity and loss of habitat for waterfowl species to low agricultural productivity on drought-
sensitive marginal lands. While progress has been made in characterizing regional land-use 
changes, formal analyses establishing causal relationships at the local level are lacking. We 
construct a spatially delineated dataset for the Dakotas and utilize a Difference-in-Difference 
(DID) model in conjugation with Propensity Score Matching to estimate the impact of an ethanol 
plant on nearby corn-acres. We hold the advent of an ethanol plant to be a treatment that 
influences land-use on surrounding agricultural plots. In our preliminary work, based on the 
Parallel Paths assumption of the DID, we find that the effect of ethanol plants on corn production 
varies by plants and a single point estimate for all ethanol plants in a region, as usually provided 
in the literature, can be highly misleading. Surprisingly, we find both positive as well as negative 
effects of ethanol plants on corn-acres that may be statistically insignificant. Negative estimates 
are irreconcilable to the economic incentives due to these corn-based ethanol plants. We find 
intensified corn production and reduced soybeans due to the ethanol plants. Our analysis also 
reflects a difference in opportunity of converting from wheat to corn and from grass to corn. We 
use placebo tests and pre-treatment trends in corn acres to examine the Parallel Paths assumption 
that identifies the DID estimates. We find that this assumption fails and propose to carry out this 
analysis by incorporating differentiated trends into the DID framework through more flexible 
assumptions in future. An important contribution of this paper is that it presents a unique 
research design that uses quasi-experimental techniques to evaluate the impact of a 
change/policy upon availability of spatially delineated datasets. To this extent, our results are to 
be viewed as preliminary. 
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Background and Motivation 

Characterizing the Dakotan Land Use Change 

Recent research findings suggest rapid land use changes in North and South Dakota, where 

grasslands have been lost to corn and soybean cultivation. Wright and Wimberly (2013) 

characterize conversion rates from grass to corn and soybean in the U.S. Western Corn Belt 

(WCB) from 2006 to 2011. The authors attribute expanding biofuels production and increased 

crop prices as potential factors driving higher production of these crops and therefore, such land 

use changes. The WCB spans five states: North Dakota, South Dakota, Nebraska, Iowa and 

Minnesota. A total of 271,000 hectares of net grassland losses in the Dakots out of 528,000 

hectares in all of the WCB’s five states imply that conversions during this period were 

predominantly in the Dakotas. Spatial characterization of land use changes in these two states, 

using U.S. Department of Agriculture (USDA) Cropland Data Layer (CDL), finds westward 

expansion of the Corn Belt in regions east of Missouri River that intersect with the Prairie 

Pothole Region (PPR).  

Johnston (2014) provides a longer-term perspective on cropland expansion in the 

Dakotas, utilizing USDA National Agricultural Statistical Service (NASS) state-level cropping 

acres from 1980 to 2011, along with USDA CDL spatial imagery from 2006 to 2012. She reports 

that land attributed to corn or soybean production almost tripled between 1980 and 2011, where 

in 1980 it accounted for only 5% of the total area in the two states. Author also characterizes 

land use transitions among various categories such that probability of corn/soy being re-planted 

to corn/soy increased from 68% in 2006-07 to 80% in 2011-12. On the other hand, such 

probability for grasslands decreased from 81% in 2006-07 to 74% in 2011-12. In addition, corn 

and soybeans replaced multiple land uses such as wheat and other small grains that were 
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historically predominant in this region due to their climatic tolerance. Technological 

advancements yielding drought and cold resistant corn and soybean varieties are reported to be 

potentially driving such land use conversions. 

One other study by Stephens (2008) estimates the probabilities of grassland conversion 

conditional on amounts of surrounding grasslands, slope and soil productivity. Their annual 

estimate of the probability of grassland conversion was 0.004 for the Dakotas from 1989 to 2003, 

amounting to 36,450 hectares of grassland conversion for the period of study. However, they 

find that probability of conversion is not uniform across all lands of high biological value. Thus, 

conservation policies for such lands should be prioritized based on the probabilities of 

conversion, conditional on their location and other land attributes. A 2015 study by Lark, Salmon 

and Gibbs evaluates the types, amounts and locations of converted lands for cultivation in the 

conterminous U.S from 2008 to 2012. North and South Dakota are found to have experienced 

greatest increase in new cultivated land around all U.S. states during this period, predominantly 

east of the Missouri river. However, northwestern and southeastern North Dakota experienced 

contraction of croplands in 2008-2012 period. To evaluate conversion rates on native prairies 

they utilize long-term trend analyses from U.S. Geological Survey spanning 1972-2002. For the 

Dakotas, they report 14-25 acres of previously native prairies converted per 10,000 acres of land 

on the east of Missouri river and 10-14 acres converted west of the river. Overall, the Dakotas 

stood out with highest conversion rates on lands previously attributed to native grasses. Soybeans 

were found to be the first crop planted upon conversion during 2008-2012 period on east of the 

Missouri river, whereas west of the river spring and winter wheat were the first crop planted 

upon conversion in North and South Dakota respectively. 
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Although Dakotas’ native grasslands are a natural resource of national importance, most 

is under private ownership. Hence, the observed land use changes reported in the recent literature 

are an aggregate outcome of private decisions by individual landowners. These decisions could 

be a result of change in many factors including climatic conditions, technology, the local 

business environment, infrastructure, commodity prices, government payments towards 

conservation and crop insurance etc.  For instance, Claassen et al. (2011) provide evidence that 

federal crop insurance subsidies have intensified cropping practices by reducing related risks. 

They conclude that the 2008 Sodsaver provision that restricts such subsidies could reduce 

grassland conversions by up to 9% in the PPR. These land use decisions have not only 

permanently or temporarily change the overall landscape of these states, but would also have 

long term impacts on the welfare of local farmers in the Dakotas. 

Related Concerns and Policy Implications 

Land use changes in the Dakotas raise many ecological, agronomic, environmental and economic 

concerns and related policy implications. The aforementioned study by Wright and Wimberly 

(2013) acknowledges the threat to existing wetlands and supported biodiversity from rapid 

agricultural conversions in the PPR, since wetlands are critical nesting and habitat sites for 

regional waterfowl species. Increased corn and soybean acres on originally native grassland 

imply loss of ecosystem services. Reduced populations of game species, when such conversions 

are in close proximity to the wetlands in the area, augment these losses (Wright and Wimberly, 

2013; Johnston, 2014; Stephens et al. 2005). Another finding of Wright and Wimberly (2013) 

that raises concerns as well as interests to policymakers is that, in the Dakotas, corn/soybeans has 

replaced pasture and hay for livestock production on high quality lands (Land Capability Class 

II, explained hereafter in the Data section). First, higher production of corn and soybeans means 
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fewer opportunities for livestock production. This may be due to an imbalance in incentives 

towards intensive cropping through reduced risks with insured crops and investments into 

developing tolerant genetically-engineered seed varieties. Second, rapid increase in corn and 

soybeans in the region would tailor the socio-economic structure of the region towards more 

crop-based infrastructure, thereby making crops even more attractive to farmers. 

Agronomic issues arising from grassland conversions relate to reduced soil quality and 

increased soil erosion.  Shifts from grass-based agriculture to crop-based agriculture reduce the 

water holding capacity of the soils, reduce soil ecosystem functions and decrease soil carbon 

thereby reducing soil productivity. Erosion due to intensified row cropping practices, especially 

corn, degrades soil quality and pollutes water streams in the region (Wright and Wimberly, 2013; 

Johnston, 2014). Degraded soils ultimately affect land productivity due to elevated vulnerability 

to drought due to less suitable climates of this region (Wright and Wimberly, 2013). Further 

intensification of agricultural activity and prolonged periods of extreme weather events like 

droughts in this region are considered serious threat to mostly ephemeral wetlands. Further, loss 

of stored carbon from uprooting the native grasses accounts towards environmental impacts of 

conversion (Johnston, 2014). 

Among the policy suggestions, Johnston (2014) calls for policies that incentivize farmer 

behavior towards sustainable agricultural practices in light of detrimental environmental and 

soil-quality implications of intensive corn/soy production on these marginal lands. Further, 

whereas Stephens (2008) suggests conservation policies to prioritize land with higher chances of 

conversion based on their location and attributes, Wright and Wimberly (2014) suggest 

regulating location of biorefineries, deemed responsible for higher corn production in their study. 

Lark et al. (2015), while recognizing the broad economic and environmental impacts of land use 
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conversion, point to the need for reformed policies aimed towards conserving natural 

ecosystems. Even though the new Renewable Fuel Standards program (RFS2) mandated 

procurement of grains for ethanol production only from lands under cultivation prior to 

December 2007, their study finds substantial increase in croplands in the United States. Further, 

the authors recognize the importance of the new Sodsaver provision in the 2014 U.S. Farm Bill. 

This provision, applicable in the PPR states including the Dakotas, dis-incentivizes conversion of 

native sod for agriculture after January 2014 through reduced crop insurance subsidies. Based on 

their analysis, the authors recommend a nationwide Sodsaver provision that covers forests and 

native ecosystems other than grasslands. 

Our Contribution: Moving from Characterization towards Explaining Land Use Changes 

The above studies characterize the rate and extent of land use conversions in the Dakotas at 

various spatial and temporal scales. They also speculate on potential factors that driver these land 

use changes in the region. However, detailed analyses to identify various phenomena that drive 

land use changes in Dakotas are lacking. We take a first step in understanding this phenomenon 

by evaluating the impact of ethanol plants on land use changes for these states. All Dakotas’ 

ethanol plants are corn-based. Hence, we ask how the advent of an ethanol plant affects corn 

plantings in its proximity. There are 19 ethanol plants in Dakotas (four in ND and fifteen in SD) 

with a combined capacity of 1,386 million gallons per year (mgy, 363 mgy in ND and 1,023 mgy 

in SD). Together, the Dakotas provide for about 9% of the total U.S. ethanol production capacity, 

currently at 15,198 mgy. Fourteen (out of the nineteen plants in all) started operations in 2006-

2008 period, i.e. after the first RFS program was launched under the Energy Policy Act of 2005 

and when rapid land-use conversion rates are found by the pertinent literature, discussed above.  
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To motivate the economic incentives from ethanol plants, we compare trends in county-

level corn basis, before 2006 and after 2008, for counties that house these 14 ethanol plants (see 

figure 1). An increase in corn basis implies an increase in local corn prices relative to the corn 

futures price. Such an increase in corn basis could be tied to the incentives from the ethanol 

plants to land owners with farms in the plants’ proximity. It is possible for the ethanol plants to 

provide such incentives to the farmers who supply them corn from near-by areas, since it saves 

transportation costs for both supplier and the plant. Figure 1 shows a steeper basis trend for corn 

in post-2008 periods compared to the pre-2006 period. Therefore, we conjecture a positive and 

statistically significant impact of ethanol plants on local corn acreage. We also extend our 

models to analyze the effect of ethanol plants on corn-soybean rotations. We do this by 

separately analyzing evolution combined acreages of corn and soybeans in relation to the advent 

of an ethanol plant, and then compare these with that of corn acreage. If the effect of an ethanol 

plant on corn acreage is higher than on the combined acreage of corn and soybeans, then the 

implication is intensified corn cropping has occurred through reduced corn-soy rotations due to 

the ethanol plant.  

This paper is subdivided into the various sections. First, a literature review section 

discusses the relevant findings of the impacts of ethanol plants from studies in the past. Second is 

a data section that discusses how we constructed a spatially delineated dataset for this analysis 

and provides a detailed explanation of the relevant variables. Third, the methodology section 

presents our research design and the Differences-in-Difference model in conjugation with 

Propensity Score Matching. Fourth is a section for estimation results for each ethanol plant. 

Lastly, we include discussions and conclusions in another section. 

Literature Review 
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Earlier attempts in this direction involved evaluating indirect impact of ethanol plants on land 

use change by way of analyzing impacts on local corn prices and farmland values. In the more 

recent years studies have considered direct impact of ethanol plants on corn acres as measure of 

land use change. We provide a detailed review of the analyses of impacts on land acreage 

because these are of direct relevance to this article. We also provide a brief review of analyses 

involving grain prices and farmland values followed by direct impacts literature. 

Direct Impacts: Corn Acreage 

Miao (2013) has evaluated the proportion of corn acreage for the Iowa counties in response to 

location, capacity and ownership capacity of ethanol plants. He utilized a county-level panel data 

set from 1997 through 2009 and the Arellano-Bond generalized method-of-moments estimator to 

estimate the effect of ethanol plants on land use shares in the region. The specialized estimator 

attempts to controls for the endogeneity of ethanol plants and allows controlling for corn-

soybean rotations by including lagged dependent variable (that is, proportion of corn acreage). 

He found a positive and significant impact of ethanol plants on intensity of corn production in 

Iowa. He further found that, all else equal, locally owned ethanol plants have twice as strong an 

effect on local corn acreage as their non-locally owned counterparts.  

Motamed and McPhail (2011) used remotely sensed data to estimate a non-linear 

response of proximity to ethanol plants on corn acreage for 12 U.S. Midwestern states: ND, SD, 

NE, MN, WI, IA, KS, OK, MI, IL, IN, OH.  They utilized a panel regression model with corn 

acreage on each of 10 km X 10 km land parcels from 2006 to 2010 as dependent variable. Their 

explanatory variables include capacity of the nearest ethanol plant, distance to the nearest ethanol 

plant and grain elevators, cash bids at the nearest grain elevator and a soil productivity index for 

these parcels. To incorporate non-linearity of response, their regression model includes 
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logarithmic values of dependent and explanatory variables. They recognize that land parcels’ 

corn acreage and their distance from the nearest ethanol plants are endogenous and use an 

instrumental variable approach as a corrective measure. They instrument each parcel’s distance 

from the nearest ethanol plant on local transportation infrastructure, specifically distance from 

the nearest interstate ramp, primary/secondary roads and water ports. This analysis finds that 

upon moving one percent closer to an ethanol plant corn acreage increased by 0.64% within their 

region of study.  

Turnquist et al. (2008) measure the impact of ethanol plants on farmland acreage for the 

state of Wisconsin between years 2000 and 2006. Although Wisconsin was reported to be losing 

its farmland to other uses during this period, fallow or undeveloped acres were found to increase. 

This indicated that factors other than development pressures were driving land use in Wisconsin. 

In addition, given that increases in fallow land are reversible to agricultural production, 

evaluating the impact of ethanol plants is interesting. The authors use land use data for 

municipalities in the state and define zones of 2, 10 and 50 miles around 4 operational ethanol 

plants during 2000-2006 period. The statistical differences between percentage change in 

agricultural acreage between 2000 and 2006, within- and outside each of these zones, evaluate 

the impact of ethanol plants in Wisconsin. Impact of ethanol plants on each of 3 zones’ 

agricultural acreage is found to be statistically insignificant.  

Mueller and Copenhaver (2009) analyzed the impact of two Illinois ethanol plants 

(Illinois River Energy Center (IRE) and Patriot Renewable Fuels (PRF)) on surrounding land 

use, as part of a larger study to deduce the impact of these plants on greenhouse gas emissions. 

They used satellite imagery and observe land use in corn supply regions for each plant in 2006, 

2007, and 2008 to evaluate its impact. Defining these corn supply regions involved corn 
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growers’ surveys and inquiries from ethanol plants to adjudge the spatial extent of their corn 

suppliers. A 43-mile circle around IRE and 23-mile circle around PRF are respective corn supply 

regions. The study concluded a weak influence of ethanol plants on direct land use change in 

their vicinity, and inferred that increasing yields supported increasing exports as well as higher 

ethanol production.  

Brown et al. (2014) utilized a spatial econometric regression framework to assess the 

land use decisions of farmers due to proximity to ethanol plants in Kansas. Using satellite 

imagery, they separately evaluate conversions from other cropland and non-cropland uses in 

2007 to corn production in 2008 and 2009 on 5-acre parcels. The authors find that reducing 

parcel’s distance to nearest refinery by 1% significantly increased non-cropland (other cropland) 

conversion to corn acres by 5% (4%) in a county 25 miles away from the refinery and by 15% 

(11%) in a county 75 miles from it. However, the authors recognize that their estimates may be 

biased due to endogenous ethanol plant locations. 

Indirect Impacts: Local Corn Prices and Farmland Values 

Miao (2013) also recognized that the literature lacks a consensus about impacts of ethanol plants 

on local grain prices and agricultural land values, which can be accounted as indirect effects of 

ethanol plants on land use change. Examples in the context of farmland values are Zhang et al. 

(2012), Henderson and Gloy (2008) and Du et al. (2007). Zhang et al. (2012) used disaggregated 

parcel-level data for Western Ohio to evaluate the impact of increased biofuels demand. They 

conducted difference-in-difference estimation on matched parcels to find increased farmland 

values in the vicinity of the ethanol plants, at a time that witnessed sharp dip in residential 

values. The study by Henderson and Gloy (2008) have used a hedonic framework to find a 

positive impact of ethanol plants on agricultural land values in 2007. Zhang et al. (2012) have, 
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however, criticized the hedonic framework due to its inability to correct for selection bias of 

plant locations. Du et al. (2007), on the other hand, reject the hypothesis that ethanol plants 

significantly affect the cash rentals form farmlands in Iowa. In the context of local grain prices, 

Katchova (2009), O’Brien (2009), and McNew and Griffith (2005) found a positive significant 

impact of ethanol plants on local grain prices, whereas Lewis (2010) found that these positive 

impacts vary spatially. The author found a positive significant impact for MI and KS, and an 

insignificant impact for IA and IN. 

The above review suggests disagreement on the direct and indirect impacts of ethanol 

plants on local land uses in the literature. Moreover, most studies utilize aggregated county-level 

datasets. An issue with such aggregated datasets for a location-based analysis is worth 

considering. Including an indicator (or dummy) variable for the existence of ethanol plants as a 

regressor assumes its location to be central to its home county when this variable equals 1. It, 

thereby, assumes that the corresponding ethanol plant will not impact the counties neighboring 

its home county. If the location ethanol plant is at the center of mass for each home county, we 

may treat the above as an assumption as reasonable. However, as in the Dakotas, an ethanol plant 

is often located near the shared boundaries of two or three counties. Consequently, it is 

appropriate to use spatially delineated data as some studies do. However, these studies ignore the 

issue of endogeneity that arises in these situations and provide biased estimates of the impacts of 

ethanol plants.  

We make an extensive use of remote sensing tools that provide spatially delineated data 

with micro-resolutions of the researcher’s choice. This article presents estimates of impact of 
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ethanol plants using 500-acre plots as representative decision-making units.1 This enables the 

evaluation of the effects of ethanol plants on a plant-by-plant basis, rather than by pooling 

county-level data for ethanol plants in an entire state or all of Midwestern United States. 

Adopting a methodology that allows for analyzing impacts of individual plants enables fine-

detail scrutiny of local conversion effects. This provides an alternative approach to validate the 

estimates of the impacts of ethanol plants on corn acreage arrived at from more aggregate 

methods. 

Data 

We use remotely sensed data in the form of satellite imagery for the Dakotas from two main 

sources: land-use from the ‘CropScape’ portal of USDA-National Agricultural Statistical 

Service’s Cropland Data Layer (CDL) Program and soil quality data from the Web Soil Systems 

portal of USDA-National Resource Conservation Service (NRCS).  

USDA-Cropland Data Layer 

CDL satellite imagery for South Dakota are available from 2006 to 2013 and for North Dakota 

from 1997 to 2013. CDL provides raster (pixel) data for all contiguous US states with different 

spatial resolutions, 56 m pixels for 2006-2009 and 30 m pixels for other years. To be able to 

compare land-use statistics across different years, we use remote sensing tools, namely ERDAS 

Imagine and ArcGIS, to bring each year’s imagery to a uniform spatial resolution of 500 acres. 

To achieve this, each year’s raster image was first converted to vector form (pixels to polygons), 

and then overlaid onto a grid-plot with 500 acre-polygons. Each polygon, which is our 

representative decision-making plot of land with a unique identifier is observed for every time 

                                                           
1 We conducted our initial analyses at a much finer resolution (up to 160-acre plots). Aggregating 
the data up to 500 acres did not change our results significantly. However, higher aggregations 
suppress measurement errors from satellite imagery. 
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point thus, facilitating this analysis. Overall, we end up with approximately 104,000 land parcels 

for North Dakota and 99,000 parcels for South Dakota.  

USDA National Resource Conservation Service - Web Soil Systems 

We retrieve tabular data for Land Capability Classification (LCC) and representative slope data 

from the satellite imagery for both states using the Soil Data Viewer application developed by 

NRCS. Soil Data Viewer provides detailed definitions for both these variables. Briefly, LCC 

groups soils into eight broad classes each representing degree of limitations for cropping, with 

higher class codes assigned to greater limitations. LCC classes I and II are well-suited for 

cropping, whereas LCC classes III and IV require some special conservation practices for 

cropping, often restricting their use to pasture, rangeland or forests; and LCC V and above have 

severe limitations that make them impractical for crop cultivation. Representative slope simply 

measures the rise per unit run. The tabular data combines these soil attributes to geographically 

delineated and uniquely identified soil map units. Soil map units represent territories that require 

common management strategies for respective principal land-uses for the purpose of surveys 

(Soil Data Viewer 6.0 User Guide, 2011 pp. 11). Although map units are the finest spatial 

resolutions mapped by soil surveys, they may be composed of multiple map unit components 

that are typically horizontal strips of similar soil characteristics. Map unit size can range from 2 

acres to 2,000 acres, depending upon the density of map components accommodated by each of 

them. Thus, both LCC and slope are aggregated up to map unit level facilitated by the Soil Data 

Viewer application. The aggregation criteria are contingent upon slope and LCC being 

continuous and categorical variable, respectively.  

Representative slope was aggregated as average of slope values of all map components 

weighted by their respective share of area within the map unit. LCC, on the other hand, was 
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aggregated by a ‘dominant condition’ criterion thereby assigning LCC category to the map unit 

represented by most acres among its components. In other words, the software first sums up the 

area of all map components that fall under the same LCC category and then assigns the LCC 

category with maximum acres to the corresponding map unit. Aggregation using the dominant 

condition criteria notes that the assigned LCC category t may represent as little as 25% of its 

area. In addition, where different LCC categories are represented by an equal area, ties are 

broken by choosing a higher LCC value. The former issue is related to the available aggregation 

process for this categorical variable. The latter issue is of minimal concern, arising in 4 out of 

156 map units for North Dakota representing 0.7% area of all of state and for 2 out of 260 map 

units in South Dakota with only 0.6% area in this state. Moreover, the tie-breaker rule becomes 

even less irrelevant since we use percent land area (in our 500 acre land parcel) with LCC I, II as 

our independent variable. Choice of LCC I, II is based on above definitional and statistical 

reasons discussed in methodology section. Also, these soil quality variables remain constant 

temporally. 

Ethanol Plants’ Spatial Coordinates 

The spatial coordinates of ethanol plants, ultimately used to determine treatment and control 

groups, were acquired by using the Google Earth application in conjugation with online maps 

locating plants made available on Ethanol Producer Magazine’s website. Overall, there are 4 

ethanol plants in North Dakota and 15 ethanol plants in South Dakota. We conduct our analysis 

using 8 ethanol plants (4 in each state), listed in table 1 with spatial locations in figure 2. Choice 

of ethanol plants is driven by our methodology and land-use data availability in South Dakota 

(2006-2013), discussed hereafter under ‘Estimation Results’. 

Methodology 
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The objective is to quantify how the emergence of an ethanol plant affects local land-use change. 

The detailed micro-level panel dataset for the Dakotas allows us to implement a quasi-

experimental method to evaluate the effects of ethanol plants on land-use patterns in their 

neighborhood. In this sense, we interpret the emergence of an ethanol plant as treatment where 

pre-and post-treatment year outcome levels are observed land-use patterns before and after its 

emergence, respectively. Specifically, we use the Difference-in-Difference (DID) estimation 

strategy in conjugation with propensity score matching (PSM) to evaluate the role of ethanol 

plants. Using the DID approach is reasonable since the location of an ethanol plant is 

endogenous to land-use trends in its locality. The issue of endogeneity arises because Dakotas’ 

ethanol plants are corn-based facilities and thus their location decisions could place them in 

regions with high corn production in pre-plant years or with high potential for corn production in 

the post-plant years. DID controls for such endogeneity by estimating causal impacts as 

difference between average temporal trends of land-use acres across treated and untreated 

groups, assuming that in the absence of the ethanol plant land-use in both these groups would 

evolve equivalently. This assumption of parallel trends requires constituents (land plots, here) of 

treated and untreated groups to be alike, except for the land-use patterns potentially affected by 

the presence of these ethanol plants. That is, estimated treatment effects are unbiased if these 

land parcels are randomly assigned to the treatment group and we control for any other within-

group or across-group dissimilarity among them. We utilize PSM to ensure random assignment 

of land parcels to treatment group by conditioning their treatment selection on the observed soil 

quality variables. The soil quality variables are central to land-use decisions, and thus potentially 

influence ethanol plants’ location choice to regions with land attributes favoring corn production. 
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In particular the PSM strategy restricts the sample for estimating treatment effects to one 

where estimated conditional probability of treatment (or propensity score, PS) for each untreated 

parcel is close ‘enough’ to its treated counterpart. We implement a one-to-one nearest-neighbor 

propensity score matching algorithm and include only those treated parcels for which there exists 

an untreated parcel whose PS lies within a pre-assigned radius (absolute difference between PSs) 

of each corresponding treated parcel’s score. The choice of this radius involves a trade-off 

between bias and efficiency of treatment effects, as a smaller radius will yield more similar land 

parcels in both groups but at the same time a smaller sample for estimating treatment effects.2 

We report treatment effects calculated using samples from pre-assigned radius of 0.01.3 In 

addition, post-matching heterogeneity in the distribution of soil quality variables among treated 

and untreated groups may also potentially bias our treatment effects’ estimates. Therefore, we 

conduct statistical checks on difference in mean of these observables across matched treated and 

untreated samples (also known as balancing). We find that reducing the pre-assigned radius 

yields higher balance across the two groups used for estimating treatment effects. It is 

noteworthy that while PSM controls for selection on observables, the DID estimation approach 

controls for selection on unobservables through individual and trend fixed-effects in the 

regression framework (List et al. 2003). In the DID regression framework using matched 

samples, we further control for pre-treatment land-use decisions as an opportunity to convert to 

                                                           
2 We implement the PSM algorithm developed by Fraeman (2010), which optimizes the sample 
size in two steps. First, it searches for all possible matches to each treated sample within the pre-
assigned radius and then while assigning matches to these treated parcels it prioritizes those with 
the least number of matches from the first step. We also use the SAS code that is published 
within Fraeman (2010) to implement this algorithm. 
3 Treatment effects calculated using a pre-assigned radii of 0.05, 0.10 and the unmatched cases 
are available upon request. The treatment effects’ estimates substantially differ with and without 
matching.  
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corn. Illustratively, a land plot almost entirely attributed to corn in pre-treatment years does not 

offer space for conversion irrespective of the advent of an ethanol plant. In addition, even if it 

was predominantly under wheat (or grass) in the pre-treatment year, the opportunity to convert 

comes with switching (or conversion costs), respectively. Further, in recognition of the fact that 

farmers usually grow corn and soybean in rotation, we evaluate treatment effects for corn as well 

as the combined acreage of corn and soy as our dependent variables. 

Defining treatment and control (untreated) groups 

Until now we have laid down our framework for estimating the treatment effects without 

providing a clear definition for treatment and control groups. The argument that the location of 

an ethanol plant is potentially influenced by opportunity as for corn production in its vicinity 

relates to a cost minimizing outcome. If an ethanol plant procures most of its annually required 

corn from near-by areas, it would save on transportation and related logistics costs, and so is 

willing to compensate local suppliers. Therefore, to define our treatment and control groups, we 

assume that these transportation costs are monotonic in the Euclidean distances of a land parcel 

from an ethanol plant and that the ethanol plant bears at least some these costs. In this scenario, a 

representative corn supplier nearer to the ethanol plant has higher incentive to grow corn on their 

field than one farther away, all else equal. Consequently, we choose to designate samples that lie 

closer to the ethanol plant as treatment samples and ones farther away as control (or untreated) 

samples. 

How Significant are Transportation Costs? Empirical Evidence 

To support our argument that transportation costs and distance are sensible treatment and control 

parameters, we present back of the envelope calculations. Consider transportation trucks with 



19 
 

carrying capacity of 1 ton (=39.4 bushels4) corn and mileage of 134 ton-miles per gallon. 

According to the U.S. Energy Information Administration, the annual average diesel price in 

U.S. ranged from $2.4 - $4 post 2005. At such per gallon rates for diesel, the fuel cost of 

transporting 1 bushel of corn for 1 mile would range from 0.05 to 0.07 cents. O’Brien (2009) 

estimates the total transportation cost to be approximately 4 times the fuel cost. Therefore, the 

maximum willingness to pay for the owner of an ethanol plant to incentivize a farmer located 50 

miles away from the plant to grow corn would range from 10 to 14 cents per bushel. On the other 

hand, cash rents for croplands ranged between $39-$46.5 in ND and $53-$71.5 in SD from 2006-

10 (USDA NASS Land Values Summary, 2006-10). Given the corn yields of 111-132 

bushels/acre in ND and 97-151 bushels/acre in SD (USDA NASS Quick Stats, 2012), the 

average cropland rents for the Dakotas were between 30-73 cents per bushel of corn. As the 

transportation costs are 14%-47% of the total cropland rental values there should be strong 

pressure for proximate landowners to engage in corn production. 

The DID model in conjugation with PSM 

This sub-section elaborates on the working of a standard DID model for the purpose of this 

article, in conjugation of the PSM strategy. We follow the standard DID model of Abadie (2005). 

Consider a representative land parcel i  with ,i tC  and ,i tCS   as its corn acreage and combined 

corn and soy acreage respectively at time period t . We introduce binary variables id  and td to 

designate treatment/control groups and pre-/post-treatment periods respectively. So, 1id =  for 

treated parcels and equals 0 otherwise, while 1td =  for time periods after the advent of an 

ethanol plant and equals 0 otherwise. Further, denote ( )t t+ −  as the set of post-treatment (pre-

                                                           
4 Bushel/Ton Converter. www.agriculture.alberta.ca 



20 
 

treatment) time periods with 0t  as the treatment year5. Intuitively, to evaluate a treatment effect 

for treated parcel i ’s corn acreage we would compare the outcome levels with and without 

ethanol plant in the post treatment era, that is ,i iC 6 with t t+∈ . Consequently, the average 

treatment effect for the treated (ATT) equals 
, ,

[ | 1]T U
ii t i t

E C C d+ +− = , where superscript T(U) 

denote presence (absence) of the plant.  

The issue, though, is that we only observe the post-treatment acreage of corn with treatment 

while the without treatment outcome for these years is unobserved. The DID approach is 

primarily designed to overcome this issue. By assuming that treated and control parcels follow 

parallel land use changes if the ethanol plant had not emerged at t , we can evaluate the ATT 

using the pre- and post-treatment outcomes of both groups (Abadie, 2005). This assumption is 

key to identify the estimates of treatment effects because in the event that this assumption fails 

our estimates could not be trusted. Also, observing these land parcels individually lets us control 

for soil quality and land use shares at time 0 1t −  as covariates. Hence, our ATT will be a 

conditioned on covariates other than the treatment dummy. The parallel land use changes 

assumption among both groups (discussed earlier) can be expressed mathematically as 

(1)          
, , , ,

[ | , 1] [ | , 0]u u u u
i ii t i t i t i t

E C C Z d E C C Z d+ − + −− = = − = , 

In equation (1) the superscript u  signifies that we are considering the case of no treatment (both 

groups stay untreated) and Z  is the set of covariates. If (1) holds true then the ATT is calculated 

as 

                                                           
5 Example: For the Red Trail Energy ethanol plant that came up in 2007, 

{1997,1998,...,2006}t+ =  and {2008,2009,...,2013}t− = .  
6 We present the model for corn acreage. An extension for combined corn and soy acreage 
follows by changing the notation from ,i tC  to ,i tCS . 
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(2)          
, , , ,

[ | , 1] [ | , 0]i i i ii t i t i t i t
ATT E C C Z d E C C Z d+ − + −= − = − − =   

ATT, in equation (2) can be estimated as 3β  from the regression framework in equation (3) 

below. 

(3)          0 1 2 3 4, ,, t i i t t i i ti t
C d d d d Zβ β β β β ε= + + + + +   

In equation (3) 0 1 2 3 4,, , ,  and tβ β β β β  are regression coefficients. Note that 4,tβ  allows the effect 

of time-invariant covariates to vary across pre- and post-treatment years (Abadie, 2005).  

To illustrate the extension of a standard DID model to incorporate PSM, consider the 

decomposition of the set of covariates { , }a b
i i iZ X X= . Here, the set a

iX  contains the soil quality 

variables LCC and slope and set b
iX  represents the initial land use conditions for parcel i . We 

match the parcels based on their soil quality parameters. The justification for matching on soil 

quality is that we seek to ensure random placement of these parcels into their respective groups 

relative to the location of ethanol plant. An ethanol plant’s location decision must be based on 

the potential for corn production based on land quality. But to say that the plant chooses to locate 

on land use status in just the penultimate year of it starting operations is logistically infeasible. 

Miao (2013) acknowledges that the ethanol plant goes on-line as early as 3-years prior to starting 

operations. We use a logistic model with id as dependent variable and a
iX  as the set of 

regressors to estimate a propensity score (denoted by ( )a
iP X ) for each parcel in the treatment 

and control groups. Specifically, we use the percentage land with LCC ≤ 2 (denoted, LCC2) and 

percentage land with slope ≤ 5 (denoted by Slope5) as regressors in the logit regression. We 

match the parcels using a nearest-neighbor matching algorithm discussed earlier. By matching, 

we seek to ensure that parcels’ propensity to be treated is alike across groups, conditional of the 

time-invariant intrinsic property of land – soil quality. Post-matching, we use the DID regression 
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framework as in equation (3) with covariates reduced to b
iX . A conceptual expression for the 

ATT from our extended model, denote as mATT , can be written as  

(4)          
, , , ,

[ | ( ), , 1] [ | ( ), , 0]m a b a b
i i i i i ii t i t i t i t

ATT E C C P X X d E C C P X X d+ − + −= − = − − =   

The estimation of mATT  follows from equation (3) with iZ  replaced by b
iX  and the sample data 

used for this post-matching estimation will be a subset of its counterpart in (3). Therefore, if 3
mβ  

is the estimate of our new ATT, then it can be retrieved estimating the following regression 

equation 

(5)          0 1 2 3 4, ,,
m m m m m b

t i i t t i i ti t
C d d d d Xβ β β β β ε= + + + + + .  

An aspect of our research design that differentiates it from most other quasi-experimental 

studies is a non-centrally administered or a non-exogenous (cite some examples) treatment. We 

designate the advent of an ethanol plants as treatment, which itself is a market outcome that must 

be bridging the supply-demand gap in commodities and biofuels markets in the Dakotas and 

even beyond. The implication of this non-exogenous intervention is that we do not have 

exogenous control groups. Rather, our treatment and control groups follow the ‘rule of thumb’ 

that treated parcels are located nearer to the ethanol plant than their untreated counterparts. This 

allows innumerable possibilities of treatment and control groups near each ethanol plant’s 

location and practically inexhaustible combinations that can be included in our article. However, 

to ensure robustness of our results we designate two treatment groups and two control groups for 

each ethanol plant.  Based on our definition that parcels farther away from the ethanol plants are 

controls when compared with the treated, we conjecture that treatment effects using the nearest 

treatment and the farthest control groups will be larger in size and more significant than the other 

three combinations. We present the regression results for this particular combination and 
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compare with others as a robustness strategy. In cases where we have sufficient pre-treatment 

and post-treatment years we also estimate treatment effects for multiple combinations of pre-or 

post-treatment years (advocated by Meyer, 1995). Bertrand et al. (2004) find serial correlation as 

a severe issue in studies implementing DID strategy on panel data with many pre-and post-

treatment years, leading to over-rejection of null hypothesis (of no treatment effect). The authors 

point to high serial correlation of interaction term of individual- and trend-fixed effects as one of 

the causes of this problem, which we believe to affect our estimates. The remedy suggested by 

the authors to overcome this issue is aggregating through pre- and post-treatment years by using 

mean outcome levels rather than for individual years’ is implemented here.  

The Placebo Treatment Effects 

Further, in recognition of the non-exogenous treatment we utilize placebo tests or falsified 

treatments to validate the robustness of our results. We conduct temporal placebos, meaning that 

we assume the advent of an ethanol plant in a year that predates the actual treatment. These 

temporal placebos are conducted for North Dakota plants since the data is available starting from 

1997. This gives us a sufficient window of time periods to designate various falsified treatments 

and the pre- and post-treatment years for each of these. Placebo tests are important as they allow 

validating our identification strategy to estimate treatment effects.  

The farthest treated and control parcels are located at a maximum distance of 100 km (62 

miles) from each other in our empirical setup. We, therefore, anticipate that the physical 

characteristics of these parcels and their initial land use shares will play a major role in 

identifying treatment effects. Weather may be another variable of interest, which we assume to 

be uniform across our treated and control parcels. Since weather data points are collected at 

weather stations covering multiple counties and our analysis only spans 60 miles strips, we think 
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that our assumption is reasonable.  By definition, distance from ethanol plants are the sole 

differentiator of treated and untreated land parcels. However, these end up contained within 

multiple boundaries. Although the markets and incentive structure may vary substantially across 

counties, we do not expect these to affect how much corn farmers grow due to advent of an 

ethanol plant in their vicinity. Even if we were to consider county-fixed effects for each of the 

parcels, they would cancel out due to the first difference operator inherent to the DID estimator, 

on pre- and post-treatment outcome levels of each parcel. Despite of the fact that we have been 

careful in choosing the covariates for above regression framework, there might still be factors 

that we fail to control. An example would be matching the parcels based on soil moisture, not 

done here due to incomplete data. However, a good or bad rainfall year could influence the 

impact of advent of an ethanol plant in our treatment and control groups even if we assume 

uniform rainfall measured across all parcels. The right amount of precipitation leading to higher 

soil moisture on a LCC II, flat sloped land could influence farmers’ decision to grow water-

thirsty corn, with or without ethanol plant in vicinity. To address our inability to capture such 

effects that may confound the estimated treatment effects, we include temporal placebos. If we 

successfully control for all relevant covariates and our matching strategy is perfect, we should 

get a zero or statistically insignificant placebo treatment effect. However, a significant (positive 

or negative) placebo treatment effect would point towards ambiguity in our identification 

strategy and allow statistical correction of our estimates of the actual treatment. 

Estimation Results 

As mentioned earlier, there are 19 ethanol plants in North and South Dakota. We include all four 

North Dakota ethanol plants, but restrict our analysis for South Dakota to four out of 15 ethanol 

plant due to data availability. The CDL data for South Dakota only goes back until 2006.The 
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four South Dakota ethanol plants, included here (see Table 1), started operations in 2008. This 

allows implementing the DID estimation strategy through pre- and post-treatment years. We 

analyze the effects of POET and NuGen ethanol plants together as cluster 1 and ABE and GLE 

as cluster 2 due to their spatial proximity. A vector description (dimensions and directions) for 

the treatment and control groups of each of these ethanol plants is provided in Table 2. These 

rectangular-shaped groups can be visualized in figure 3, as an example. Another factor that 

determined which land parcels entered treatment and control rectangles was existence of ‘other’ 

ethanol plants nearby. We follow the linear city model and consider all ethanol plants as market 

terminals with designated market capacity. So, while deciding which land parcels enter our 

rectangles we ensure that linear distance of a parcel is minimum to the ethanol plant under study. 

The linear distances are normalized by ethanol plants’ capacities. For instance, if two ethanol 

plants with annual capacities 20 and 80 million gallons are 100 km apart, then market designated 

for the larger (smaller) ethanol plant is 80 (20) km from its location. Such details for ethanol 

plants considered for our analysis are added in Table 2 (see the ‘Remarks’ column). 

Treatment Effects’ Estimates 

To estimate the treatment effects, we modify our regression framework (equation (5)) to include 

the first differences of pre- and post-treatment outcomes as dependent variables. Our regression 

estimates, therefore, are to be viewed as regression coefficients of equation (6) below. 

(6)          1 3 4, , , ,
( )m m m b

i ii t i t i t i t
C C d Xβ β β ε ε+ − + −− = + + + − 7  

                                                           
7Equation (6) is retrieved by taking a difference on the pre- and post-treatment versions of 
equation (5). That is 0 1 2 3, 4, ,

{ .1 .1 } m m m m m b
i i ii t t i t

C d d Xβ β β β β ε+ + += + + + + + −  

0 1 2 3, 4, ,
{ .0 .0 }m m m m m b

i i ii t t i t
C d d Xβ β β β β ε− − −= + + + + + . Again, similar results follow for the 

combined corn and soybeans case by changing the notation ,i tC  to ,i tCS . 
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Where, 
,i t

C +  is the average of corn acres in post-treatment years and 
,i t

C −  is the average if corn 

acres in pre-treatment years. In addition, 1
mβ  captures the trend-effects of moving between pre- 

and post-treatment periods, 3
mβ  is the estimate of mATT  (defined earlier), and 

4 4, 4,
( )m m m

t t
β β β+ −= −  is the differentiated role of the set of controls b

iX  on change in corn acreage 

through time. We now present our estimation results for each ethanol plant included in Table 1. 

Our regression analysis also includes 
, ,

ln( ) ln( )
i t i t

C C+ −−  as a dependent variable to compare rate 

of change in outcomes pre- and post-treatment. This is especially useful when, in the pre-

treatment period, outcome levels (corn acres in this case) between treatment and control groups 

differ significantly. Illustratively, say the conditional mean of corn acreage for control groups is 

a acres and for treatment group is 2a acres. If there were no treatment effect and both groups 

would grow by a factor 2, then post-treatment corn acres for control and treatment groups will be 

2a and 4a respectively. Our definition of ATT will yield a positive treatment effect, even though 

it was zero. Using log-linear regressions will compare the rate of change and would help avoid 

such confounding results.  

Red Trail Energy 

For the Red Trail Energy ethanol plant (RTE) that started operations in year 2007, we have 

{1997,...,2006}t− =  and {2008,...,2013}t+ = . Consequently, ,2006 ,2006{ , }b
i i iX W G= , where ,2006iW  

is the 2006 wheat acreage on a representative parcel i  and  ,2006iG  is the 2006 grass cover on i . 

For RTE, the pre- and post-treatment summary statistics for both treatment and control groups 

are included in Table 3 and corresponding estimation results are included in Table 4. 

Table 3 reveals that the unconditional change of mean corn acres is higher in the 

treatment group. However, the regressions revert that due to negative and significant 
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impediments posed by grass acres are higher in case of control group rather than treatment 

group. A negative significant coefficient for grass acres in 2006 can be explained due to high 

switching costs. Such switching costs are further exaggerated due to pre-treatment low corn (and 

soy) acres treatment and control groups. Such low levels of corn and soy acres could mean lack 

of experience, information and technology to switch to corn in this region. This makes sense 

because RTE is located west of the Mississippi river, away from the western edge of the Corn 

Belt. The conditional rate of change of corn (and soy) are also negatively affected due to the 

ethanol plant, though the change is insignificantly different from zero at 95% confidence 

interval. It should be noted that the intercept, in absolute value, is large as compared to treatment 

and other controls. Since the intercept captures trend-effects (discussed earlier), large intercepts 

relative to treatment effects suggest that ethanol plants only provide for a small fraction of the 

overall land use change among the groups. 

Blue Flint 

For the Blue Flint ethanol plant (BF) that started operations in year 2007, we have 

{1997,...,2006}t− =  and {2008,...,2013}t+ = . Consequently, ,2006 ,2006{ , }b
i i iX W G= , where ,2006iW  

is the 2006 wheat acreage on a representative parcel i  and  ,2006iG  is the 2006 grass cover on i . 

For BF, the pre- and post-treatment summary statistics for both treatment and control groups are 

included in Table 5 and corresponding estimation results are included in Table 6. 

Due to the ethanol plant, unconditional mean of corn acres among the two groups grew 

almost equivalently while the combined corn and soy acreage grew more for the treated. But 

again grass acres, that are a significant impeding factor for conversion to corn (or soy) here, are 

higher among the untreated parcel. This yields negative treatment effect, such that conditional 

corn acres increased more among untreated parcels. However, while comparing the rate of 
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change among parcels treatment effect is positive for corn acres and negative for combined corn 

and soy, although insignificant. A positive growth rate of corn acres and negative rate for corn 

and soy combined may have implication for crop rotation. This suggests intensified corn 

cropping where -corn-soy-corn-soy- rotational structure shifting to -corn-corn-soy-corn-. Also, 

for the log linear regressions coefficients on initial wheat acres (in 2006) are positive and 

significant revealing opportunity to switch to corn. At the same time, negative (insignificant) 

coefficients on initial wheat acres in the linear regressions suggest costs of switching to corn 

production that are lower than conversion costs from grass acres. Again, large intercepts relative 

to the treatment effects suggest that ethanol plants are not a major determinant of the overall land 

use change among the groups. 

Tharaldson Energy 

For the Tharaldson Energy ethanol plant (TE) that started operations in year 2006, we have 

{1997,...,2005}t− =  and {2007,...,2013}t+ = . Consequently, ,2005 ,2005{ , }b
i i iX W G= , where ,2005iW  

is the 2005 wheat acreage on a representative parcel i  and  ,2005iG  is the 2005 grass cover on i . 

For TE, the pre- and post-treatment summary statistics for both treatment and control groups are 

included in Table 7 and corresponding estimation results are included in Table 8. 

A feature that distinctly distinguishes TE from RTE and BF is higher pre-treatment acres 

of corn and soybeans in among treated and untreated groups. Also, with treated groups having 

more than twice as many corn acres and, also that many combined corn and soy acres comparing 

rates of change is more reasonable than the absolute changes. Specifically, log-linear regressions 

will provide more reasonable inferences as compared to their linear counterparts. The treatment 

effect here is found to be negative, although more negative for combined acres of corn and soy. 

This suggests intensifying corn cropping and forgone corn-soy rotations in the process. Trend-
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effects again dominate the treatment effects in this case. However, grass acres may serve as 

opportunity to grow corn, despite higher conversion costs, due to lower grass cover prior to the 

ethanol plant. 

Hankinson Renewable Energy 

For the Hankinson Renewable Energy ethanol plant (HRE) that started operations in year 2008, 

we have {1997,...,2007}t− =  and {2009,...,2013}t+ = . Consequently, ,2007 ,2007{ , }b
i i iX W G= , 

where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  ,2007iG  is the 2007 grass 

cover on i . Since there are too many pre-treatment years compared to post-treatment years, we 

introduce 1 {2003,...,2007}t− =  as an alternative pre-treatment years to seek any difference in 

treatment estimates. For HRE, the pre- and post-treatment summary statistics for both treatment 

and control groups are included in Table 9 and corresponding estimation results are included in 

Table 10. 

The regression results for HRE suggest that this ethanol plant has had a positive impact 

on corn acres, and the combined corn and soy acres. However, it is clear that impact on corn 

acreage has been greater than that on the combined corn and soy acreage. This may have 

implications for corn and soy rotation. Similar to our inferences above, corn acres seem to 

intensify, leading to lesser corn-soy rotations due to the advent of the ethanol plant.  This 

inference on rotations is especially quite strong if we compare the historical pre-treatment years 

(starting 1997), rather than the recent ones (starting 2003). Once again, higher wheat acres in the 

year before the ethanol plant lead to positive significant increase in corn acres (and combined 

corn/soy acres as well). Also, unlike the previous three ethanol plants trend-effects are 

dominated by HRE’s treatment effect for log-linear regressions while trend-effects dominate in 
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the linear regressions case. Thus, HRE is an important determinant of the rate of change in corn 

production whereas it is not so important to absolute changes in corn acres.  

Cluster 1: POET Bio refinery and NuGen Energy 

Cluster 1, which is a conglomerate of POET Bio refinery and NuGen Energy, (PBNE) started 

operations in 2008. So, we have {2006,2007}t− = , {2009,...,2013}t+ =  and 

,2007 ,2007{ , }b
i i iX W G= , where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  

,2007iG  is the 2007 grass cover on i . We also include 1 {2009,2010}t+ =  as an alternative post-

treatment years’ set to seek any difference in treatment estimates. For PBNE, the pre- and post-

treatment summary statistics for both treatment and control groups are included in Table 11 and 

corresponding estimation results are included in Table 12. 

The corn acres seem to be positively impacted by emergence of PBNE in later years 

(2011-2013), as the treatment effect is insignificant for the post-treatment years 1t
+ . The rate of 

growth in corn acres, however, was not significant due the plants. Given that initial corn acreage 

between treated and control parcels is significantly different, the inference on rate of growth is 

more reliable than absolute acres. But, the effect of these ethanol plants on the combined acreage 

of corn and soybeans is unanimously positive and significant. This implies that, unlike in North 

Dakota, these South Dakota ethanol plants have de-intensified corn cropping and encouraged 

corn-soy rotations. Another finding that differs here from the analysis of North Dakota plants is 

negative trend effects. It seems as if the higher corn acres are driven due to the advent of these 

ethanol plants, since treatment effects and intercept are comparable in size. Further, higher initial 

(2007) wheat and grass acres have positive and significant impact on both, corn acreage and 

combined acreage of corn and soy.   

Cluster 2: Aberdeen Bio energy and Glacial Lakes Energy 
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Cluster 2, which is a conglomerate of Aberdeen Bio energy and Glacial Lakes Energy, (ABGL) 

started operations in 2008. So, we have {2006,2007}t− = , {2009,...,2013}t+ =  and 

,2007 ,2007{ , }b
i i iX W G= , where ,2007iW  is the 2007 wheat acreage on a representative parcel i  and  

,2007iG  is the 2007 grass cover on i . We also include 1 {2009,2010}t+ =  as an alternative post-

treatment years’ set to seek any difference in treatment estimates. For ABGL, the pre- and post-

treatment summary statistics for both treatment and control groups are included in Table 13 and 

corresponding estimation results are included in Table 14. 

The initial average corn (combined corn and soy) acreage for treatment group is almost 

twice (thrice) when compared to the control group. Hence, we draw our inferences for this 

ethanol plant from rate of change equations. We find negative impacts of these ethanol plants on 

treated corn acreage, which is driven by the decreasing corn and combined corn and soy acreage 

for treatment groups coupled with corresponding increase for control group.  A more negative 

treatment effect for combined corn and soy acreage points out to intensified corn cropping 

relative to corn-soy rotations. Also, as in the other cluster in South Dakota, trend-effects are 

negative and are dominated by the treatment effects here. Initial wheat and grass acres have 

positive significant effects on corn and soy production.  

Summarizing the Estimation Results 

The treatment effects are found to vary in size, sign and significance by individual ethanol 

plants. This finding disapproves estimation strategies used in the past that discover only one 

point estimate of the impact of ethanol plants for all of Iowa or, even, the U.S. Midwest. 

However, the negative significant treatment effects are both surprising and irreconcilable due to 

earlier argued higher relative incentives near the ethanol plants. This was because transportation 

costs (that are monotonic in distance) are quite significant compared to cropland rentals values in 



32 
 

the Dakotas. To understand and validate these negative treatment effects, we examine impact of 

ethanol plants on county-level corn basis and evaluate placebo treatment effects. The placebos 

and robustness checks from multiple treatment and control groups are discussed in the next 

section.  

We also find that intensity and type of impact of ethanol plants on local land use depends 

on its spatial location, rather than only its capacity as controlled for in previous literature. 

Specifically, for ethanol plants that lie on the Corn Belt (HRE, PBNE and ABGL) we find 

treatment effects to dominate or be at least comparable to the trend-effects. Whereas, for RTE, 

BF (located west of the edge of the Corn Belt) and TE (located north of the Corn Belt) the 

treatment effects are dominated by the trend-effects. So, ethanol plants could be a major factor in 

determining the overall evolution of corn and soybean acres in their proximity when they operate 

among areas densely planted in corn/soy. We also find that the advent of ethanol plants could 

impact corn-soy rotations in an area. In 5 out 6 cases considered in this analysis, we find corn 

intensification relative to combined corn and soy acreage. This points towards lesser corn-soy 

rotations in close proximity of these ethanol plants. We also find initial wheat and grass acres to 

significantly affect the evolution of corn and soybean acres in post ethanol plants years. 

Controlling for these variables reveals higher wheat to encourage corn relative to higher grass, 

which is a result of higher conversion costs (of sod-busting) than switching costs among crops. 

Corn-Basis Analysis 

We had conjectured earlier that proximity to ethanol plants could offer strong incentives to drive 

more corn production. This conjecture was primarily based on our back of the envelope 

calculations and also, partially, on the existing literature. Our findings, in contrast to the 

conjecture, of insignificant or negative treatment effects are indeed surprising. To better 
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understand and reconcile these findings we analyze the effects of ethanol plants on corn basis. If 

the advent of an ethanol plant were to incentivize corn production in its proximity, these 

incentives should be observable in a market setting as increase in corn basis. So, the treated 

parcels should have a higher increase in basis post-treatment as compared to the untreated ones. 

This would ultimately feed into land-use decisions and lead to higher corn acres in close vicinity 

of the ethanol plant. Our back of the envelope calculations focused on the maximum willingness 

to pay for an ethanol plant to incentivize corn production for a supplier unit closer to its location. 

As opposed to the maximum willingness to pay, increase in basis will reveal an actual 

willingness to pay for the ethanol plants as observed in the market setting. In case that the actual 

willingness to pay for the ethanol plants does not increase as expected, we can, at least, justify 

the insignificant treatment effects estimates found earlier.  

We retrieved a county-level dataset providing monthly corn basis from 2000 to 2013, for 

North and South Dakota8.  We present comparative basis trend-plots from 2000 to 2013 for the 

counties that contained the treatment and control groups for 4 out of six ethanol plants (or 

clusters) included here (figures 4-7). In figures 4-7, the county that contains the ethanol plant (its 

home-county) is plotted as a solid series while others are plotted as hashed series. If the ethanol 

plant were to significantly increase the compensation to farmers for supplying corn in its close 

vicinity, we should be able to visualize it through its home-county’s basis time-series plot. In an 

event of significant impact of the advent of an ethanol plant, we expect the basis series for it 

home-county to deviate upwards from its counterparts. Further, the home-counties for RTE and 

BF and their respective neighbors suffer with missing values and are inappropriate to deduce any 

impacts of these plants. 

                                                           
8 Dataset Source: Geo Grain. 
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Figures 4-7 show increased relative basis for Richland county (home to HRE) and Turner 

county (Home to Cluster 1). This justifies the positive significant treatment effects for these two 

cases. However, the corn basis for Cass county (home to TE) seems to be stagnated post-

treatment year. Also for cluster 2, stationed in two counties, corn basis for Brown had fallen 

relative to its neighbors, while there was a temporary rise in corn basis for Edmunds which was 

not sustained in the later years. This observation goes to provide some understanding as to why 

the ethanol plants yielded non-positive treatment effects for TE and Cluster 2. Note that our 

claims are not founded here on robust statistical tools (like regressions), but only on some 

summary statistics. Our purpose here is to only garner some understanding and support the 

quasi-experimental design of this study. 

Discussion and Conclusions 

Robustness Checks 

 Multiple Treatment and Control Groups 

As discussed earlier, the advent of an ethanol plant is not a centrally-administered change/policy 

but an outcome of perceived supply and demand gap in its input and output markets. Because the 

treatment for this study is non-exogenous, the control groups are also non-exogenous. As per 

their definitions, the only requirement for a control group is that it is more distant than a 

treatment group. Since the treatment groups are ad-hoc, so are the control groups. This calls for 

robustness checks on our treatment estimates. To incorporate those we include multiple 

treatment and control groups (see Table 2). We apply the steps of above stated methodology, 

including propensity score matches, for each combination of treatment and control groups for 

each ethanol plant. This means that we have estimated treatment effects estimates for each 

ethanol plant/cluster using four regressions, and hence twenty-four regressions in all. To save 
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space we present the results of one of these combinations.  Tables 15-16 summarize all twenty-

four regressions by listing the treatment effects estimate for each one of them. We also include 

the control as per Tables 3-14 but mute their coefficient estimates to save space. Our robustness 

checks using multiple treatment and control groups reveal that the treatment estimates are 

generally stable across these combinations. The size and sign of these are especially similar by 

control group. That is, combinations ‘T1 and C2’ and ‘T2 and C2’ will generally yield similar 

estimates.  

 Placebo Tests 

Although we find our treatment estimates to be sufficiently stable, we still have not been able to 

reconcile negative treatment effects. In an attempt, to do so we present placebo treatment effects 

in Table 17 and Figure 8 shows the schematic that we follow to conduct these placebos. Ideally, 

we should have found the placebo treatment effects to be zero or, at least, statistically 

insignificant. Unfortunately, we do find significant placebo tests pointing out to the fact that 

either our matching strategy is not perfect or we are not able to control for all the factors that 

affect growth of corn acres in equation (6).  To reconcile the failed placebo tests, we first 

consider the pre-treatment trends for treatment and control groups for the North Dakota ethanol 

plants to validate the Parallel Paths assumption of DID estimation strategy (see equation 1). 

Figure 9 shows that the Parallel Paths assumption has failed and that we need to incorporate 

differentiated trends between pre- and post-treatment periods and between treatment and control 

groups. We follow Ricardo and Mora (2012) to model trends into the DID model presented 

above (see appendix). This model will be further developed as part of future work. 

Discussion  
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The literature on impact of ethanol plant is themed two-way: direct and indirect land use 

changes. The changes in agricultural prices and farmland values due to presence of ethanol 

plants are indirect land use impacts, while acreage changes of different land use types is the 

direct impact. In the U.S., a growing biofuels industry due to favorable policies and national 

security concern amidst increasing crude oil prices fueled the advent of a large number of 

ethanol plants. Fulfilling such increased demand of biofuels in the last decade or so required 

increased supply of corn to the corn-based ethanol industry. An increased demand of corn, in 

turn, required intensification of corn cropping coupled with higher per acre productivity from 

improved and more tolerant seed varieties. Since intensified corn cropping would require more 

land for its plantation, a debate on various impacts of ethanol plants on land use change is 

evident in the literature. This debate specifically focusses on whether new lands are brought into 

growing corn or existing croplands have been shifted towards its production by replacing other 

crops. This issue is especially relevant to the Dakotas which have primarily been perennial native 

grasslands supporting the livestock industry, but experiencing rapid shifts towards corn 

production along the western corn belt (Johnston, 2014; Wright and Wimberly, 2013). These 

shifts in production systems present policy-makers with at least three challenges. First, these 

lands are ecologically important. Continual loss of original mixed grass prairie surrounding 

pothole lakes poses serious threats to feeding and nesting habitat for migratory waterfowl, 

songbirds, many insects and their predators. Second, the Dakotas PPR offers marginal lands for 

row crop production with high drought/floods risks and low productivity. Historically, cropped 

land in the area has proven costly to agricultural support programs (Johnston, 2014; Wright & 

Wimberly, 2013). Third, higher conversion rates imply lesser scope for growing perennial 
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bioenergy crops that would limit the scope of supporting the cellulosic ethanol industry in future 

(Wright & Wimberly 2013). 

Apart from above policy related issues, intensified corn production can have serious 

concerns of environmental degradation and soil erosion. First, employing new lands for corn 

production by converting native grasslands releases carbon stored in them, thereby increasing 

greenhouse gas emissions. Second, more acres for corn production imply higher application of 

nutrients, nitrogen and phosphorous, which may run-off to the open water streams degrading 

surface water quality. Third, intensified corn production has implications for corn-soy rotations, 

shifting very alternate-year rotation strategy towards corn in more periods than soybeans. This 

could affect land quality by increased soil erosion, higher nutrient run-off affecting surface water 

quality and sustained aquatic life. 

Conclusions 

Our evaluation of the role of ethanol plants in Dakotas land use change is an attempt towards 

addressing these concerns. First, we find evidence that emergence of an ethanol plant disrupts the 

corn-soy rotations and shifts production systems towards more corn. This raises concerns about 

sustainable agricultural practices in these states, for farming on already marginal lands with 

plantation strategies that further degrade land quality can be detrimental to their productivity. 

Second, we find that increased corn production due to ethanol plants is a plant-specific issue. In 

some cases, especially outside the Corn Belt, we find the role of ethanol plants towards land use 

change rather limited. Here, grasslands are inhibiting factors towards corn production and high 

wheat acres encourage it. Whereas, for the South Dakota ethanol plants, that started operations 

within the Corn Belt, both grass and wheat acres encourage corn production. This suggests that a 

technological and informational divide among two regions such that within WCB, where there is 
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a lot of corn to begin with, conversion costs are lesser than those outside of it. However, our 

results also suggest that switching from wheat to corn is less costly than converting from grass to 

corn. Such results imply that switching from other crops will precede conversion of grasslands 

towards corn production on these marginal lands, especially outside the Corn Belt. However, the 

policy concerns of loss of habitat, polluted surface water due to nutrient run-off and lower 

productivity due to soil erosion still hold valid for the Dakotas. 

Ideas for future research in this area 

This article provides a novel research design that incorporates remotely sensed data into applied 

economic analyses, especially those under the ambit of quasi-experimental studies. However, our 

design has its own shortcomings that provide opportunities for future research. First, we use 

Euclidean distances rather than ‘actual’ distances of land parcels from ethanol plants. These 

‘actual’ distances using local road networks provided by the state Departments of Transportation 

can be incorporated using the ‘Nearest Facility Analysis’ tool on ArcGIS. Second, our research 

design uses ad-hoc treatment and control groups with our placebo tests suggesting that our 

matching strategies were not perfect. The placebo tests also suggest, in some cases, that treated 

parcels had lower rates of growth in corn acres than their untreated parcels. This observation 

leads to a question that why would the ethanol plants, in the first place, locate in regions where 

growth in corn production is initially lower. This is possible due to multiple reasons. The 

location of ethanol plants would definitely depend on ex-ante land use patterns in its proximity, 

but that is not the only factor that it considers. These plants would also want to consider areas 

with good public infrastructure, easy access to elevators and other market terminals while 

making location decision. In any case, such results can provide a springboard for researchers 
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whose interest lies with understanding the effects of ethanol plants on the socio-economic 

environment in its proximity.  
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TABLES 

Table 1: List of Ethanol Plants in North Dakota and South Dakota for our analysis 

S. No. Ethanol Plant Year 
Established 

Capacity 
 (Million gallons per year) Location 

North Dakota 

1 Red Trail Energy 2007 50 Richardton, 
Stark County 

2 Blue Flint Ethanol 2007 65 Underwood, 
McLean County 

3 Tharaldson Ethanol LLC 2006 153 Casselton, 
Cass County 

4 Hankinson Renewable Energy 2008 145 Hankinson, 
Richland County 

South Dakota 

1 POET Bio refinery (POET) 2008 110  Chancellor, 
Turner County 

2 NuGen Energy (NuGen) 2008 100 Marion, 
Turner County 

3 Advanced Bio Energy (ABE) 2008 53 Aberdeen, 
Brown County 

4 Glacial Lakes Energy (GLE) 2008 100 Mina, 
Edmunds County 
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Table 2: Schematics of the treatment and control groups of ethanol plants analyzed in this 
article. 

Ethanol 
Plant 

T1 T2 C1 C2 

RTE 5km-35km  
South 

10km-40km  
South 

50km-80km  
South 

70km-100km 
South 

BF 5km-35km  
South 

10km-40km 
South 

50km-80km  
South 

70km-100km 
South 

TE 5km-35km 
West 

10km-40km 
West 

50km-80km 
West 

70km-100km 
West 

HRE 5km-35km 
West 

10km-40km 
West 

50km-80km 
West 

70km-100km 
West 

POET & 
NuGen 

5km-35km  
West of POET* 

25km-55km 
West of POET* 

70km-100km  
West of POET* 

90km-120km 
West of POET* 

ABE & 
GLE 

5km-35km  
West of ABE* 

25km-55km 
West of ABE* 

70km-100km  
West of ABE* 

90km-120km 
West of ABE* 

* GLE lies ~30 km west of ABE – the location of T & C groups can be visualized accordingly. 

Notes on Planar Dimensions of our Treatment and Control Rectangles (Part of Table 2): 

• Red Trail Energy & Blue Flint Ethanol: 30 km N-S X 50 km E-W. 
• Tharaldson Ethanol: 30 km E-W X 50 km N-S. 
• Hankinson Renewable Energy: 30 km E-W X 40 km N-S. North Dakota State Boundary 

is located 15 km south of this ethanol plant. So the N-S dimensions are chosen to be: 30 
km N to 10 km S of the ethanol plant, resulting in length of one side of the rectangles be 
40 km (N-S). 

• Cluster (POET and NuGen): 30 km E-W X 40 km N-S RECTANGLES (25 km N + 15 
km S). The rectangles included exclude a circle of radius 2.5 km from NuGen, to avoid 
permanent development in land use characterization. 

• Cluster (ABE and GLE): 30 km E-W X 50 km N-S RECTANGLES. The rectangles here 
exclude a circle of radius 7 km from GLE to avoid a big water pond in land use 
characterization. 
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Table 3: Summary Statistics for Red Trail Energy, C2 and T1 combination. Caliper = 0.01. 

 C2 T1 

 Mean Std. dev. N mean Std. dev. N 

,i t
C −   2.04 3.01 492 1.47 2.39 492 

,i t
C +   9.90 16.88 492 10.84 18.03 492 

,i t
CS −   2.23 3.10 492 1.62 2.48 492 

,i t
CS +   10.00 17.00 492 10.88 18.04 492 

,2006iW   121.13 106.28 492 186.96 123.47 492 

,2006iG   327.84 120.18 492 246.85 127.59 492 

LCC2 58.16 41.95 492 56.54 41.15 492 

Slope5 16.44 31.33 492 15.57 31.25 492 

  

Table 4: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
, ,i t i t

C C+ −−   
, ,i t i t

CS CS+ −−   
, ,

ln( ) ln( )
i t i t

C C+ −−   
, ,

ln( ) ln( )
i t i t

CS CS+ −−   

Treatment -2.92 -2.93 -0.64 -0.61 
 (2.78)*** (2.77)*** (1.91)* (1.83)* 

,2006iW   -0.02 -0.02 -0.00 -0.00 
 (1.06) (0.98) (0.28) (0.37) 

,2006iG   -0.07 -0.07 -0.01 -0.01 
 (4.35)*** (4.27)*** (4.20)*** (4.48)*** 
Constant 32.92 32.17 3.41 3.50 
 (4.43)*** (4.34)*** (2.48)** (2.56)** 
R2 0.16 0.16 0.08 0.09 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 5: Summary statistics for Blue Flint Ethanol: C2 and T1 combination. Caliper = 0.01 

 C2 T1 

 mean Std. dev. N mean Std. dev. N 

,i t
C −   4.81 5.70 465 3.02 7.82 497 

,i t
C +   21.47 25.00 465 20.25 31.05 497 

,i t
CS −   5.68 6.53 465 5.18 9.33 497 

,i t
CS +   22.64 26.00 465 24.79 36.46 497 

,2006iW   132.77 87.92 465 100.71 82.33 497 

,2006iG   291.92 107.26 465 235.13 124.25 497 

LCC2 51.15 41.97 465 53.19 41.27 497 

Slope5 21.87 37.53 465 24.16 37.97 497 

 

Table 6: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
, ,i t i t

C C+ −−   
, ,i t i t

CS CS+ −−   
, ,

ln( ) ln( )
i t i t

C C+ −−   
, ,

ln( ) ln( )
i t i t

CS CS+ −−   

Treatment -4.41 -3.53 0.50 -0.22 
 (2.69)*** (1.95)* (1.62) (0.78) 

,2006iW   -0.02 -0.03 0.01 0.01 
 (1.16) (1.34) (3.00)*** (3.26)*** 

,2006iG   -0.12 -0.14 -0.01 -0.01 
 (6.98)*** (6.49)*** (4.45)*** (5.56)*** 
Constant 55.82 62.28 1.70 1.87 
 (7.02)*** (6.44)*** (2.47)** (3.07)*** 
R2 0.25 0.24 0.08 0.10 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 7: Summary statistics for Tharaldson Ethanol: C2 and T1 combination. Caliper = 0.01 

 C2 T1 
 mean Std. dev. N mean Std. dev. N 

,i t
C −   15.04 12.55 698 35.83 30.87 698 

,i t
C +   71.00 46.26 698 119.11 56.44 698 

,i t
CS −   97.97 43.65 698 206.04 66.16 698 

,i t
CS +   253.06 89.42 698 334.52 88.67 698 

,2005iW   129.09 101.59 698 112.36 86.51 698 

,2005iG   96.98 77.90 698 57.33 55.20 698 
LCC2 93.08 20.69 698 92.69 21.00 698 
Slope5 96.65 13.52 698 99.93 0.00 698 

 

Table 8: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 , ,i t i t
C C+ −−   

, ,i t i t
CS CS+ −−   

, ,
ln( ) ln( )

i t i t
C C+ −−   

, ,
ln( ) ln( )

i t i t
CS CS+ −−   

Treatment 16.25 -38.97 -0.21 -0.44 
 (7.10)*** (12.92)*** (4.17)*** (26.65)*** 

,2005iW   -0.02 0.11 0.00 0.00 
 (1.90)* (6.68)*** (5.43)*** (9.36)*** 

,2005iG   -0.27 -0.36 -0.00 0.00 
 (16.36)*** (13.35)*** (3.11)*** (2.83)*** 
Constant 85.23 175.80 1.55 0.80 
 (27.56)*** (40.82)*** (21.41)*** (28.91)*** 
R2 0.23 0.26 0.06 0.37 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 9: Summary statistics for Hankinson Renewable Energy: C2 and T1 combination. 
Caliper = 0.01. 

 C2 T1 
 mean Std. dev. N mean Std. dev. N 

,i t
C −   89.48 56.75 483 95.84 64.90 483 

1,i t
C −   101.41 61.15 483 112.65 70.02 483 

,i t
C +   123.98 69.46 483 153.49 76.88 483 

,i t
CS −   177.33 86.60 483 244.64 102.90 483 

1,i t
CS −   210.96 98.06 483 265.25 113.34 483 

,i t
CS +   237.04 116.15 483 316.26 125.03 483 

,2007iW   19.66 42.19 483 30.27 48.69 483 

,2007iG   99.17 102.15 483 60.84 93.74 483 
LCC2 63.66 43.97 483 63.63 44.43 483 
Slope5 98.58 9.88 483 98.29 10.85 483 

Table 10: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 , ,i t i t
C C+ −−   

1, ,i t i t
C C+ −−   

, ,
ln( ) ln( )

i t i t
C C+ −−   

1, ,
ln( ) ln( )

i t i t
C C+ −−   

Treatment 18.29 14.48 0.28 0.22 
 (7.16)*** (5.56)*** (6.66)*** (4.99)*** 

,2007iW   0.18 0.22 0.00 0.00 
 (6.46)*** (8.15)*** (12.11)*** (11.12)*** 

,2007iG   -0.08 -0.04 0.00 0.00 
 (6.56)*** (3.01)*** (0.30) (0.50) 
Constant 38.86 21.89 0.17 0.03 
 (16.77)*** (8.78)*** (3.67)*** (0.48) 
R2 0.16 0.12 0.13 0.09 

 
, ,i t i t

CS CS+ −−   
1, ,i t i t

CS CS+ −−   
, ,

ln( ) ln( )
i t i t

CS CS+ −−   
1, ,

ln( ) ln( )
i t i t

CS CS+ −−   

Treatment 4.82 20.27 0.06 0.19 
 (1.39) (6.12)*** (1.85)* (5.43)*** 

,2007iW   0.26 0.35 0.00 0.00 
 (7.55)*** (10.00)*** (6.92)*** (7.72)*** 

,2007iG   -0.11 -0.03 -0.00 -0.00 
 (6.74)*** (1.57) (0.88) (0.79) 
Constant 65.81 21.82 0.21 0.00 
 (20.42)*** (6.84)*** (4.81)*** (0.05) 
R2 0.12 0.15 0.02 0.04 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 11: Summary statistics for PBNE, C2 and T1 combination. Caliper = 0.01 

 C2 T1 

 mean Std. dev. N mean Std. dev. N 

,i t
C −   123.93 49.73 521 193.99 68.39 521 

1,i t
C +   127.76 49.46 521 193.99 61.92 521 

,i t
C +   145.81 46.54 521 210.76 60.85 521 

,i t
CS −   231.92 90.81 521 335.44 90.90 521 

1,i t
CS +   264.96 88.24 521 357.35 86.70 521 

,i t
CS +   287.18 84.16 521 374.15 83.13 521 

,2007iW   58.85 66.17 521 21.01 35.61 521 

,2007iG   148.67 86.19 521 85.23 69.36 521 

LCC2 98.96 6.51 521 98.89 6.73 521 

Slope5 94.94 15.63 521 94.77 15.54 521 

Table 12: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
1, ,i t i t

C C+ −−   
, ,i t i t

C C+ −−   
1, ,

ln( ) ln( )
i t i t

C C+ −−   
, ,

ln( ) ln( )
i t i t

C C+ −−   

Treatment 12.25 11.65 0.12 0.09 
 (4.06)*** (4.30)*** (4.85)*** (4.06)*** 

,2007iW   0.31 0.35 0.003 0.003 
 (10.68)*** (14.66)*** (7.83)*** (11.25)*** 

,2007iG   0.07 0.05 0.001 0.001 
 (4.28)*** (3.65)*** (2.89)*** (5.73)*** 
Constant -24.51 -6.84 -0.21 -0.13 
 (6.62)*** (2.09)** (6.23)*** (4.40)*** 
R2 0.14 0.19 0.36 0.27 

 
1, ,i t i t

CS CS+ −−   
, ,i t i t

CS CS+ −−   
1, ,

ln( ) ln( )
i t i t

CS CS+ −−   
, ,

ln( ) ln( )
i t i t

CS CS+ −−   

Treatment 13.81 10.05 0.05 0.04 
 (4.42)*** (3.29)*** (3.69)*** (2.73)*** 

,2007iW   0.54 0.56 0.003 0.003 
 (14.88)*** (15.83)*** (10.02)*** (10.23)*** 

,2007iG   0.07 0.09 0.001 0.001 
 (4.16)*** (5.17)*** (6.50)*** (9.60)*** 

Constant -9.33 9.60 -0.10 -0.06 
 (2.43)** (2.59)*** (5.27)*** (3.45)*** 

R2 0.32 0.36 0.31 0.40 
* p<0.1; ** p<0.05; *** p<0.01 
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Table 13: Summary statistics for ABGL, C2 and T1 combination. Caliper = 0.01. 

 C2 T1 

 mean Std. dev. N mean Std. dev. N 

,i t
C −   51.34 50.71 425 116.48 80.99 425 

1,i t
C +   50.29 50.44 425 58.69 46.15 425 

,i t
C +   63.10 52.66 425 108.67 51.91 425 

,i t
CS −   75.02 71.86 425 216.20 124.78 425 

1,i t
CS +   89.65 83.76 425 128.65 86.06 425 

,i t
CS +   106.85 89.68 425 215.78 97.66 425 

,2007iW   67.18 79.79 425 47.50 75.42 425 

,2007iG   315.95 134.59 425 187.07 137.86 425 

LCC2 66.56 43.85 425 66.50 44.03 425 

Slope5 77.69 39.68 425 99.93 0.00 425 

Table 14: Treatment Effects' Estimates with Heteroskedasticity corrected t-stats in parentheses 

 
1, ,i t i t

C C+ −−   
, ,i t i t

C C+ −−   
1, ,

ln( ) ln( )
i t i t

C C+ −−   
, ,

ln( ) ln( )
i t i t

C C+ −−   

Treatment -23.38 7.57 -0.58 0.37 
 (6.27)*** (2.26)** (3.15)*** (2.26)** 

,2007iW   0.26 0.32 0.00 0.01 
 (9.82)*** (12.08)*** (1.87)* (4.40)*** 

,2007iG   0.22 0.16 0.00 0.01 
 (13.01)*** (11.17)*** (1.87)* (6.92)*** 
Constant -87.83 -60.81 -0.67 -1.35 
 (11.64)*** (9.42)*** (2.51)** (6.48)*** 
R2 0.39 0.27 0.03 0.07 

 
1, ,i t i t

CS CS+ −−   
, ,i t i t

CS CS+ −−   
1, ,

ln( ) ln( )
i t i t

CS CS+ −−   
, ,

ln( ) ln( )
i t i t

CS CS+ −−   

Treatment -58.15 -2.80 -0.79 -0.06 
 (12.37)*** (0.62) (5.84)*** (0.44) 

,2007iW   0.40 0.38 0.00 0.00 
 (12.01)*** (13.24)*** (2.17)** (2.55)** 

,2007iG   0.28 0.17 0.00 0.00 
 (13.91)*** (10.00)*** (1.87)* (6.47)*** 

Constant -100.86 -47.54 -0.16 -0.72 
 (11.28)*** (6.37)*** (0.93) (4.05)*** 

R2 0.52 0.27 0.06 0.07 
* p<0.1; ** p<0.05; *** p<0.01 
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Table 15: Robustness Checks for treatment effects on Corn Acres. All combinations of 
multiple treatment and control groups. 

Ethanol Plant Combinations 
, ,

ln( ) ln( )
i t i t

C C+ −−  
1, ,

ln( ) ln( )
i t i t

C C+ −−  
1, ,

ln( ) ln( )
i t i t

C C+ −−  

Red Trail 
Energy 

T1 and C2 -0.64* n/a n/a 

T2 and C2 -0.87*** n/a n/a 

T1 and C1 -0.80*** n/a n/a 

T2 and C1 -1.11*** n/a n/a 

Blue Flint  T1 and C2 0.50 n/a n/a 

T2 and C2 0.05 n/a n/a 

T1 and C1 0.47** n/a n/a 

T2 and C1 0.33 n/a n/a 

Tharaldson 
Ethanol 

T1 and C2 -0.21** n/a n/a 

T2 and C2 -0.18*** n/a n/a 

T1 and C1 -0.18*** n/a n/a 

T2 and C1 -0.12** n/a n/a 

Hankinson 
Renewable 
Energy 

T1 and C2 0.28** 0.22** n/a 

T2 and C2 0.34*** 0.30*** n/a 

T1 and C1 0.17*** 0.12*** n/a 

T2 and C1 0.18*** 0.15*** n/a 

Cluster 1: 
POET Bio 
Refinery and 
NuGen Energy 

T1 and C2 0.09** n/a 0.12** 

T2 and C2 0.09*** n/a 0.12*** 

T1 and C1 0.02 n/a 0.02 

T2 and C1 0.03* n/a 0.03 

Cluster 2: 
Advanced Bio 
Energy and 
Glacial Lakes 
Energy 

T1 and C2 0.37** n/a -0.58** 

T2 and C2 -0.25* n/a -0.74*** 

T1 and C1 0.42** n/a -0.38*** 

T2 and C1 -0.07 n/a -0.64*** 
* p<0.1; ** p<0.05; *** p<0.01; N/A means ‘not applicable’ for the case. 
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Table 16: Robustness Checks for treatment effects on Corn Acres. All combinations of multiple 
treatment and control groups. 

Ethanol 
Plant 

Combinations 
, ,

ln( ) ln( )
i t i t

CS CS+ −−  
1, ,

ln( ) ln( )
i t i t

CS CS+ −−  
1, ,

ln( ) ln( )
i t i t

CS CS+ −−  

Red Trail 
Energy 

T1 and C2 -0.61* n/a n/a 

T2 and C2 -0.88*** n/a n/a 

T1 and C1 -0.83*** n/a n/a 

T2 and C1 -1.11*** n/a n/a 

Blue Flint  T1 and C2 -0.22 n/a n/a 

T2 and C2 -0.65** n/a n/a 

T1 and C1 -0.12 n/a n/a 

T2 and C1 -0.22 n/a n/a 

Tharaldson 
Ethanol 

T1 and C2 -0.44*** n/a n/a 

T2 and C2 -0.43*** n/a n/a 

T1 and C1 -0.28*** n/a n/a 

T2 and C1 -0.26*** n/a n/a 

Hankinson 
Renewable 
Energy 

T1 and C2 0.06* 0.19*** n/a 

T2 and C2 0.04 0.16*** n/a 

T1 and C1 0.02 0.09*** n/a 

T2 and C1 0.01 0.09*** n/a 

Cluster 1: 
POET Bio 
Refinery 
and NuGen 
Energy 

T1 and C2 0.04*** n/a 0.05*** 

T2 and C2 0.04*** n/a 0.07*** 

T1 and C1 0.04*** n/a 0.05*** 

T2 and C1 0.04*** n/a 0.06*** 

Cluster 2: 
Advanced 
Bio Energy 
and Glacial 
Lakes 
Energy 

T1 and C2 -0.005 n/a -0.72*** 

T2 and C2 -0.31*** n/a -0.69*** 

T1 and C1 0.08 n/a -0.46*** 

T2 and C1 -0.25*** n/a -0.63*** 

* p<0.1; ** p<0.05; *** p<0.01; N/A means ‘not applicable’ for the case. 
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FIGURES 
Figure1: Comparative Corn Basis Trends for Counties that House Dakotas’ Ethanol Plants that 
started operations in the 2006-2008 period. The acronym ‘treat’ denotes the period when 
these ethanol plants started operations, ‘pre’ (‘post’) means years prior (after) to the 2006-
2008 period.   
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Figure 2: Spatial locations of the 8 ethanol plants included in this analysis 

Source: “North and South Dakota.” 5122554.70 m N and 393724.99 m E. Google Earth. April 9, 2013. 
April 21, 2015.  
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Figure 3: Schematics of treatment and control group: An Example
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Figure 4: Spatially Comparative Corn-Basis Trends for Cass vs. Neighboring Counties 
Cass is home-county to Tharaldson Ethanol. Established in 2006, Capacity = 153 mgy. 

 

 

Figure 5: Spatially Comparative Corn-Basis Trends for Richland vs. Neighboring Counties 
Richland is home-county to Hankinson Renewable Energy. Established in 2008, Capacity = 145 mgy.
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Figure 6: Spatially Comparative Corn-Basis Trends for Turner vs. Neighboring Counties 
Turner is home-county to POET Bio refinery (110 mgy) and NuGen Energy (115 mgy). Established in 2008

 
Figure 7: Cluster1: Spatially Comparative Corn-Basis Trends for Edmunds and Brown vs. Neighboring 
Counties 
Edmunds is home-county to Glacial Lakes Energy. Established in 2008 and Capacity = 100 mgy. 
Brown is home-county to Advanced Bio Energy. Established in 2008 and Capacity = 53 mgy.  
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APPENDIX 

Moving Away from the Parallel Paths Assumption 

Figure 8: Placebo Schematics  

 

 

 

 

 

 

 
Table 17: Placebo Estimates with 'Logarithm of CS' as dependent variable 

 Red Trail Energy Blue Flint Ethanol Tharaldson Ethanol Hankinson Renewable Energy 

F.T. – 1 (2000) -2.52*** 0.36 -0.96*** -0.29*** 

ACTUAL TREATMENT -0.61* -0.22 -0.44* 0.06* 

F.T. – 2 (2011) 0.80* -0.39 -0.14***  -0.27*** 

 

   2005 2006 2007 2008 2009 2010 2011 2012 1998 1999 2000 2001 2002 2013 

ACTUAL TREATMENT FALSE TREATMENT-1 FALSE TREATMENT-2 

F.T.-1 POST F.T.-1 PRE F.T.-2 POST F.T.-2 PRE 

1997 2003 2004 
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Figure 9: Pre-Treatment Trends for North Dakota Ethanol Plants 
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Figure 10 (a, b): The issue of Non-parallel trends among treatment and control groups. 
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Modelling Differentiated Trends into Our DID Framework 

In this section we develop the DID framework to incorporate differentiated trends among 
treatment and control groups as well as between pre- and post-treatment periods. In the process, 
we will exploit the variations in corn acres in multiple periods before and after the advent of an 
ethanol plant. Capturing trends, by interacting trend variables with corresponding group and 
time-fixed effects of the original DID model, changes interpretation of regression coefficients 
that estimate the treatment effects and corresponding identification strategies (Mora and Reggio, 
2012). We will first explain these implications of failed parallel paths assumption for pre-
treatment years (figure 9) and then layout a ‘fully-flexible’ model, originally developed by Mora 
and Reggio (2012), to capture trends that could vary between different years and among groups. 
We also discuss a family of identifying assumptions tied to estimating treatment effects under a 
fully-flexible model. As stated before, this section will serve as the direction our analysis will 
take in future. 

The standard DID framework and the role of Parallel Paths Assumption: 

0 1 2 3 4, ,,
Reconsider our equation(1), that is ,  where the definitions

of these variables and parameters are same as in the 'Methodology' section above.
Equation (2) suggests th

t i i t t i i ti t
C d d d d Zβ β β β β ε= + + + + +

, , , ,

0 1 2 3 4, | 1,

at [ | , 1] [ | , 0] and so mechanics

of computing the treatment effects using regression equation (1) are as under:

1;  1 [ | ] .1 .1 .1  
i

i i i ii t i t i t i t

i t i t i di t

ATT E C C Z d E C C Z d

d d E C Z Zβ β β β β

+ − + −

+ =

= − = − − =

= = → = + + + +

0 1 2 3 4, | 1,

0 1 2 3 4, | 0,

0 1 2 3 4, | 0 |,

,

1;  0 [ | ] .0 .1 .0 ,

0;  1 [ | ] .1 .0 .0 ,

0;  0 [ | ] .0 .0 .0 . Note that Z  is an unconditional ave

i

i

i i

i t i t i di t

i t i t i di t

i t i t i d i di t

d d E C Z Z

d d E C Z Z

d d E C Z Z

β β β β β

β β β β β

β β β β β

−

+

−

=

=

=

= = → = + + + +

= = → = + + + +

= = → = + + + +

0 1 2 3 4, | 1 0 2 4, | 1 0 1 4, | 0 0 4, | 0 3

rage.

Hence,   [ )] [ ]
i i i it i d t i d t i d t i dATT Z Z Z Zβ β β β β β β β β β β β β β= = = == + + + + − − − − + + − − =

 

It is, however, critical to note that by definition the ATT equals 
, ,

[ | 1]T U
ii t i t

E C C d+ +− =  (where 

superscripts T (U) represent corn acres in presence (absence) of ethanol plant in t t+∈ ) and needs 
the parallel paths assumption to hold for 3β  to estimate the impact of ethanol plants on corn 
acres. Figure 10 provides a visualization of the implications when parallel paths assumption fails. 
Basically, this assumption ensures that the treatment and control groups grow in a parallel 
fashion (grey-dashed lines) and any difference in their trends (orange- versus grey-dashed lines 
after the treatment year) after the advent of an ethanol plant is purely due to its existence. This 
difference is then captured by our estimate of 3β . However, in reality it seems that the process 
that we need to model is better depicted by green-solid lines in figure 10. That is, we are dealing 
with potentially different pre- and post-treatment trends, and also treatment and control group-
specific trends. We incorporate these differences in trends in the standard DID model below. 
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The DID framework with Differentiated Trends: 

We utilize this subsection to motivate the implication of incorporating trends into the standard 
DID model through a specialized example. We will discuss the mechanics involved in estimating 
the treatment effects within a new framework, including the underlying identifying assumptions, 
and show how these are different from the standard case. We will ultimately move towards a 
generalized model proposed by Mora and Reggio’s (2012) working paper, discussing its 
applicability for our analysis.  

To incorporate the differences in trends as depicted by figure 10 a., consider the following 
econometric model. 

(7) 0 0 1 1 2 2 3 3 4, ,,
. . .t t i i i t i t t i i ti t

C t d t d d t d d d t d d Zβ β β β β β β β β ε′ ′ ′ ′= + + + + + + + + + , 

Where variable t  represents time trends such that 1 for year =1997t = (2006) for North (South) 
Dakota ethanol plants, and it increases by one for each subsequent year. While the standard DID 
model in equation (1) allows distinct intercepts for treatment/control groups and pre-/post-
treatment periods, the updated model in equation (7) allows for distinct linear trends (slopes), as 
well as intercepts, for these groups and periods.  Repeating our exercise of the previous 
subsection for computing treatment effects from equation (7), we get 

0 0 1 1 2 2 3 3 4, | 1,

0 0 2 2 4, | 1,

0 0 1 1 4, | 0,

0 0,

1;  1 [ | ]  ,

1;  0 [ | ] ,

0;  1 [ | ] ,

0;  0 [ | ]

i

i

i

i t i t i di t

i t i t i di t

i t i t i di t

i t ii t

d d E C Z t t t t Z

d d E C Z t t Z

d d E C Z t t Z

d d E C Z t

β β β β β β β β β

β β β β β

β β β β β

β β

+

−

+

−

=

=

=

′ ′ ′ ′= = → = + + + + + + + +

′ ′= = → = + + + +

′ ′= = → = + + + +

′= = → = + 4, | 0 |

3 3, , , ,

. And again, Z  is an unconditional average.

So,  [ | , 1] [ | , 0] ,  which notably changes with .
i it i d i d

i i i ii t i t i t i t

Z

E C C Z d E C C Z d t t

β

β β+ − + −

=+

′− = − − = = +

However, we already know that  3 3tβ β ′+  does not identify the ATT due to advent of an ethanol 
plant. Now see that, if we subtract equation (7) from its one-period lagged counterpart, we have 

(8) 0 1 2 3 4, ,, t i i t t i i ti t
C d d d d Zβ β β β β ε′ ′ ′ ′∆ = + + + + ∆ + ∆ , 

where , , , 1 4, 4, 4, 1 , , , 1,   and i t i t i t t t t i t i t i tC C C β β β ε ε ε− − −∆ = − ∆ = ∆ − ∆ ∆ = − . 

It is evident that the mechanics of equation (8) to compute the treatment effects due to the advent 
of an ethanol plant are similar to that of equation (1), with pertinent differences in notations of 
variables and parameters. So, our ‘new’ average treatment effect for the treated ( ATT ′) is given 
as: 

(9) , , , , 3[ | , 1] [ | , 0]   ,  & .i t i t i i i t i t i iATT E C C Z d E C C Z d t t t t t tβ + −
′ ′′ ′ ′ ′= ∆ − ∆ = − ∆ − ∆ = = ∀ ∈ ∈ >  

Here, it is important to realize that the interpretation of ATT ′  is not same as our standard ATT . 
Expanding the mathematical expression of ATT ′from equation (9) gives 
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(10) , , , ,

, 1 , 1 , 1 , 1

{ [ | , 1] [ | , 0]}

                 { [ | , 1] [ | , 0]}  ,  &
i t i t i i i t i t i i

i t i t i i i t i t i i

ATT E C C Z d E C C Z d

E C C Z d E C C Z d t t t t t t
′ ′

+ −
′ ′− − − −

′ = − = − − = −

′ ′− ∆ = − − = ∀ ∈ ∈ >
 

We can now re-write our ‘new’ average treatment effect for the treated as a function of ATT , 

( , | ) ( , | ) ( 1, 1 | ) ( , | )  ,  &ATT t t Z ATT t t Z ATT t t Z ATT t t Z t t t t t t+ −′ ′ ′ ′ ′ ′ ′= − − − ∆ ∀ ∈ ∈ > , which 
in turn suggests that ATT ′  measures the impact of treatment as change in the standard treatment 
effects ( ATT ) between a specific post-treatment period and a specific pre-treatment period. In 
the context of ethanol plants, ATT ′  would measure a one-period change in corn acres from a 
post-treatment year relative to a one-period counterpart from a pre-treatment year. 

One other dimension of our updated DID framework to incorporate trends is an identification 
assumption. The identification issue with ATT ′  would, however, remain consistent with the one 
in the standard DID model. That is, by definition, ATT ′  equals , ,[ | 1, ]T U

i t i t i iE C C d Z∆ − ∆ = , where 

superscripts T (U) represent corn acres in presence (absence) of ethanol plant in t t+∈ . As with 
the standard DID model, since ,

U
i tC∆  is not observed for the post-treatment years, we would need 

an identification assumption to be able to estimate ATT ′  as an estimate of 3β ′  in equation (8) 
above. This identification assumption for ATT ′  is a modified version of equation (1) above, 

(11)  , , , ,[ | , 1] [ | , 0]  &  .U U U U
i t i t i i i t i t i iE C C Z d E C C Z d t t t t+ −

′ ′ ′∆ − ∆ = = ∆ − ∆ = ∀ ∈ ∈   

Note that the new identifying assumption compares first-differences in outcome levels among 
treatment and control groups, as opposed to the outcome levels as in the identifying assumption 
for the standard ATT (see equation (1)). Based on equations (9) and (11) we can term our new 
estimator as a difference-in-first-difference estimator (following Moora and Reggio, 2012). 

An aspect of the updated model and its identifying assumption is that it allows estimating a 
(change in) treatment effects for each of the multiple post-treatment periods, i.e. for every t t+∈ . 
Alongside, it also allows using multiple pre-treatment years, i.e. each t t−′∈ . However, it would 
suffice to estimate the impact of treatment from the last pre-treatment period, say *t . To see this, 
consider ( | )iATT s Z′ defined s  periods ahead of *t  such that that  and *t t s t t′ ′= + = . Hence, 
the identifying assumption and ( | )iATT s Z′  are given by equations (12) and (13) respectively. 

(12)  , * , * , * , *[ | , 1] [ | , 0] .U U U U
i t s i t i i i t s i t i iE C C Z d E C C Z d+ +∆ − ∆ = = ∆ − ∆ =  

(13) , * , * , * , *( | ) [ | , 1] [ | , 0]i i t s i t i i i t s i t i iATT s Z E C C Z d E C C Z d+ +′ = ∆ − ∆ = − ∆ − ∆ =  

We can write ( | )iATT s Z′  as a function of the original  

(14)  
, * , * , * , *

, * 1 , * 1 , * 1 , * 1

      ( | ) { [ | , 1] [ | , 0]}

                                { [ | , 1] [ | , 0]}
   ( | )  ( | ) ( 1 | )

i i t s i t i i i t s i t i i

i t s i t i i i t s i t i i

i i i

ATT s Z E C C Z d E C C Z d

E C C Z d E C C Z d
ATT s Z ATT s Z ATT s Z

+ +

+ − − + − −

′ = − = − − = −

− = − − =

′∴ = − −
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Now, to evaluate the impact of ethanol plants our primary interest still lies in estimating ATT
from the standard model. Since 3( | )iATT s Z β′ ′= , independent of s , the ATT can be recursively 
calculated for each post-treatment year as s  increases by 1.  That is,

3( 1 | )  ( | )i iATT s Z ATT s Z β ′+ = +  for s  ≥ 2. For 1s = , first see that (0 | ) 0iATT Z =  because 

, * , *[ | 1, ] 0T U
i t i t i iE C C d Z− = = 9, which in turn yields that (1 | )  (1 | )i iATT Z ATT Z′ = . Since 
(1 | )iATT Z′  is identified by (12) and (1 | )iATT Z  is not, we compute (1 | )iATT Z′  below.  

We know that,             
, * 1 , * , * 1 , *

, * , * 1 , * , * 1

 (1 | ) { [ | , 1] [ | , 0]}

                                                               { [ | , 1] [ | , 0]}
i i t i t i i i t i t i i

i t i t i i i t i t i i

ATT Z E C C Z d E C C Z d

E C C Z d E C C Z d
+ +

− −

′ = − = − − = −

− = − − =
 

We explicitly write-out the expressions for , * 1 , * , * 1,   and i t i t i tC C C+ −  below because 
1 only for * 1.td t= +

, * 1 0 0 1 1 2 2 3 3 4, * 1 , * 1

, * 0 0 2 2 4, * , *

, * 1 0 0 2 2 4, * 1 , * 1

( * 1) ( * 1) ( * 1). ( * 1).

( *) ( *).

( * 1) ( * 1).

i t i i i i t i i t

i t i i t i i t

i t i i t i i t

C t t d t d d t d Z

C t d t d Z

C t d t d Z

β β β β β β β β β ε

β β β β β ε

β β β β β ε

+ + +

− − −

′ ′ ′ ′= + + + + + + + + + + + + +

′ ′= + + + + +

′ ′= + − + + − + +

 

It can now easily be shown that  3 3(1 | )  (1 | ) ( * 1)i iATT Z ATT Z tβ β′ ′= = + + . The way 
(1 | )iATT Z  depends on *t also justifies the use of last pre-treatment period as sufficient to 

compute ATTs  for all post-treatment periods. If we were to use the penultimate pre-treatments 
period instead of the last pre-treatment period, only ( * 1)t +  would be replaced by ( * 2)t +  in the 
expression for (1 | )iATT Z as the base period has changed. However, doing this would require at 
least 3 pre-treatment years which may not be practically available (as is the case of South Dakota 
for this article).  

Hence, the recursive solution to estimate treatment effects, using a DID framework that 
incorporates differentiated trends, by estimating equation (8) is given as: 

(15) 3 3( | ) ( * ) 1iATT s Z t s sβ β ′= + + ∀ ≥ . 

Now that we have motivated the idea of incorporating trends into the standard DID framework, 
we address two further issues addressed by Mora and Reggio (2012). First, that the parallel first-
difference assumption that identifies our ‘new’ average treatment effects for the treated can be 
generalized into a family of parallel n-differences assumptions. The formulation and 
interpretation of the average treatment effects in those cases would, however, differ. Second, the 
authors provide a ‘fully-flexible DID model’ by incorporating trends through indicator variables 
for each time period. This model has its two advantages, when compared to our linear-trends 
model here: (A.) it incorporates flexible trends visualized in figure 10(b.), and (B.) it allows 

                                                           
9 , , , ,[ | 1, ] [ | 1, ] 0  *T U T U

i t i t i i i t i t i iE C C d Z E C C d Z t t′ ′ ′ ′ ′∆ − ∆ = = − = = ∀ ≤ . This is one of the reasons 
why it would suffice to consider only the last pre-treatment period to evaluate the treatment 
effects. Given a recursive formulation to compute ATT  for each subsequent post-treatment 
period, the periods prior to *t  would not matter. 
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testing for equivalence between the parallel n-differences assumptions. The linear-trends DID 
model that we have developed in this sub-section is essentially a special case of the fully-flexible 
DID model’ presented hereafter. A more intuitive way to incorporate trends into our model that 
vary each period for both groups is introducing non-linear functional forms for the trend-variable 
(for example, quadratic trends). Since the fully-flexible version includes dummy variables for 
each time-period these non-linear trends are only special cases of Mora and Reggio (2012)’s 
model. 

Before presenting the mechanics of a fully-flexible DID model we will motivate the specifics of 
the family of generalized parallel n-differences assumption using our updated DID model in 
equation (7). Consider the parallel first-difference assumption in equation (12) that identifies

( | )iATT s Z′ , s  periods ahead of the last pre-treatment period *t , and re-write it as follows: 

(16)  , * , *[ | , 1] [ | , 0] U U
s i t s i i s i t s i iE C Z d E C Z d+ +∆ ∆ = = ∆ ∆ = , 

Where, U  represents the case of no treatment (or no ethanol plant) and (1 )s
s L∆ −  so that we 

compute the treatment effect s  periods ahead of *t  relative to the first difference in outcome 
levels at *t . A generalized parallel n-differences assumption including higher-order differences 
of outcome levels to identify ATT ′  for all post-treatment periods similar to that in equation (16). 
A parallel n-differences assumption, notated as parallel (n-s) assumption by Mora and Reggio 
(2012) is given as: 

(17) 1 1
, * , *[ | , 1] [ | , 0] n U n U

s i t s i i s i t s i iE C Z d E C Z d− −
+ +∆ ∆ = = ∆ ∆ =   

See that for 1n =  equation (17) reduces to a parallel paths assumption and for 2n =  it is the 
parallel first-difference assumption. For 2n > , however, we move towards higher order 
differences. For example, 3n =  implies a 2 2[ (1 L) (L L )]∆ = − − −  operator on the s period ahead 
outcome variable. We will require at least 3 pre-treatment years in our dataset to exploit such an 
operator due to the parallel double-differences assumption. Thus, the generalizations introduced 
by 2n >  cases are only applicable to the cases of North Dakota ethanol plants. The generalized 
average treatment effects from parallel n-differences assumption is given as10 

(18) 1 1 1
, * , *( , | ) ( | ) [ | , 1] [ | , 0] n n U n U

i i s i t s i i s i t s i iATT s n Z ATT s Z E C Z d E C Z d− − −
+ +′ = ∆ = ∆ ∆ = − ∆ ∆ =    

For the  3n =  case of our linear-trends model, 
2( ,3 | ) ( | ) ( | ) 2 ( 1 | ) ( 2 | )i i i i iATT s Z ATT s Z ATT s Z ATT s Z ATT s Z′ = ∆ = − − + −  , which will 

recursively identify ( | ) ( ,3 | ) 2 ( 1 | ) ( 2 | )i i i iATT s Z ATT s Z ATT s Z ATT s Z′= + − − − . Similar to 
the 2n =  case, for 1,  2 we will have ( | ) ( ,3 | )i is ATT s Z ATT s Z′= = . It is quite evident here that 
the treatment effects estimated under parallel double-differences assumption will not equal those 
under parallel first-difference or parallel paths assumptions. It is, however, interesting to note 
that the treatment effects estimated using an exactly same model in equation (11) can be very 
different in magnitude as well as interpretation depending on the identifying assumption used. 

                                                           
10 See Theorem 1 in Mora and Reggio (2012). 
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Note that these updated assumptions for incorporating trends into DID cannot be validated since 
they are defined as nth-order difference in outcome variable including the post-treatment periods. 
However, these assumptions can be tested for equivalence using the fully-flexible model 
discussed next. A parallel n-differences assumption is equivalent to a parallel (n-1)-differences 
assumption (OR ( , | ) ( , 1 | )  i iATT s n Z ATT s n Z s′ ′= − ∀ ) if and only if 

1 1
, * , *[ | , 1] [ | , 0] n U n U

i t i i i t i iE C Z d E C Z d− −∆ = − ∆ = 11.   

The Fully-Flexible DID Model 

A fully flexible model by Mora and Reggio (2012) is as follows: 

(19) 
( ) ( )

, 0 [ ] [ ] ,
( ) 1 ( ) 1

T l T l
d d

i t t i t i i t
T i T i

C I d I dτ τ τ τ
τ τ

β β β β ε= =
= + = +

= + + + × × +∑ ∑ , 

Where, ( )T i  is the first pre-treatment period and ( )T l  is the last post-treatment period. The 
model in equation (19) captures flexible time-trends for pre- and post-treatment periods and 
allows them to differ between treatment and control groups, thus capturing a fully-flexible 
situation visually depicted by figure 10(b.). ( , | )iATT s n Z′ , that is using the generalized parallel 
n-differences assumption s  periods ahead of *t , using the model in equation (19) is given as 

(20) 1 1
*( , | ) ( | )n n d

i i s t sATT s n Z ATT s Z β− −
+′ = ∆ = ∆ ∆ 12 

An early application of the fully-flexible DID model in equation (19) can be found in Reber 
(2005) to assess impact of court-ordered desegregation plans for schools in 108 U.S. districts on 
school enrolments. An availability of many pre-treatment years for our analysis (at least for the 
four North Dakota ethanol plants) makes this model amenable for our analysis. However, an 
opportunity to implement multiple assumptions and estimating corresponding treatment effects 
for each case comes with a challenge of choosing among these estimates. We can test the 
equivalence, say ( , | ) ( , 1 | )  i iATT s n Z ATT s n Z s′ ′= − ∀ , by estimating (19) and testing the null: 

1
* 0n d

tβ
−∆ = . These tests may help us find more parsimonious specification than (19). An 

alternative, but more brute force, way would be to evaluate treatment effects for each underlying 
assumption and seek differences in implications of these estimates. This paper will incorporate 
these flexible trends in the future. 

   

                                                           
11 See Theorem 2 in Mora and Reggio (2012). 
12 See Theorem 3 in Mora and Reggio (2013) 


