Welfare Implications of the Renewable Fuel Standard with a Revenue Neutral Carbon Tax

Tristan D. Skolrud
Ph.D. Candidate
School of Economic Sciences
Washington State University
tristan.skolrud@wsu.edu

Gregmar I. Galinato
Associate Professor
School of Economic Sciences
Washington State University
ggalinato@wsu.edu

Selected Poster prepared for presentation at the

Copyright 2015 by Tristan D. Skolrud and Gregmar I. Galinato. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Welfare Implications of the Renewable Fuel Standard with a Revenue Neutral Carbon Tax

Tristan D. Skolrud and Gregmar I. Galinato
School of Economic Sciences, Washington State University

Objectives

• Model the imposition of a double-dividend environmental tax on crude oil use in a general equilibrium model in the presence of a Renewable Fuel Standard (RFS).
• Specify and calibrate measures of welfare and fuel production with a double-dividend tax for Washington, Oregon, and Idaho.
• Examine the effect of RFS policies on optimal tax rates.

Definitions

• Tax rates are chosen to optimize the social welfare function, defined as follows:
 Social Welfare = Consumer Surplus + Producer Surplus - Tax Revenue - Disutility from Pollution
where disutility of pollution is valued at $258 per ton of carbon emitted. The burning of one gallon of crude oil emits 0.01 metric tons of carbon dioxide equivalent into the atmosphere.
• Pigouvian Tax: An environmental tax that internalizes the negative externality from blended fuel production. Typically equal to marginal environmental damage ($0.26), but includes extra price effects in a closed general equilibrium model.
• Double-Dividend Tax: Similar to the Pigouvian tax, except that the generated tax revenue is used to offset an existing distortionary tax.
• RFS Policies: The RFS imposes a percentage requirement on cellulosic fuel use but allows the purchase of waivers to satisfy the requirement.

Results: Optimal Taxes and Welfare Implications

Modeling the double-dividend tax depends on preexisting distortionary taxes:
• For Washington State, it is a sales tax on the composite consumption good.
• For Oregon and Idaho, it is an ad valorem tax imposed on labor income.

Welfare Effects Associated with the Double-Dividend

• Pigouvian Effect: Positive effect from a reduction in environmental damage due to the crude oil tax.
• Residual Pigouvian Effect: Negative effect from the residual decrease in blended fuel production.
• Revenue-Recycling Effect: Positive effect from the increase in tax revenue resulting from the offsetting crude oil tax.
• Interaction Effect: Negative effect from the efficiency loss when substituting away from blended fuel consumption.

Discussion

(1) The double-dividend tax is 69% to 77% of the Pigouvian tax.
(2) Net welfare increases by 6c to 11c per gallon with a double-dividend tax.
(3) Cellulosic fuel increases by 0.7% to 3.4% with a double-dividend tax.

Table 1: Optimal Taxes, Welfare Effects, and Fuel Production

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>OR</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxes ($/gal. of crude oil)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigouvian</td>
<td>$0.26</td>
<td>$0.30</td>
<td>$0.34</td>
</tr>
<tr>
<td>Double-Dividend</td>
<td>$0.18</td>
<td>$0.22</td>
<td>$0.26</td>
</tr>
<tr>
<td>Double-Dividend Welfare Effects ($/gal. of crude oil)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue-recycling</td>
<td>$0.15</td>
<td>$0.18</td>
<td>$0.20</td>
</tr>
<tr>
<td>Pigouvian</td>
<td>$0.11</td>
<td>$0.15</td>
<td>$0.18</td>
</tr>
<tr>
<td>Residual Pigouvian</td>
<td>$-0.02</td>
<td>$-0.01</td>
<td>$-0.03</td>
</tr>
<tr>
<td>Interaction</td>
<td>$-0.16</td>
<td>$-0.21</td>
<td>$-0.26</td>
</tr>
<tr>
<td>Total</td>
<td>$0.06</td>
<td>$0.11</td>
<td>$0.09</td>
</tr>
<tr>
<td>Fuel production (Millions of gallons)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 Baseline values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended fuel</td>
<td>2604.11</td>
<td>1171.85</td>
<td>520.82</td>
</tr>
<tr>
<td>Cellulosic fuel</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>With Pigouvian Tax (% change from baseline)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended fuel</td>
<td>-8.62%</td>
<td>-4.35%</td>
<td>-8.78%</td>
</tr>
<tr>
<td>Cellulosic fuel</td>
<td>3.32%</td>
<td>1.45%</td>
<td>6.27%</td>
</tr>
<tr>
<td>With Double-Dividend Tax (% change from baseline)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended fuel</td>
<td>-5.55%</td>
<td>-3.31%</td>
<td>-5.86%</td>
</tr>
<tr>
<td>Cellulosic fuel</td>
<td>1.79%</td>
<td>0.68%</td>
<td>3.37%</td>
</tr>
</tbody>
</table>

Conclusions

• The optimal double-dividend environmental tax on crude-oil is approximately 86% of marginal environmental damages.
• Net welfare and cellulosic fuel usage increases with the double-dividend tax.
• When the optimal tax is imposed, the RFS percentage requirement is non-binding due to the relative increase in crude-oil price.

Future Work

• Model the effects of an integrated tax-subsidy policy within the regional energy sector given the RFS.
• Incorporate economic input substitutability into life-cycle analysis (LCA) of biofuel carbon emissions and integrate LCA into the economic and policy modeling.

Acknowledgements

This research was supported by Agriculture and Food Research Initiative Competitive Grant no. 2012-67009-19707 from the USDA National Institute of Food and Agriculture.