

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Mitigation Index Insurance for Developing Countries: Insure the Loss or Insure the Signal?

notice appears on all such copies

Yiting Li, Mario J. Miranda Department of Agricultural, Environmental, and Development Economics, The Ohio State University Email: li.1509@osu.edu, miranda.4@osu.edu

Selected Poster prepared for presentation at the 2015 Agricultural & Applied Economics Association and Western Agricultural Economics Association Joint Annual Meeting, San Francisco, CA, July 26-28

Copyright 2015 by Yiting Li and Mario J. Mario. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright

Introduction

Risk Management in developing countries

The livelihoods of the rural poor in the developing world depend, directly or indirectly, on agriculture. The economic lives of such individuals are typically characterized by exposure to profound weather-related perils such as droughts, floods, and windstorms, and by lack access to formal insurance and financial services that forces them to employ risk-avoidance, risk-diversification, and informal risk-sharing practices that are either costly or offer inadequate risk protection (Coate and Ravallion 1993; Townsend, 1994; Ligon, Thomas, et al., 2002; Dubois, Jullien, et al 2008; Gine 2009; Chantarat et al 2007).

> Traditional Insurance: indemnifies demonstrable losses. >Index Insurance: indemnifies based on a weather variable that is correlated with losses.

Objectives

We explore alternate timing for index insurance payouts. In particular, we explore the potential benefits of what we call "mitigation index insurance" in which the payouts of the insurance contract arrive before losses are incurred, in time to be used to take measures to mitigate, that is, reduce eventual losses.

*****Applications of Mitigation Index Insurance

1.El Niño-Southern Oscillation (ENSO) business interruption insurance (Skees and Murphy, 2009)

- Severe El Niños produce torrential rains and devastating floods in Peru. Onset of El Niños can be detected months in advance based on sea-surface temperatures.
- Indemnities are paid in November based on ENSO index, prior to February rainy season.

2.Famine Insurance (Chantarat et al, 2007)

- In Africa, severe droughts lead to famine, but not immediately.
- Relief agencies who purchase drought insurance obtain needed funds before famine begins.

3.Replanting Guarantee Insurance

- Poor rainfall during germination reduces crop yields. Farmers can replant, but lack money for quality seeds.
- In 2014, in Tanzania, Acre Africa launched rainfall index insurance contract that is bundled by seed companies into the bags of seed they sell.
- If rains fail during first three weeks, insurance provides cash voucher for purchase of new bag of quality seeds.

Mitigation Index Insurance for Developing Countries: Insure the Loss or Insure the Signal?

Department of Agricultural, Environmental, and Development Economics, The Ohio State University Email: li.1509@osu.edu, miranda.4@osu.edu

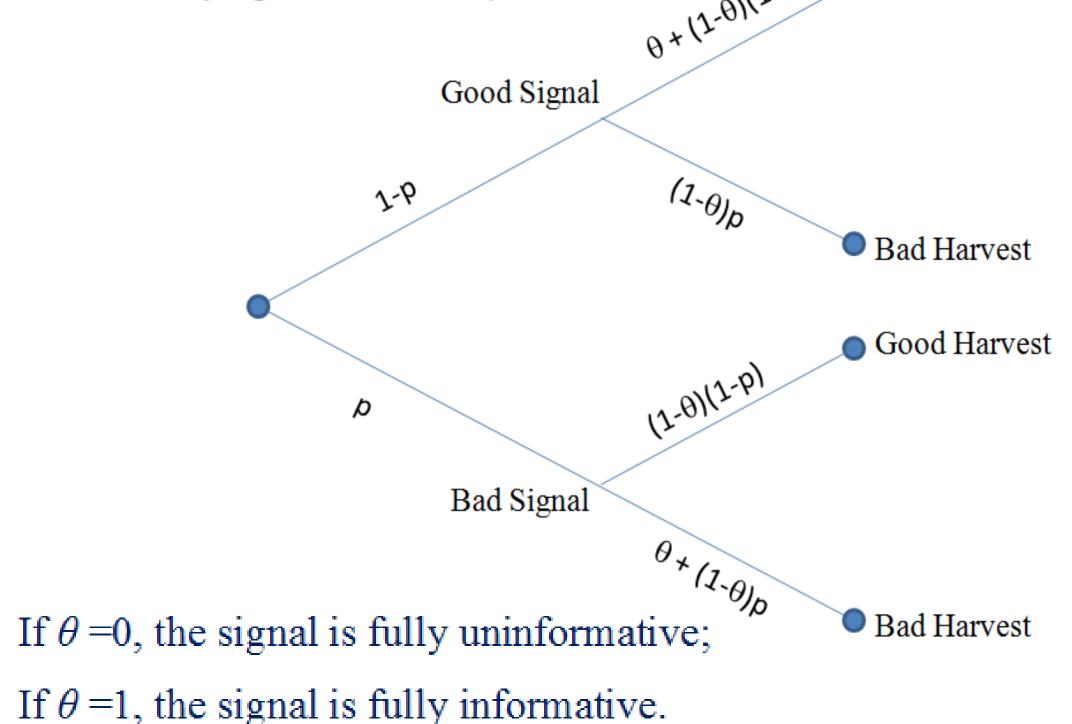
Methods

> We use a stylized three-period, discrete choice, stochastic dynamic optimization model:

Premium	Signal	Loss Event
t = 0	t = 1	t = 2
Insurance?	Mitigate?	

- insurance is purchased in period 0;
- a signal correlated with losses emerges in period 1; given the signal, mitigation measures may be taken
- in period 1; and losses, if any, are realized in period 2.

Conventional vs. Mitigation Index Insurance

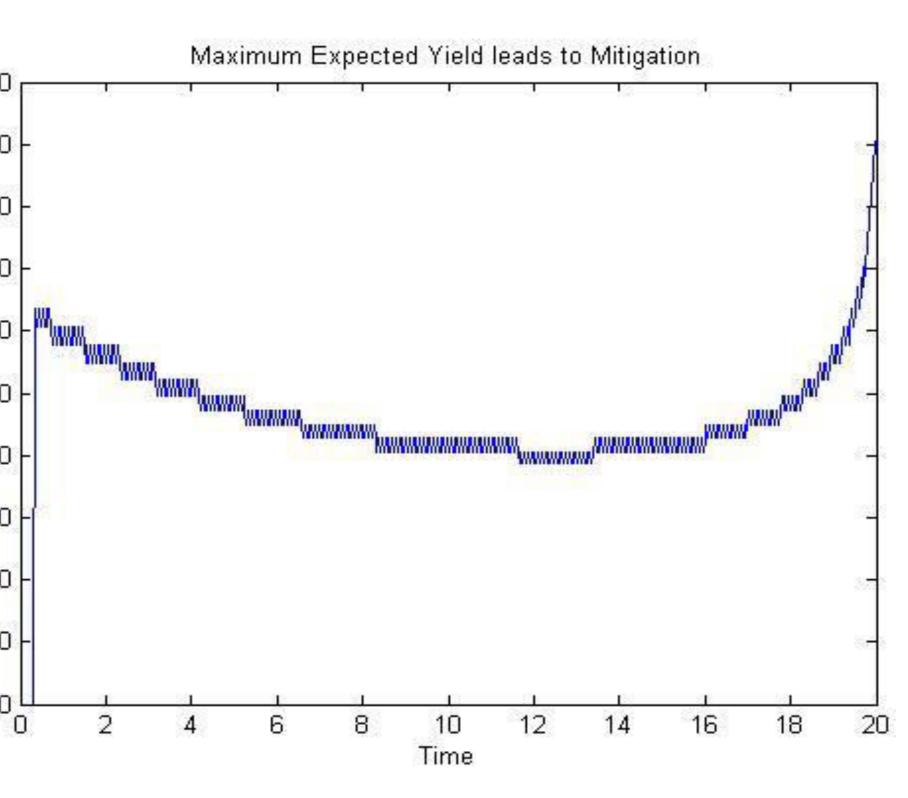

> We assess the relative values of mitigation index insurance and conventional index insurance by deriving the individuals expected ex-ante welfare under three insurance scenarios:

- i. No Insurance;
- ii. Conventional Index Insurance: indemnifies based on index observed in period 2, after losses incurred;
- iii. Mitigation Index Insurance: indemnifies based on index observed in period 1, before losses incurred, in time for mitigation measures to be undertaken.

Indemnity Structure	t =1	t = 2
No Insurance		
Conventional Index Insurance		Indemnity
Mitigation Index Insurance	Indemnity	

Information Structure (Conditional Probabilities)

Probability of a bad harvest is p ● Good Harvest Precision of signal measured by $0 \le \theta \le 1$


m ex ins

Yiting Li, Mario J. Miranda

Loss Structure	Do not Mitigate	Mitigate	1000
Good Harvest	1	1	Service and Service
Bad Harvest	1 <i>-L</i>	1- (1-φ)L	900
Here, L denotes the	he loss;		800
φ indicates the effectiveness of the mitigation measures.			
If $\varphi=1$, mitigation is fully effective at eliminating the loss; If $\varphi=0$, mitigation is fully ineffective at reducing the loss.			ted 7 900
$\Pi \psi 0, \Pi \Pi \eta g a \Pi Q$		at reducing the 1055.	Critical Expected Yield
			004 ge
We then turn to a	multi-period dyna	amic stochastic	ි ₃₀₀
nodel with a more r			200
xplore how the rela		U	100
nsurance vary with	—	at which the	0
ndemnities are paid	•		
000000		Loss Event	
t = 0		t = T	
Information	↑		
V	1	dicted with greater	≻ M
precision as	precision as time passes.		
<i>Mitigation</i> \downarrow			insura
	o reduce losses at a	a future date	\triangleright Ve
diminish as	time passes.		
Tradeoff The lenger one	maita ta mitigata	the lace east	
•	waits to mitigate,	etter informed one	
is about its b	<i>,</i>		
			≻ Hi
We use bine	omial option prici	ng model (BOPM)	In
to approxin	nate the informat	ion structure, and	
numerically	y solve and simula	ate the model.	
			Chan
	<u>Results</u>		
Optima 35	I Mitigation Timing on differ	ent paths	Coate
30 -		81 3 -4	Dubo
25 -			Dubc
20			Gine
g 20 -		The se 8	Unie
% 20 - 9 20 - 15 -			
8 15- 1			Ligon
10 -		2 4 8	Skee
2089757			БКСС
5 -		1 (2) <u>-</u> (2	Town
			TOWN
-5 0	5 10 Mitigation Timing	15 20	

Mitigation Timing

Conclusions

Aitigation index insurance encourages people to ertake mitigation while conventional index rance discourages them from doing so.

Value of mitigation index insurance rises as

- precision of signal rises;
- cost of mitigation rises;
- endowment falls.

Higher precision of signal; ncreasing mitigation cost \rightarrow Less and later mitigation

Bibliography

- antarat, S., C.B. Barrett, A.G. Mude, and C.G. Turvey. 2007. "Using Weather Index Insurance to Improve Drought Response for Famine Prevention." American Journal of Agricultural *Economics* 89(5):1262–1268.
- ate, S., and M. Ravallion. 1993. "Reciprocity without Commitment -Characterization and Performance of Informal Insurance Arrangements." Journal of Development Economics 40(1):1-
- oois, P., B. Jullien, and T. Magnac. 2008. Formal and Informal Risk Sharing in LDCs: Theory and Empirical Evidence. *Econometrica* 76(4):679–725
- ne', X. 2009. "Innovations in Insuring the Poor: Experience with Weather Index-Based Insurance in India and Malawi." Brief 7, International Research Institute for Climate and Society, Palisades, NY.
- on, E. and Schechter, L. 2003. "Measuring vulnerability." *Economic* Journal, 113(486), pp. 95–110.
- es, J.R., and A.G. Murphy. 2009. "ENSO Business Interruption Index Insurance for Catastrophic Flooding in Piura, Peru." Technical report, GlobalAgRisk, Inc., Lexington, KY.
- vnsend, R.M. 1994. "Risk and Insurance in Village India." *Econometrica* 62(3):539–591.