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Abstract

Recent statistical studies suggest yields for major U.S. food crops will
dramatically decrease under climate change due to the rise of extreme tem-
peratures over the growing season. However, these results do not account
for changes in the crop mix, therefore overestimating potential damages to
the sector. In this study we seek to determine how the crop mix and grow-
ing regions would shift in response to climate change. The paper develops
a dynamic multinomial discrete choice framework to model adaptation to
climate change through crop choice. A major innovation of this study is
the construction of a very large high-resolution data set for the econometric
analysis and the computational procedure developed to obtain estimates.
We combine data on crop cover (USDA Cropland Data Layer (CDL), 30*30
meter resolution) and climate variables (PRISM, 4*4 km resolution) for the
study region, matched with crop prices and production costs at regional
level. The data set provides billions of spatial units from which we sam-
ple for the spatial analysis. The main advantage of such an extensive and
detailed data set is the careful consideration of the spatial heterogeneity
within counties. The generality of our empirical framework allows predic-
tion of crop choices at field level under various climate change scenarios.
The preliminary empirical results show that both market state variables
(yields, prices, and costs) and crop state variables (related to crop rotations)
are important predictors of farmers’ crop choice at field level.

JEL classification: Q15, Q24, Q54, R14, C35, C61
Keywords: Agricultural Land Use, Crop Choice, Discrete Choice, Dynamic Op-
timization, Climate Change



1. Introduction

A major focus of econometric climate impact assessments on agriculture has

been the prediction of overall impacts by accounting for adaptation implicitly

(e.g., Mendelsohn et al., 1994; Deschênes and Greenstone, 2007). While avoid-

ing unpacking adaptation mechanisms may seem to simplify empirical inves-

tigation, it increases vulnerability to unknown confounding factors (Schlenker

et al., 2005; Fisher et al., 2012). Modeling the structure of farmer adaptation

explicitly could provide more transparent insights into the countervailing role of

climatic factors and the role for alternative adaptation channels. Some progress

has been made in this direction through the renewed interest in statistical crop

yield models (e.g., Schlenker and Roberts, 2009). However, these models over-

state projected damages when used in isolation because they restrict adaption

to responses after planting. Obviously, a crucial margin of adaptation is crop

choice. Farmers may change the crop mix as expected yields of alternative

crops change under a different climate. In fact, the current spatial distribution

of growing regions in the U.S. is a reflection of this field-level crop choice process.

In this study we develop a dynamic multinomial discrete choice framework

to model adaptation to climate change through crop choice. A major innova-

tion of this study is the construction of a very large high-resolution data set for

the econometric analysis and the computational procedure developed to obtain

estimates. We combine data on land and crop cover (CDL, 30*30 meter reso-

lution) and climate variables (PRISM, 4*4 km resolution) for the study region.

The data set provides billions of spatial units from which we sample for our

statistical analysis. The main advantage of such an extensive and detailed data

set is the careful consideration of spatial heterogeneity within counties. This

approach differs from studies modeling crop choice based on aggregate county-

level acreage allocation. The generality of our empirical framework allows pre-

diction of crop choices at the field level under various climate change scenarios.
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By aggregating predicted field level crop choices to larger spatial scales (e.g.,

county), our results may be used to project potential changes in crop growing

regions across the country. This information can be used to inform researchers

and policymakers in designing climate adaptation efforts such as revamped crop

breeding programs and government policies. Though the current study is still

at its preliminary stage, our upcoming results will help other researchers ex-

plore the potential environmental and socio-economic consequences of major

climate-driven agricultural land use changes.

The paper is organized as follows. Section 2 introduces the dynamic dis-

crete choice model and estimable framework. Section 3 reports data. Section 4

presents preliminary estimation results. Section 5 briefly concludes the paper.

2. Model

The aggregate land use change in agriculture can be modeled through a series

of individual crop choices at field level. This paper models crop choice decisions

of farmers in a finite-horizon framework. In each period (crop production year),

farmers receive flow utility associated with their crop choice which may or may

not be the same as last period. The choice set can be defined as a group of major

crops grown in the study region.

In each period, farmers derive flow utility from crop sales return, benefits

related to crop switch (e.g., rotational effects, fallow), other land premiums (e.g.,

due to good soils or better location), and an additively-separable crop choice-

specific shock. This paper assumes that there are no switching costs associated

with crop choice. Crop production related expenses are the only cost incurred

each year. Lifetime utility is the sum of current flow utility and the discounted

flow of expected utilities from all future periods. All farmers are forward looking
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with respect to return (revenue net of costs) from crop production. Uncertainty

can come into play from several aspects: crop yield (climatic conditions), market

prices (of both inputs and outputs), and time-varying idiosyncratic shocks.

2.1. Net Return

In each year at each field, a farmer receives a location and time-specific net

return from crop production. The return depends on crop yield, output price,

and production costs, which are all modeled using expected measures. In this

paper, the choice set is defined as: j ∈ J = {soybeans,corn,wheat,others}. For

field i in year t, the crop-specific expected yield is given as:

Yield jit = αi +β0trendt +β1Xit + ε jit (1)

where trendt is a measure of time trend, Xit is the set of predictors which

include measures on bio-physical conditions (mainly climatic conditions). αi

captures location fixed effects, β0 and β1 are parameters to be estimated. ε jit

represents random shocks to yield.

The crop-specific price information is usually observed at region level only,

so is the production cost information. Due to lack of cross-sectional variations

on both price and cost measures, an AR (1) time series model can be used to

predict expected prices and costs. For a given region r and crop j,

Pricer
j,t = cr

j +ϕ
r
j Pricer

j,t−1 +ζ
r
j,t (2)

Similarly, production costs can be predicted as,
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Costr
j,t = dr

j +φ
r
jCostr

j,t−1 +η
r
j,t (3)

where cr
j and dr

j are region-specific constant terms, ζ r
j,t and ηr

j,t are white

noise. The cost prediction can be more sophisticated by including producer

price index for farm products. However, the simple AR (1) specification in (3) is

enough for the purpose of this study, considering that price and yield are the

determinants that experience much more fluctuations.

Given yield, price, and cost, crop-specific expected net return per unit of land

can be written as,

Return jit = Yield jit ∗Pricei∈r
j,t −Cost i∈r

j,t (4)

2.2. Dynamic Discrete Choice Model

In the world with exogenous uncertainty, a farmer (also the owner of the

field) will consider the future stream of net return associated with growing a

given crop in the choice set. By assuming additive separability of net returns

over time, the farmer’s lifetime (a considerable future) net return is then the

discounted sum of net returns from each year. The farmer’s decision making

objective is to maximize the utility derived from the expected lifetime net return,

MAXdt∈J

T

∑
t=0

δ
t [ut(Xt ,dt)+ω(dt)] (5)

where dt is the farmer’s crop choice in year t, and δ is the discount factor.

ut(Xt ,dt) is the flow utility in year t if crop choice dt is made. Xt denotes the

vector of all state variables for the farmer in year t. The state variables include
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net return, a time-invariant crop-specific component, and a set of indicators

capturing crop and land use rotation, which is defined in detail later. Similar

as in Bishop (2012), the transition of the states is assumed to be Markovian, so

that Xt+1 depends on Xt and dt only. The transition probability of the state vector

is denoted as q(Xt+1 | Xt ,dt). ω(dt) is a time-varying idiosyncratic component of

utility which follows an i.i.d Type I extreme value distribution. The above setup

of dynamic discrete choice has been commonly used in the literature (e.g., Rust,

1987; Bishop, 2012; Ji et al., 2014).

2.3. State Space and Utility Function

Following Scott (2013), the state space in this paper is divided into two

categories: market state and physical state. The market state is represented

through the aggregate measure Return jit which follows an Markov process by

construction, given that both price and cost are predicted using an AR (1) pro-

cess. Return jit also captures some physical states (e.g., climate, soil) through

crop yield, but they do not enter the flow utility directly. The physical state

consists of a set of three indicator variables regarding what was grown on the

field in year t−1. Table 1 below summarizes the definitions:

State Variable Definition Category
Return jit crop-field-time specific net return market state

C1it corns on field i in year t−1 physical state
S1it soybeans on field i in year t−1 physical state
W1it spring/winter wheat on field i in year t−1 physical state

Table 1: Summary of state variables

Similar to Ji et al. (2014), the flow utility at field i in year t, Uit(Xit ,dit) can

be defined as,
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Uit(Xit ,dit)=



γc0 + γcrReturn jit + γccC1it + γcsS1it + γcwW1it +ω jit i f j = corn

γs0 + γsrReturn jit + γscC1it + γssS1it + γswW1it +ω jit i f j = soybean

γw0 + γwrReturn jit + γwcC1it + γwsS1it + γwwW1it +ω jit i f j = wheat

γo0 + γorRentit +ω jit i f j = others
(6)

where ω jit is the time-varying idiosyncratic component of utility, Rentit is the

average cash rent of farmland at location i in year t. Note that, if none of the

three major crops is chosen, then the farmer will derive utilities from cash rent

of the land and a fixed utility component γ0. γc0, γs0, and γw0 represent fixed

utility component related to growing corn, soybean, and wheat, respectively. As

pointed out in Ji et al. (2014), the physical state variables as defined in Table 1

are used to capture possible revenue differences associated with different types

of crop rotations among major crops. They should not be treated as variables

that capture any direct yield or cost-saving effects. Because these variables are

constructed simply basing on crop rotation patterns.

2.4. Estimable Framework

The dynamic discrete choice model defined above has three basic assump-

tions: (1) X and ω are independent; (2) the evolution of market states and

physical states follows is Markovian; (3) the additive separability of flow utility.

These are common assumptions in the literature to make the problem computa-

tionally feasible (e.g., Rust 1987; Bishop, 2012). Given these assumptions, the

Bellman equation for value functions can be written as,

Vt(Xt ,ω(dt)) = MAXdt∈J [vt(Xt ,dt)+ω(dt)] (7)
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where the value function vt(Xt ,dt) can be written as,

vt(Xt ,dt) = ut(Xt ,dt)+δ

ˆ
∑

Xt+1

Vt+1(Xt+1,ω(dt+1))q(Xt+1 | Xt ,dt)dF(ω(dt+1)) (8)

or equivalently,

vt(Xt ,dt) = ut(Xt ,dt)+δE(Vt+1(Xt+1,ω(dt+1))) (9)

Since ω(dt) follows an i.i.d Type I extreme value distribution, replace the

second term on the right hand side of (8) with Logit inclusive value, which gives:

vt(Xt ,dt) = ut(Xt ,dt)+δ ∑
Xt+1

ln

[
J

∑
j=1

exp(vt+1(Xt+1,dt+1 = j))

]
q(Xt+1 | Xt ,dt) (10)

This is a recursive equation which makes its estimation computationally

difficult. Following Hotz and Miller (1993), Arcidiacono and Miller (2011), and

Bishop (2012), it can be shown that,
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vt(Xt ,dt = j(t)) = ut(Xt ,dt = j(t))

+δ ∑
Xt+1

ln
[
P(dt+1 = j(t+1) | Xt+1)

−1
]

q(Xt+1 | Xt ,dt = j(t))

+δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
q(Xt+1 | Xt ,dt = j(t))

+δ
2

∑
Xt+1

∑
Xt+2

ln
[
P(dt+2 = j(t+2) | Xt+2)

−1
]

∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = j(t))

+δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = j(t))

+δ
3

∑
Xt+1

∑
Xt+2

∑
Xt+3

ln
[
P(dt+3 = j(t+3) | Xt+3)

−1
]

∗q(Xt+3 | Xt+2,dt+2 = j(t+2))q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = j(t))

+δ
3

∑
Xt+1

∑
Xt+2

∑
Xt+3

[
ut+3(Xt+3,dt+3 = j(t+3))

]
∗q(Xt+3 | Xt+2,dt+2 = j(t+2))q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = j(t))

where P(·) is the conditional choice probability, which is estimated in a pre-

liminary step. j(t), j(t+1), j(t+2), and j(t+3) represent crop choices made in year

t, t +1, t +2, and t +3, respectively. Given the Logit framework, the conditional

choice probability is defined as,

P(dt = j(t) | Xt) =
exp
(

vt(Xt ,dt = j(t))
)

∑ j exp(vt(Xt ,dt = j))

=
1

∑ j exp
(
vt(Xt ,dt = j)− vt(Xt ,dt = j(t))

)

An estimate of P(dt = j(t) | Xt), say P̂(dt = j(t) | Xt), can be used to replace
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the conditional choice probability in value function vt(Xt ,dt = j(t)). Similarly, all

transition probabilities q(·) can also be replaced with empirical estimates in a

preliminary step. The above lengthy formula of value function vt(Xt ,dt = j(t)) can

be further simplified using the fact that all state variables are Markovian. Given

that the farmer only has one period memory, therefore the state dependence

breaks after two periods. In the value function, regardless of the choice made

in year t, the farmer will be indifferent on the current value of the choice he or

she will make in year t + 3. That is, given two different current period choices,

say j(t) = a and j(t) = b, we have,
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vt(Xt ,dt = a)− vt(Xt ,dt = b)

= ut(Xt ,dt = a)−ut(Xt ,dt = b)

+δ ∑
Xt+1

ln
[
P(dt+1 = j(t+1) | Xt+1)

−1
]

q(Xt+1 | Xt ,dt = a)

−δ ∑
Xt+1

ln
[
P(dt+1 = j(t+1) | Xt+1)

−1
]

q(Xt+1 | Xt ,dt = b)

+δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
q(Xt+1 | Xt ,dt = a)

−δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
q(Xt+1 | Xt ,dt = b)

+δ
2

∑
Xt+1

∑
Xt+2

ln
[
P(dt+2 = j(t+2) | Xt+2)

−1
]

∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = a)

+δ
2

∑
Xt+1

∑
Xt+2

ln
[
P(dt+2 = j(t+2) | Xt+2)

−1
]

∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = b)

+δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = a)

+δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
∗q(Xt+2 | Xt+1,dt+1 = j(t+1))q(Xt+1 | Xt ,dt = b)

Note that, the above simplified value function difference term appears in the

standard choice probability of Logit model. And in Logit model only the relative

values that matter, hence the above simplified result can be used to construct

log-likelihood function. Given the simplification, all of the structural parameters

in the flow utility function u(·) become linear, which also makes the estimation

of the Logit model more feasible. The log-likelihood is given by,
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L(γ,δ ) = ∑
i

∑
t

∑
l

ln
(

exp(vt(Xt ,dt = l))
∑ j exp(vt(Xt ,dt = j))

)
(11)

or equivalently,

L(γ,δ ) = ∑
i

∑
t

∑
l

(
vt(Xt ,dt = l)− ln∑

j
exp(vt(Xt ,dt = j))

)
(12)

3. Data

The empirical study in this paper uses crop production data of the state of

Ohio. The crop choice data comes from 30*30 meter resolution cropland data

layer developed by USDA. The study period is from 2008 to 2014. The CDL

data basically consists of a large panel of micro-level crop choices, which is

the dependent variable in this study. Crop yield, crop prices and production

costs data come from the Commodity Costs and Returns database of Economic

Research Service (ERS) at USDA. Climate data is derived from PRISM data. All

yield, climate, prices and costs data are recorded at county level. To match

with CDL crop choice data, all county level data are down-scaled to 30*30 meter

resolution.

Ohio is one of the states where more than half of its land is classified as prime

farmland. The major field crops in the state include soybeans, its largest crop,

corn. Other field crops are wheat, hay, oats. This study includes soybeans,

corn, and wheat (spring and winter). In the original CDL data, land uses are

categorized into more than 200 codes. In this study they are recoded into four

codes: 1 = corns; 2 = soybeans; 3 = spring and winter wheat; 4 = other uses.

All double crops (may include corns, soybeans, and wheat in the rotation) are

excluded from the study given that they may exhibit different behavior.
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For three crops included, net return to production is computed as revenue

net of all production costs except land rent. For other crops or other agriculture

land use, the net return is set to the farmland rent which is available at county

level. All the variables measured in dollar values are converted to a constant

value, so that the net return is comparable over years. Two climate variables

are used in the crop yield model: cumulative precipitation level for the growing

season (April to October), and monthly average degree days over 29 Celsius

degree for the growing season. The climate variables come into the corp yield

prediction model in quadratic form.

4. Estimation Procedure and Results

The empirical estimation in this paper carries out in two stages. The First

stage is a spatial block bootstrap which randomly selects a dynamic spatial panel

from the raw data to reduce computational difficulty. Otherwise, the maximum

likelihood estimation over billions of cells (30*30 meter cell) is computationally

exhaustive. Other than reducing computation intensity, another advantage of

the spatial block bootstrap method is that to some extent it keeps the spatial

structure of the data. In the literature, spatial aggregation and random selection

have been used to reduce the number of observations in estimation (e.g., Scott,

2013; Ji et al., 2014), which may not consider the spatial relationship between

observations properly.

In this paper, 35 cell by 35 cell blocks are randomly selected over the entire

land cover, which is close to an 300 acres size field. Several restrictions have

been applied while selecting blocks to avoid nuisance blocks (e.g., blocks with

all grassland or forestry land): (1) there has to be at least one third of the cells

covered by major crops (corn, soybeans, and wheat); (2) all four choices (corn,

soybeans, wheat, and others) have to appear in the block. In practice, (1) and (2)
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are likely to be satisfied at the same time. After a block is selected, all the cells

with null values are eliminated given that they are not informative regarding

crop choice behaviors.

Maximum likelihood estimation is implemented on the cleaned data blocks

with simulated anneal optimization algorithm (SANN, see Belisle (1992)), which

belongs to the class of stochastic global optimization methods. The algorithm

is usually found useful in getting to good estimates on a very rough surface,

which is likely to be the case in this study. In such cases, derivative-based

optimization methods (e.g., BFGS, L-BFGS) may not work well, given that they

require a large number of function evaluations even with a small number of

algorithm iterations.

As illustrated in section 2, the prediction of crop yields, prices, and produc-

tion costs is completed in a preliminary step. In this study, the predictors of

crop yields (equation (1)) include county fixed effects, year time trend, and two

climate variables (cumulative precipitation level and monthly mean degree days

above 29 Celsius degree) in quadratic form. The prediction of prices and costs

follows AR (1) processes (equation (2) and (3)).

Table 2 summarizes the estimation results on all structural parameters to be

estimated from equation (6). The estimates are obtained with 50 random draws.

Note that the standard errors here are computed as the standard deviation of

estimates from all draws. Therefore, the significance of the parameter estimates

should not be over-interpreted, given that a smaller standard error can be po-

tentially achieved by simply running more estimation draws. However, given

that the model is designed for prediction purpose instead of identifying any spe-

cific causal effects, the interpretation of the results should focus on the sign of

estimates.

As expected, higher net return from crop production leads to higher flow
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utility and hence higher probability of choosing the given crop, which holds for

all three major crops and the outside option (others). The state variables are

used to capture potential effects related to crop rotations. In general, soybeans

are the most rotation friendly crop. However, the rotation between corn and

soybean is not a rotation pair that leads to mutual benefits. This can be seen

from the estimates with opposite signs: γsc = −1.6665 and γcs = 1.6708, which

are all significantly different from zero given the number of random draws at 50.

For corn and wheat, the results tell a different story. Both crops show a

positive benefit of without rotating to other crops. This is potentially due to the

unique growing periods of the crops. For example, corn production requires a

relatively long growing season, which leaves small time window for other crops to

proceed or succeed except in the case where corn is grown for foliage to support

animal production.

Crop Choice
Parameters Corn Soybean Wheat Others

γ•0 1.5505 (0.5133) 1.8496 (1.0910) 1.4105 (0.4783) 1.1208 (1.1507)
γ•r 0.4634 (0.2396) 0.4182 (0.1711) 0.6964 (0.3524) 0.8092 (0.3267)
γ•c 1.0417 (1.0743) -1.6665 (0.7877) -0.4098 (2.2057)
γ•s 1.6708 (0.3315) 0.7401 (0.7071) 0.9484 (0.9446)
γ•w -0.7664 (0.9925) 0.3590 (0.5730) 1.3485 (0.6331)

# of Draws 50 50 50 50
Note: standard errors are reported in parentheses, which is computed as the
standard deviation of estimates from all 50 random draws through spatial block
m-out-of-n bootstrap.

Table 2: Structural parameter estimates

The current study is only at its preliminary stage, the climate change impact

analysis will be incorporated into future versions. The impact of climate change

on agricultural land use pattern can be explored through both precipitation

and temperature channels. Empirically, these changes influence farmers’ crop
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choice through yield prediction model in equation (1), that is,4Xit→4Yield jit→

4d jit .

5. Conclusion

In this study we develop a dynamic multinomial discrete choice framework

to model adaptation to climate change through crop choice. A major innovation

of this study is the construction of a very large high-resolution data set for

the econometric analysis and the computational procedure developed to obtain

estimates. We assemble a high resolution data set on agricultural land use and

climate variables for the state of Ohio. The main advantage of such an extensive

and detailed data set is the careful consideration of the spatial heterogeneity

within counties. The generality of our empirical framework allows prediction of

crop choices at field level under various climate change scenarios. The empirical

results show that both market state variables (yields, prices, and costs) and crop

state variables (related to crop rotations) are important predictors of farmers’

crop choice. In general, soybeans are the most rotation friendly crops. Corn

and wheat show a positive benefit of without rotating to other crops. This is

potentially due to the unique growing periods of the crops. The current study is

only at its preliminary stage, future versions will focus on climate change impact

analysis on agricultural land use change.
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