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Abstract

If emissions from a sector are unobservable, direct emissions policies are unlikely to be extended to this

sector. However, alternative policies based on observable quantities may be able to reduce emissions

from the unregulated source at costs similar to a first-best policy. This paper evaluates the costs of

policy instruments for reducing GHG emissions from cropland agriculture, a large source of emissions

that are unobservable, using an integrated biophysical and economic model. Results suggest that policies

regulating readily observable quantities can reduce agricultural N2O emissions at costs approaching those

of the unavailable emissions tax. However, alternative policies with costs similar to the emissions tax

may have considerably different impacts on agricultural sector profit.
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1 Introduction

To efficiently regulate a global pollutant, the marginal costs of abatement must be equalized across all

emitting sources. Yet, proposed and enacted climate change regulations violate this principle by leaving

sectors that are significant contributors of greenhouse gas (GHG) emissions unregulated. A prominent

justification for leaving a sector unregulated is that emissions are unobservable. If a sector’s emissions are

unobservable or are prohibitively costly to monitor then direct emissions regulations, such as a carbon tax or

cap and trade program, might be impossible or too costly to extend to the unregulated sector. Alternative

policies based on readily observable quantities that reduce emissions from the unregulated sector at costs

similar to the first-best could lower the overall costs of climate action.

In this paper, we explore whether policy instruments based on observable quantities can cost-effectively

reduce GHG emissions from cropland agriculture in the US. Cropland agriculture contributes 12% of annual

global emissions (IPCC, 2014) and 8% of annual US emissions (US EPA, 2014), but is typically exempt from

climate legislation. The exclusion of agriculture is partly the result of monitoring difficulties. GHG emissions

from agriculture depend on the production decisions of many farmers facing heterogeneous weather and soil

characteristics. Absent field-level monitoring, agricultural emissions are unobservable and cannot be directly

regulated.

We focus on agricultural nitrous oxide (N2O) emissions, which is the single largest component of GHGs

from agriculture (US EPA, 2014). We use analytical and numerical general equilibrium models to evaluate the

costs of emissions reductions using a range of policy options. The analytical model allows me to decompose

the costs associated with a marginal change in a policy, while the numerical model allows me to quantify

the differences in costs across policies for large reductions in emissions. The numerical model is a national-

scale integrated biophysical and general equilibrium framework that accounts for agricultural production

decisions at the county level and how changes in farm-level behavior will impact crop and food prices and

consumer decisions at the national level. The framework captures the primary channels through which farmer

decisions affect N2O emissions, crop choice and nitrogen (N) fertilizer application rates. In each county, a

representative landowner maximizes profits by choosing an N fertilizer application rate for, and an amount of

land to allocate to, each crop. The relationships between agricultural decisions, crop yield and emissions are

estimated from a unique data set of biophysical model simulations that allow for heterogeneity in production

characteristics, a key driver of the performance of alternative policies, at a fine spatial scale. Using this

framework, we calculate the welfare costs of achieving targeted levels of emissions reductions using an N2O

tax, uniform and non-uniform input taxes and acreage taxes, as well as combinations of these policies. The

optimal policy instruments are solved for using a Mathematical Programming with Equilibrium Constraints
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(MPEC) formulation.

Preliminary results suggest that the unavailable N2O tax can reduce total N2O emissions by 2.5% at a

marginal cost of just over 60 $/tCO2e. The simplest alternative policy, a uniform N tax, is 40% more costly

than the N2O tax, because it does not account for heterogeneity in marginal emissions rates across crops

or space. However, both non-uniform instruments and combinations of instruments can be used to achieve

emissions reductions at costs similar to the N2O tax. A non-uniform N tax, that varies by region to account

for some of the heterogeneity in marginal emissions across space, provides N2O reductions at costs only

10% higher than the emissions tax. Pairing the uniform and non-uniform N taxes with acreage taxes reduce

costs by providing a direct mechanism by which to control the amount of land in emissions intensive crops.

However, the cost savings, relative to the N taxes alone, due to the addition of acreage taxes are small.

Even though the alternative policies can result in costs similar to the emissions tax, there are considerable

differences in the impacts on profits of the agricultural sector. The impact of the N taxes on profits are only

20% that of the emissions tax. In sharp contrast, pairing acreage taxes with the N taxes causes profits to

fall by more than under the emissions tax. These results raise questions about second-best combinations of

policies if the welfare of the regulated sector is a political concern.

1.1 Literature Review

When emissions are unobservable, the theoretical literature suggests that a range of policies based on observ-

able quantities could be applicable.1 Many authors provide motivation for taxing goods related to emissions

(for example Green and Sheshinski (1976) or Sandmo (1978)), but policies that are able to control all chan-

nels through which emissions can be reduced can be more cost-effective. When there are a large number of

heterogeneous pollution sources, non-uniform or multipart instruments (Fullerton and West, 2002) and reg-

ulations based on modeled emissions (Griffin and Bromley, 1982) are likely to be more efficient than single,

uniform regulations of observable factors. In fact, first-best outcomes can be achieved with sufficiently differ-

entiated tax rates, complex multipart instruments or perfect models of emissions, but may be impractical due

to extreme information requirements, high implementation costs and avoidance behavior. The theoretical

literature does not provided general conclusions about the performance of second-best policies, so ranking

alternative instruments requires a numerical analysis (Helfand and House, 1995; Fullerton and Gan, 2005;

Fullerton and West, 2010; Knittel and Sandler, 2013). To our knowledge, this is the first comparison of the

costs of alternative policy instruments for GHG mitigation in US agriculture at the national-scale.

1The inability to observe emissions is a key feature of research on the regulation on non-point source pollution from agricul-
ture, see Shortle and Horan (2001) or Xepapadeas (2011) for reviews of this literature. Non-point source pollution regulations
must also address marginal damages varying across sources, but may be able to exploit observable ambient pollution levels
(Segerson, 1988).
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This paper builds on the long literature assessing the costs of GHG mitigation in the agricultural sector.

One group of studies on agricultural mitigation use national-scale using linear programming models (McCarl

and Schneider, 2001; De Cara and Jayet, 2000; De Cara et al., 2005). McCarl and Schneider (2001), the most

prominent of these studies, assesses a host of mitigation options for US agriculture and forestry, including

agricultural management options such as tillage, crop, and input intensity choices, as well as biofuels and

afforestation. A limitation of these models is that each relies on simplified relationships between management

options, yields and emissions. For example, N fertilizer application rates are constant in De Cara and Jayet

(2000) and De Cara et al. (2005), and McCarl and Schneider (2001) allow for discrete choices of N application

rates. Moreover, the relationship between activities and emissions are captured using IPCC default methods

(IPCC, 1997; IPCC, 2006), which rely on a linear relationship between N applications and N2O and may

not capture the significant heterogeneity in N2O emissions due to soil and climate characteristics.2 The

heterogeneity of yield and emissions responses to management changes plays a critical role in determining

the performance and availability of mitigation policy options. Another group of studies accounts for this

heterogeneity by integrating biophysical and economic models (Antle et al., 2003, 2007; Garnache et al.,

2014), with biophysical models providing detailed information regarding yield and emissions responses. Due

to the complexities involved with such frameworks, the linked biophysical and economic models focus on

small regions or a limited number of management options.

Our work extends this previous literature along two dimensions. First, we construct a linked biophysical

and economic model at the national level that accounts for heterogeneity in yield and emissions responses

at a fine spatial scale. Therefore, the model can capture how heterogeneity affects the performance of

national level policies, which is crucial in the context of N2O, and the impact of mitigation policies on other

national level outcomes, such as the price of crops and food. Second, unlike most previous work, which either

assumes that emissions can be directly regulated (McCarl and Schneider, 2001; De Cara and Jayet, 2000;

De Cara et al., 2005; Antle et al., 2007) or analyzed practice-based subsidies (Antle et al., 2003), we analyze

a variety of policy options suited to addressing unobservable emissions. Therefore, we are able to provide

more meaningful estimates for the costs of harnessing the mitigation potential of agriculture and insights

regarding the design of policies in this context.

The previous work most similar to the current study is a set of recent papers that develop a detailed

linked biophysical and economic model of cropping for the Central Valley of California (Mérel et al., 2014;

Garnache et al., 2014). The model accounts for changes in input use, nitrogen fertilizer and irrigation

water, and cropping patterns. Mérel et al. (2014) outlines the numerical framework and the procedure for

2The modeling framework used in McCarl and Schneider (2001) has been updated to include biophysical model estimates
of N2O (Ogle et al., 2015).
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calibrating to baseline economic data and biophysical model output, then analyzes reductions in N2O and

nitrate pollution due to a uniform tax on N. Garnache et al. (2014) compare the costs of agricultural GHG

mitigation, accounting for CO2, N2O and CH4, using policy options that can be implemented when emissions

are unobservable. Relative to Garnache et al. (2014), we consider a broader set of policies, including acreage

taxes, and combinations of policies. In addition, since our framework is national in scale we have a setting

where spatial heterogeneity and differentiated policies may be of more importance. However, unlike Garnache

et al. (2014) we only account for N2O and do not account for changes in irrigation intensity.

The remainder of the paper is organized as follows. Section 2 provides background on GHGs from

cropland agriculture paying particular attention to the determinants of N2O emissions. Section 3 lays out

the analytical model and decomposes the marginal primary costs of an N2O tax and alternative policy

options. The structure of the numerical model and the data used for calibration are presented in Sections 4

and 5. Simulation results from the numerical model are presented Section 6 and Section 7 concludes.

2 Background

2.1 Agriculture and GHGs

Agriculture is a substantial source of GHG emissions, making up roughly 12% of annual global emissions

(IPCC, 2014) and roughly 8% of annual US emissions (US EPA, 2014).3 If current trends in population

and economic growth and food consumption persist, emissions from agriculture are projected to increase

substantially in the coming decades (Popp et al., 2010; EPA, 2012).

Policymakers increasingly recognize the need to reduce emissions from agriculture. In the recent 5th

Assessment Report the IPCC states, with high agreement, that: “leveraging the mitigation potential in the

sector is extremely important in meeting emissions reductions targets” (IPCC, 2014). In California, the

goal of establishing GHG reduction targets for agriculture was approved as part of the recent update to

the Scoping Plan for AB 32, the Global Warming Solutions Act passed in 2006 (CARB, 2014). However,

agriculture is typically exempt from climate legislation.4

A variety of activities contribute to agricultural GHG emissions. There is general agreement that soil

management, which includes emissions attributable to cultivated organic soils, crop residues and the ap-

3According to IPCC (2014), agriculture, forestry and land use contribute 24% of global GHGs, about 10 GtCO2e. Agricul-
tural production comprises just over half of this total.

4Agriculture was uncapped in the Kyoto Protocol, but agricultural mitigation projects could have received payments through
the Clean Development Mechanism and Joint Implementation programs. Proposed federal climate legislation in the United
States has rarely covered agriculture, but provisions for agricultural offsets are generally supported by lawmakers (Johnson,
2009). For example, the American Clean Energy and Security Act of 2009, also known as the Waxman-Markey climate bill,
would have allowed offsets to cover a substantial and increasing share of required emissions reductions, 26% in 2016 and 66%
in 2050 (Yacobucci et al., 2009). Offsets from domestic agricultural projects would have contributed to this total.
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plication of manure and synthetic fertilizer, and methane released due to enteric fermentation in ruminant

animals, such as cattle, are the two largest agricultural sources of GHGs (IPCC, 2014).5 Agricultural soils

also contain large stocks of carbon. Changes in soil carbon stocks due to agricultural activities can be either

a source or sink of GHGs (US EPA, 2014).6

2.2 Agricultural N2O

This paper focus on emissions of nitrous oxide (N2O) from cropland agriculture, which is a substantial con-

tributor to emissions due to soil management. N2O is a potent GHG that is roughly 300 times more powerful

than CO2 in terms of its global warming potential (GWP).7 In the US, agricultural N2O contributes more

than half of emissions from agriculture and nearly 5% of total GHGs (US EPA, 2014). With the exception of

GHG emissions from passenger vehicle transportation, which can be reasonably monitored through gasoline

consumption statistics, N2O from agriculture is the largest non-point source of GHG emissions in the US.8

Over 90% of agricultural N2O results from the application of fertilizer and manure to cropland soils.9 As

a result, there is strong interest in policy options that induce changes in farmer behavior to reduce N2O

(Robertson and Vitousek, 2009; Cavigelli et al., 2012; Reay et al., 2012; UNEP, 2013).

N2O emissions are generated primarily due to agriculture’s impact on the nitrogen (N) cycle.10 N is a

fundamental element for plant growth but is deficient in most intensive agricultural systems because the N

removed in crop yields vastly outstrips the natural deposition of N to soils (Robertson and Vitousek, 2009).

N, in the form of chemical fertilizer or manure, must therefore be applied to soils to sustain crop growth,

particularly for non-leguminous crops (Erisman et al., 2008). However, not all N applied to agricultural

soils is used by the crop. The availability of excess N in soils leads to a number of environmental problems,

including elevated emissions of N2O.11 Excess N leads to N2O directly and indirectly. Direct N2O emissions

5Manure management and rice cultivation are the other two notable sources, but are far smaller in magnitude (IPCC, 2014).
6Soil carbon stock changes depend on a variety of factors including the state of land prior to its conversion to agriculture,

management choices and climate and soil characteristics. In the US, cropland soils are currently a net carbon sink due
to significant enrollment of land in the Conservation Reserve Program, the adoption of conservation tillage, increased hay
production and reductions in summer fallow in semi-arid regions (US EPA, 2014).

7It is worth noting that the marginal social cost of N2O may actually be higher than the GWP of N2O times social cost of
CO2. Marten et al. (2015) find that when calculated in a manner consistent with estimates of the social cost of CO2, the social
cost of N2O should be closer to 314-387 times the social cost of CO2. Moreover, N2O is currently the largest contributor to
depletion of the ozone layer, primarily because it is unregulated by the Montreal Protocol (Ravishankara et al., 2009).

8For a sense of the relative importance, agricultural N2O emissions are of the same magnitude as emissions from oil com-
bustion by industrial sources and natural gas use by residential sources, and are larger than CO2 from aviation and methane
from livestock operations (US EPA, 2014).

9Direct and indirect emissions from cropland account for 70% of N2O from US agriculture. The remainder is made up of
emissions from grazed areas and manure management systems (US EPA, 2014)

10See Robertson and Vitousek (2009) or Cavigelli et al. (2012) for a detailed review of agriculture’s role in the nitrogen cycle.
11Excess N that makes its way into water can cause algal blooms and hypoxic zones, such as the “Dead Zone” in the Gulf

of Mexico, and can contribute to nitrate contamination of drinking water, which may affect human health (Powlson et al.,
2008). If released to the air, N can increase levels of particulate matter and ground level ozone, both of which affect human
respiratory and cardiovascular systems. Moreover, ammonia emissions and the deposition of N to downwind locations can affect
the biodiversity of the affected ecosystems. See Sutton et al. (2011) for a summary of a large-scale study quantifying the costs
of excess N in Europe.
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are generated by microbial nitrification and denitrification processes in the soils where N is applied. Indirect

N2O emissions are generated when N is transported from the soils where it is applied in forms other than

N2O, through either volatilization or leaching and runoff, and subsequently converted to N2O elsewhere. The

volatilization channel accounts for N that is released from agricultural soils to the atmosphere as ammonia

(NH3) or nitrogen oxides (NOx) and is eventually deposited on other soils or water bodies. The leaching

and runoff channel accounts for N that is transported from agricultural soils through the water table and

then converted to N2O through aquatic denitrification. Direct emissions are the major contributor to N2O.

Over 50% of US agricultural N2O emissions are direct emissions from agricultural soils, while indirect N2O

emissions from agricultural soils make up roughly 20% (US EPA, 2014).

This work focuses solely on agricultural N2O for two reasons. First, despite being the single largest

source of GHGs from agriculture both in the US and globally, few studies directly analyze policy options

to reduce agricultural N2O at a national-scale.12 This paper is an initial attempt to fill that gap in the

literature. Second, although much attention has been payed to carbon sequestration in cropland soils (Antle

et al., 2003; Sperow et al., 2003; UNEP, 2013) there are serious questions regarding the potential for changes

in agricultural management to achieve permanent emissions reductions. For example, Powlson et al. (2014)

note that much of the potential increase in soil carbon due to many years of reduced tillage intensity could be

lost due to conventional tillage in a single year, a common practice in some regions.13 Moreover, soils have a

limited capacity to store carbon. While shifts in management may result in increased soil sequestration for a

number of years, the sequestration rate will fall to zero as soil carbon approaches equilibrium levels (Powlson

et al., 2014). In contrast, N2O reductions are permanent, irreversible and can be realized in perpetuity.

Determinants of N2O Emissions

N2O emissions from cropland agriculture depend on the production decisions of many farmers operating

under diverse soil and weather conditions. Cropland N2O emissions largely depend on the level of excess N

in soils, which is roughly the difference between N additions and N uptake by the crop. The rate at which

excess N is converted to N2O depends on the biophysical conditions of the soil, such as soil texture, moisture

and temperature (Robertson and Groffman, 2015). Farmers’ choices affect N2O emissions either by altering

excess N or the biophysical conditions in soil (Parkin and Kaspar, 2006). Farmers’ choice of crop, because

N uptake rates differ by crop, and N additions are the key determinants of excess N (Eagle et al., 2012).14

12Note that McCarl and Schneider (2001) includes N2O in the analysis, but does not engage with the observability problem.
Garnache et al. (2014) and Horowitz (2014) explore policies to reduce N2O but only for a small region.

13Powlson et al. (2014) also emphasize that experimental and model evidence does not necessarily support the claim that
reductions in tillage intensity will result in increased carbon stocks.

14Timing and placement of N additions are also choices that affect excess N (see Eagle et al. (2012) for a review). Placing N
closer to the active root zone of the plant lowers the availability of N for conversion to N2O. N demands of a crop vary across
the growing season, which creates a temporal dimension of excess N. Timing N applications to match periods of high N demand
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Irrigation and tillage are examples of management choices that change soil conditions and alter N2O emission

rates.

All else equal, soil characteristics and climate/weather lead to considerable spatial heterogeneity in crop-

land N2O emissions rates (Del Grosso et al., 2006, 2012). Using Daycent, Del Grosso et al. (2012), find that

N2O emissions rates, the percent of N applied released as N2O, tend to be highest for soils that are fine

textured, high in organic matter and wet, either due to precipitation or irrigation. In fact, the differences in

emissions rates across fields with different characteristics but the same N input levels, can be more substan-

tial than differences due to N application rates in the same field (Del Grosso et al., 2006). Even within field

differences in emissions can be quite large (Parkin, 1987). The management decisions and soil conditions that

impact N2O rates also affect the returns to cropland through yields and production costs (Balasubramanian

et al., 2004). The resulting differences in farmers’ management choices are an additional driver of variation

in N2O emissions. Moreover, heterogeneity in the marginal costs of abatement is determined by differences

in the tradeoff between emissions and returns to cropland across fields. Table A.4 displays the heterogeneity

across crops and regions in baseline N2O rates used in this analysis.

Monitoring N2O Emissions

Due to the nature of the emissions generation process, wide-scale monitoring N2O emissions is difficult with

current technology. Monitoring must take place at a fine spatial and temporal resolution to account for the

heterogeneity in emissions rates, the influence of the management decisions of many individual farmers and

the temporal distribution of emissions.15 Measurements from static chambers on cropland is the current

economical monitoring option for experimental observation. However, using these methods in a national

monitoring program would be infeasible because the measurements are limited to the conditions underneath

the chamber and the specific measurement period (Hensen et al., 2013). Avoidance behavior could also be

problematic.16 New approaches, relying on micrometeorological methods and infrared technology, are being

developed that could provide more frequent measurements at the farm-scale, but are not yet available at

reasonable costs (Hensen et al., 2013).

by the crop can therefore reduce N2O emissions. Eagle et al. (2012) also note that the type of fertilizer used, particularly slow
release types and those with nitrification inhibitors, may affect N2O emissions.

15N2O is emitted throughout the year, but rates are typically highest immediately following fertilizer applications (see for
example Hoben et al. (2011)). A monitoring system that does not measure emissions during these periods could significantly
underestimate emissions.

16For example, less N fertilizer could be applied to the area under and immediately surrounding the chamber or fertilizer
could be applied immediately after a chamber measurement is taken.
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3 Analytical Model

This section presents an analytical model that decomposes the primary costs resulting from a marginal

change in policy options to reduce agricultural N2O. An emissions tax, a uniform input tax and crop

acreage taxes are considered. Policy options were selected under the assumption that the regulator observes

the total quantity of inputs purchased for use on each parcel and the allocation of land in each parcel.

These quantities can be observed at very low cost since commercial fertilizer distributors must be registered

through state control boards, and land allocation at the field level are obtainable through existing remote

sensing efforts (NASS, 2014a). The regulator is assumed to be unable to observe input quantities applied

to each crop, because it would require tracking inputs between its purchase and use, monitoring field-level

activities or accurate self-reporting. This rules out any policy that regulates inputs applied to a particular

crop, such as an input tax differentiated by crop.

3.1 Framework

General Environment

Consider a static model of an economy with two factors of production, labor (L̄) and land (Ā). Labor is

perfectly mobile, while land is immobile. The land endowment in divided into I regions indexed i = 1 . . . I.

Within each region there are Ji heterogeneous parcels of various sizes, indexed j = 1 . . . Ji. The total land

area available in each parcel is given by Āij . Land is combined with polluting and intermediate inputs to

produce K crops indexed k = 1 . . .K. Pollution emissions (E) are generated by the production of crops,

with marginal emissions varying by crop, region and parcel and with the use of intermediate inputs. All

markets are assumed to be perfectly competitive. The wage rate is normalize to 1.

Demand

A representative consumer derives utility from the K crops, denoted by Ck, and a composite consumption

good C, and is harmed by emissions. The representative consumer’s utility function is given by:

U (C1, . . . CK , C)− φ (E) (1)

where U(·) is the utility from consumption and φ is the disutility from emissions. U is continuous, differen-

tiable and strictly quasi-concave in all its inputs, and φ is continuous, differentiable and weakly convex.

The representative consumer’s income comprises the returns to the labor and land (ΠA) endowments and
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a transfer from the government, G:

∑
k

PkCk + C = ΠA + L̄+G (2)

where Pk is the price of crop k. The consumer chooses Ck and C to maximize utility subject to the budget

constraint but does not account for their effect on emissions when making consumption choices. Solving the

resulting first-order conditions yield the uncompensated demand functions:

Ck (P1 . . . PK ,ΠA, G) ∀ k ∈ K

C (P1 . . . PK ,ΠA, G) (3)

which when substituted into (1) yields the indirect utility function:

V = v (P1 . . . PK ,ΠA, G)− φ(E). (4)

Production

Each parcel of land is independently managed to maximize profits by a risk neutral representative landowner.

Per unit productivity and emissions of land is heterogeneous across crops and parcels, and assumed to be

constant per unit land in a given parcel. The landowner chooses the quantity of land to allocate to each

crop, Aijk, and can also influence productivity and emissions using intermediate inputs. Let productivity

and emissions per unit land be:17

yijk (nijk,mijk) eijk (nijk,mijk) (5)

where nijk and mijk are quantities of intermediate inputs N and M used in crop production. yijk and

eijk are assumed to be continuously differentiable. N is a polluting input that boosts productivity, at a

decreasing rate, and increases emissions rates. M is a mitigating input that reduces marginal emissions.18

In the context of agriculture, one can think of y as crop yields, N as nitrogen fertilizer and M as mitigation

options such as changes in the timing and placement of fertilizer or the use of nitrogen inhibitors.

Labor used for each parcel’s production of crops is made up of two components, a fixed labor requirement

per unit of land allocated to each crop, lijk, and management costs that depend on the parcel’s land allocation,

Lij (Aij1, . . . , AijK). These land management cost functions reflect factors other than net returns, such as

17Unless otherwise noted, lowercase letters represent quantities per unit land, while capital letters represent total quantities.

18Formally
∂yijk
∂nijk

> 0,
∂2yijk
∂n2
ijk

< 0,
∂eijk
∂nijk

> 0 and
∂eijk
∂mijk

< 0.

9



land quality, that induce diversification of crop production within parcels.

To simplify notation denote Aij , nij and mij as vectors of length K that represent the land allocation

and per unit land input usage for parcel ij.19 On each parcel, the landowner chooses a land allocation and

input vectors to maximize profit subject to a land constraint:

Πij (P1 . . . PK , PN , PM ) = max
Aij ,nij ,mij

∑
k

πijkAijk − Lij (Aij1, . . . , AijK)

subject to:

πijk = Pkyijk − PNnijk − PMmijk − lijk ∀ k ∈ K∑
k

Aijk ≤ Āij (6)

where πijk is the net returns per unit land to crop k in parcel ij.

The solution to each landowner’s problem yields the optimal land allocation, Aij (P1 . . . PK , PN , PM ),

and per unit land input demands, nij (P1 . . . PK , PN , PM ) and mij (P1 . . . PK , PN , PM ). These functions

then determine the total supply of crop k is Yk =
∑
ij yijk (nijk,mijk)Aijk, total emissions are E =∑

ijk eijk (nijk,mijk)Aijk and total labor used for crop production is LA =
∑
ijk Aijklijk +

∑
ij Lij .

20

Finally, the intermediate inputs and the composite consumption good are produced from labor and are

denoted in units so that the marginal productivity of labor in each sector is equal to one (N = L, M = L,

C = L). This establishes PL = PN = PM = 1.

Government

The government sets policies to reduce total emissions. Any revenues generated by the pollution policies

will be rebated to the representative consumer through G.21

Equilibrium

Equilibrium is a set of crop prices Pk such that profits to the land endowment and utility are maximized

and the crop and labor markets clear:

Ck = Yk ∀k ∈ K

L̄ = C +M +N + LA. (7)

19For example, Aij =
{
Aij1 . . . AijK

}
.

20Total use of the intermediate inputs and total returns to land can be calculated with similar formulas. For example
N =

∑
ijk nijkAijk.

21This is a simplifying assumption that focuses the analytical analysis on the primary costs of the policies. Pre-existing
distortionary taxation and a binding government budget are included in the numerical model.
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3.2 Primary Costs of Alternative Policies

Emissions Tax

If emissions are observable, an emissions tax is available and achieves the first-best outcome.22 Assume that

each landowner is taxed at rate tE for emissions generated by their production activities. The per-unit profit

functions become πijk = Pkyijk −nijk −mijk − lijk − tEeijk. The tax revenue from the policy, and therefore

the transfer to the consumer, is G = tEE.

The efficiency cost, excluding the benefits from emissions reductions, of a marginal increase in the emis-

sions tax is:

− 1

λI

dV

dtE
= −tE

∑
ijk

eijk
dAijk
dtE︸ ︷︷ ︸

dWA

+
∑
ijk

Aijk
(
Pky

n
ijk − 1

)(
−dnijk
dtE

)
︸ ︷︷ ︸

dWN

+
∑
ijk

Aijk
(
Pky

m
ijk − 1

)(
−dmijk

dtE

)
︸ ︷︷ ︸

dWM

(8)

where λI is the marginal utility of income, ynijk =
∂yijk
∂nijk

and ymijk =
∂yijk
∂mijk

. The first term, dWA, is the land

allocation effect, which is the efficiency cost of landowners shifting land away from emissions intensive crops.

This effect equals the sum across all parcels and crops of the change in the land allocation times the change

in per-unit profit due to the emissions tax. The final two terms, dWN and dWM , are the polluting and

mitigating input effects. The input effects are the costs, due to lost profits to the land endowment, resulting

from reduced use of the polluting input and increased use of the mitigating input.

The emissions tax is efficient because the cost of the policy is distributed across all three channels of

adjustment. Second-best policies are unable to fully utilize all of the channels to reduce emissions, and are

therefore more costly.

Uniform Input Tax

Consider a tax on the polluting input of tN , but note that a tax/subsidy on the mitigating input would lead to

analogous channels of adjustment. The per-unit profit functions are πijk = Pkyijk−(1 + tN )nijk−mijk−lijk

and tax revenue is G = tNN . The efficiency costs of a marginal increase in the input tax is:

− 1

λI

dV

dtN
= −tN

∑
ijk

nijk
dAijk
dtN︸ ︷︷ ︸

dWA

+
∑
ijk

Aijk
(
Pky

n
ijk − 1

)(
−dnijk
dtN

)
︸ ︷︷ ︸

dWN

. (9)

22As illustrated in the appendix, comparing the first-order conditions of the competitive equilibrium problem to those of the
social planner’s problem proves that an emissions tax equal to the marginal damage of emissions is socially optimal.
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The uniform input tax exploits only a single input effect and partially exploits the land allocation effect. The

input tax only causes landowners to reduce the use of the polluting input, but does not induce additional

use of the mitigating input. The land allocation effect is only partially utilized because the change in crops’

per-unit profit depends on the use of the polluting input rather than the contribution to emissions.

Acreage Tax

Since the land allocation is observable, a tax on the land allocated to a heavily polluting crop, indexed h, may

be reasonably easy to implement. The per-unit profits of crop h are πijh = Phyijh − nijh −mijh − lijh − th,

and government payments are: G =
∑
ij Aijhth. The efficiency costs of a marginal increase in an acreage

tax is:

− 1

λI

dV

dth
= −

∑
ij

(
πijh − Lhij − λij

) dAijh
dth︸ ︷︷ ︸

dWA

(10)

where λij is the multiplier on the land constraint in parcel ij and Lhij are the marginal management costs with

respect to land in crop h. The efficiency cost is the sum across all parcels of the change in profit from shifting

a unit of land away from the heavily polluting crop into an alternative crop times the change in the land

allocated to the heavily polluting crop.23 The acreage tax only partially utilizes the land allocation effect

because the tax does not alter the per-unit profits of other polluting crops or account for the heterogeneity

in emissions for the taxed crop across parcels.

The analytical model illustrates the channels through which single, uniform policy instruments lead to

primary costs. However, insights can be gleaned about more complicated policy configurations. A non-

uniform input tax that varies by some combination of region, parcel or crop will improve on the uniform

input tax if the input tax rates can be set in a manner that accounts for heterogeneity in marginal emissions

rates across groups. Likewise, pairing a set of acreage taxes with an input tax could more fully utilize the

land allocation effect. The costs of non-uniform policies and combinations of policies are explored further

using the numerical model.

4 Numerical Framework

The numerical model is a national-scale integrated biophysical and general equilibrium framework that

accounts for agricultural production decisions at the county level. Changes in farm-level behavior impact

world and national prices, consumer decisions and trade. The model is calibrated to baseline economic and

23For any of the untaxed crops the first-order condition is πijk−Lk
ij = λij , so λij represents the profit obtained from shifting

a unit of land into the production of an untaxed crop.
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agricultural data and output from biophysical model simulations.

The numerical model takes broadly the same structure as the analytical model, with three major addi-

tions. First, to account for exports of US crops the numerical model includes two “countries” with open

economies, the US and the rest-of-world (ROW). ROW is an aggregate of all countries excluding the US.

Both countries are endowed with labor and land, which are immobile across countries. The countries trade

crops and intermediate goods. Since the focus is on the implications of US policies, the model is more

detailed for the US than the ROW. Second, a number intermediate sectors are added to better represent the

relationship between farm level decisions that affect crop supply and national-level outcomes. Finally, the

numerical model allows for an endogenous labor supply, and the government funds a fixed real transfer to

the consumer using a labor tax. This final set of additions allows the model to capture interactions between

the environmental policies and the fiscal system.24

The functional forms and assumptions for U , yijk, eijk, Lij and intermediate production are laid out in

the following sections. When necessary, the superscript r ∈ {US,ROW} is used to denote goods or activities

in a specific country. For clarity of notation, the superscript is dropped from the functional forms described

below. Unless otherwise noted, arguments and parameters of each function are country specific.

4.1 US Demand

In the numerical model, the representative consumer in the US demands a composite consumption good F

produced primarily with crops, which will be referred to as food, rather than consuming each of the crops

directly. Utility is a set of nested constant-elasticity-of-substitution (CES) functions:

U =
(
αUCF

ρU + (1− αU )
(
L̄− L

)ρU ) 1
ρU

CF =
(
αCF (F − F̄ )ρCF + (1− αCF )CρCF

) 1
ρCF (11)

where ρU and ρCF are functions of the chosen elasticities of substitution, σU and σCF , according to ρ = σ−1
σ ,

the α terms are calibrated share parameters. This utility specification follows closely from Parry (1999). The

upper nest accounts for the tradeoff between aggregate consumption CF while the lower level nest accounts

for the tradeoff between consumption of food and all other consumption. A key feature of this framework

is the inclusion of F̄ in the lower level nest. This is a calibrated parameter that allows the expenditure

elasticities for F and C to differ and, if Ā is positive, for C to be a closer substitute for leisure than food.25

24Note, mitigating agricultural inputs have yet to be incorporated into the numerical model.
25If CF (·) took the standard CES form, the expenditure elasticities for F and C would both be 1. Therefore any change in

CF would lead to proportional increases in both goods and the demand elasticities for F and C with respect to the wage rate
would be the same.
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4.2 US Agricultural Production

The model captures differences in crop yields and emissions rates at county level. Accounting for hetero-

geneity in yields and emissions rates requires solving for county-crop specific N application rates. As a

consequence, simplifications are made in other areas of the model to maintain feasibility. Most significantly,

mitigation policies are assumed to only impact the type of crops grown on irrigated land but not the fraction

of irrigated land in a county. It is therefore possible to treat irrigated land and rainfed land in a given county

as two separate parcels. For example, in the baseline data, Jefferson county Nebraska has 0.056 million

hectares of rainfed cropland, and 0.035 million hectares of irrigated cropland. Jefferson county is treated as

two parcels, one with 0.056 million hectares of rainfed cropland and the other with 0.035 million hectares of

irrigated cropland. Therefore, in the numerical model, I represents states and J represent county-irrigation

pairs. Since not all crops are grown in each region, the crop choice set is indexed by region, Ki.

Yield and Emissions Functions

Yield yijk (nijk) and emissions eijk (nijk) per unit land are quadratic functions of N application rates with

crop-parcel specific parameters estimated from Daycent model output. The parameters of the yield function

are restricted to impose strict concavity.26 The emissions functions represent the sum of direct and indirect

N2O emissions and are assumed to be increasing and weakly convex.

Land Allocation

The unobservable management costs in equation (6) take the form:

Lij (Aij1, . . . , AijK) = Āij
1

αAi

(
lij +

∑
k

ξijkSijk +
∑
k

Sijk logSijk

)
(12)

where Sijk is the share of parcel ij allocated to crop k and αAi , ξijk and lij are calibrated parameters. Given

this specification of management costs, the optimal land allocations in each parcel take simple logit forms:

Aijl (πij1, . . . , πijK) = Āij
exp

(
αAi πijl − ξijl

)∑
k exp

(
αAi πijk − ξijk

) . (13)

The multinomial logit is a limited formulation because it forces an increase in returns for any crop to cause

the same percentage reduction in all other crops. However, this limitation is partially justified due to the

computational benefits of a closed form solution for the land allocation.

26The yield functions are given by yijk = β0
ijk + β1

ijknijk + β2
ijkn

2
ijk, with β1

ijk > 0 and β2
ijk < 0.
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4.3 ROW Demand

The representative consumer in the ROW derives utility from consumption goods C and F and land held

out of agricultural production:

U = (αUC
ρU + (1− αU )F ρU )

1
ρU +

AU
1+ 1

ηAU

γAU (1 + ηAU )
(14)

where AU =
(
Ā−AAG

)
and AAG is the amount of land available for agriculture. Allowing land to enter

the additively separable component of utility is a simple means for endogenizing the supply of land for

agriculture. ROW income is the sum of returns to the labor and land endowments.

4.4 Final and Intermediate Production

Intermediate goods and the final consumption goods, F and C, are produced by profit maximizing firms

with CES technology of the form:

Xr
s = γrs

(∑
q

αrsqX
r
sq
ρrs

) 1
ρrs

(15)

where Xr
s is the production of good s and Xr

sq is quantity of good q used in the production of good s in

country r, and ρrs =
σrsq−1

σrsq
. σrsq, γ

r
s and αrsq are calibrated parameters. s indexes the set of all intermediate

and final goods, while q indexes the set of all primary factors, intermediate goods and final goods. Since

the technology exhibits constant returns to scale, profit in all intermediate industries will be zero. Table 1

displays the specific structure of intermediate production, including the goods produced in each country and

the inputs used in the production of each good.27

N is produced from labor in the US with a linear production function: N = γNL. Therefore PN = PL
γN

.

4.5 Market Clearing and Trade

Aggregate demand must equal aggregate supply at the country level for each non-traded good, and at the

world level for each traded good. Trade is assumed to balanced.

4.6 Solution Method

Given a set of environmental policy variables, equilibrium is computed by searching for a vector of activity

levels, constraint multipliers and prices that solve the first-order conditions for optimal consumption and

27Note, aggregate ROW agricultural production is included as an intermediate good because it is produced from land and
labor with CES technology.
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production, market clearing conditions, and zero-profit conditions.28

The model must be solved as a complementarity problem to account for non-negativity constraints on N

application rates.29 The application rate for crop-parcel ijk must satisfy the complementarity condition:

0 ≤ −
(
Pk

∂yijk
∂nijk

− (PN + τN )− τE
∂eijk
∂nijk

)
⊥ 0 ≤ nijk (16)

where ⊥ indicates that if either condition is non-binding, the other condition must be satisfied with equal-

ity.30 Formally, denote Ω as the vector of choice variables in the equilibrium search and Φ as the vector of

environmental policy variables. Let 0 ≤ EQM(Ω; Φ) be the vector of equilibrium conditions. Given policy

values, equilibrium is solved by searching for Ω that satisfies:31

0 ≤ EQM(Ω; Φ) ⊥ 0 ≤ Ω. (17)

Optimal Policy Problem

An MPEC formulation is used to compute the optimal policy variables that achieve a target level of emissions,

Ē. Denote equilibrium emissions as E(Ω; Φ) and welfare of country r as Ur(Ω; Φ) and let θr be utility weights.

The optimal policy variables are those that maximize the weighted sum of each country’s welfare subject to

the emissions constraint, while all other variables satisfy the equilibrium conditions:

max
Ω,Φ

∑
r

θrUr(Ω; Φ)

subject to:

0 ≤ EQM(Ω; Φ) ⊥ 0 ≤ Ω

E(Ω; Φ) ≤ Ē. (18)

28Activity levels are final consumption quantities, production quantities and inputs used for all final and intermediate goods
and N application rates. Given prices and input levels, there is a closed form solution for the land allocation, so these variables do
not enter the equilibrium search. Constraint multipliers include the multiplier associated with each country’s income constraint
and the multipliers associated with each production constraint. Prices are the domestic prices of all non-traded goods and
the world prices of traded goods. The zero-profit conditions apply to all final and intermediate goods, excluding crops, and
establish the prices of these goods.

29If, given the yield functions, emissions functions and policies, closed form solutions can be derived for the optimal nijk,
then nijk can be removed as a choice variables in the agricultural problem, and the per-unit land profit functions can be written
as functions of prices and policies.

30Equation (16) is a compact representation of the Karush-Kuhn-Tucker conditions for maximization with non-

negativity constraints: −
(
Pk

∂yijk
∂nijk

− (PN + τN )− τE
∂eijk
∂nijk

)
≥ 0, nijk ≥ 0 and the complementary slackness condition

nijk

(
Pk

∂yijk
∂nijk

− (PN + τN )− τE
∂eijk
∂nijk

)
= 0. Using ⊥ removes the need to report the complementary slackness condition

and is consistent with how the problem must be structured for use with numerical complementarity solvers.
31The complementarity conditions are only necessary for the N application rates and the associated first-order conditions.

All other variables are non-negative in equilibrium, so the associated equilibrium conditions will hold with equality.
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The multiplier associated with the emissions constraint represents the utility cost of a marginal change in

emissions.

5 Data and Calibration

5.1 Baseline Data

Production and Consumption

Table 1 summarizes the baseline production and consumption data set. The US portion of this data set was

mainly derived from the 2007 Bureau of Economic Analysis NIPA Input-Output tables (BEA, 2015) and the

USDA’s Foreign Agricultural Service Production, Supply and Distribution (PSD) data (FAS, 2015). Data

for the ROW was derived largely from World Bank (2015) and FAO (2015) statistics. The first column in

each panel reports baseline values of the endowments and crops supplied by each country.32 The value of

seven crops (corn, soybean, wheat, cotton, sorghum, legume hay and grass hay) is calculated using baseline

yields, land allocation and crop prices described below. The remaining columns report the value of goods

consumed in the production of intermediate goods and by representative consumers. The final column in

the ROW panel reports the value of imports to ROW from the US.

In the US, the intermediate goods are meant to broadly reflect the flow of agricultural products from

production to end use. The intermediate goods included are hay (HAY), processed soybeans (SB), ethanol

(ETOH), meat (MEAT) food (F) and an aggregate consumption good (C). These categories reflect the

primary intermediate and final end uses for crops based on USDA data. HAY is an aggregate of all grass hay

and alfalfa, and is used solely for the production of meat. Processed soybeans is a combination of soybeans

and labor that represents soybean meal and soybean oil. Processed soybeans can be used domestically to

produce food or meat or can be exported. Ethanol represents industrial uses of corn, which is predominantly

the production of ethanol for transportation fuel, and is used to produce the aggregate consumption good.

MEAT represents animal agriculture and F represents the final food good purchased by consumers. In the

ROW, only broad aggregate goods are considered, including the aggregates of imported US agricultural

products (AG, US) and ROW agricultural products (AG, ROW) and all agricultural products (AG). This

simple structure allows for the ROW supply and demand of agricultural products, and in turn ROW demand

for US crops, to respond to US environmental policies. See appendix section A.2.1 for details regarding the

construction of the baseline production and consumption data set.

32Since A in the US is used solely by the agricultural sector it is not reported in this table.
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Agriculture

The agricultural model is calibrated to a detailed agricultural data set constructed primarily from USDA

sources including the National Agricultural Statistics Service’s (NASS) annual surveys and Census of Agricul-

ture (NASS, 2014b) and the Economic Research Service’s (ERS) Agricultural Resource Management Survey

(ARMS) data (ERS, 2014a) and Commodity Costs and Returns (ERS, 2014b). Since the model captures

long run equilibrium adjustments, the agricultural data used in the model is the average of the available

annual data reported in the USDA sources for the years 2003 to 2012.

The model represents the production of seven crops: corn, soybean, wheat, cotton, sorghum, legume hay

and grass hay.33 These seven crops comprise the majority of US crop production, accounting for roughly

90% of land allocated to field crops, and 87% of the value of crop production in 2002, 2007 and 2012 (NASS,

2014b). Only the most significant crop variety in terms of land shares and quantities is modeled. Therefore,

cotton represents upland cotton and wheat represents winter wheat.

Production decisions are modeled in 1,968 counties across 35 states. Counties are included based on the

quantity of land allocated to the seven modeled crops. The included counties, mapped in Figure A.1, account

for more than 95% of total land allocated to the seven modeled crops in each year between 2002 and 2012.

Irrigated agriculture is modeled when a significant (> 5%) share of total land in a county is irrigated. A map

of irrigated and rainfed counties is provided in Figure A.2. In total, 2,572 county-irrigation combinations are

included in the model, with 1,329 counties containing only rainfed cropland, 604 counties containing both

rainfed and irrigated cropland and 35 counties containing only irrigated cropland. Crop shares by county

and irrigation status were calculated from harvested acreage data from the Census of Agriculture reported by

NASS (2014b). The average of the 2007 and 2012 census data was used to calculate these shares. Irrigation

data is from the Farm and Ranch Irrigation Survey supplement to the Census of Agriculture. See section

A.2.2 for additional information about the selection of counties and the construction of crop shares.

County level yields for rainfed and irrigated crop production, state level N fertilizer application rates,

and productions costs for farm production regions are also collected for use in calibration from the Census

of Agriculture, ARMS and Commodity Costs and Returns data, respectively.

5.2 Parameters

US Utility

The US utility functions, equation (11), are calibrated to match key elasticities of demand and replicate

baseline quantities. First, σU and the ratio of the value of leisure to the total value of consumption are set

33Corn and sorghum are harvested for grain. Legume hay is represented by alfalfa.
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so that the compensated labor supply elasticity is 0.4 and the compensated elasticity of labor supply is 0.15.

These values are consistent with similar studies (Parry, 1999; Goulder et al., 1999; Bovenberg et al., 2008),

although a recent review suggests that aggregate labor supply elasticities may have fallen in recent years

(McClelland and Mok, 2012). Then F̄ is chosen so that the expenditure elasticity for F is 0.4 and σCF is

chosen so that the uncompensated demand elasticity for F is -0.35. These values are consistent both with

previous studies focusing on agricultural policies (Parry, 1999) and empirical estimates (Muhammad et al.,

2011).34

US Intermediate Production

Grass hay and alfalfa are assumed to close substitutes in the production of the hay aggregate (σ = 1.5). The

elasticities of substitution for ethanol production and soybean processing are set close to zero (σ = 0.05), so

that labor is nearly a perfect compliment to the crop input in both sectors. The elasticities of substitution

for C, MEAT and F production are set to 0.5.

Yield and Emissions Functions

The yield and emissions function parameters are estimated from output of the Daycent biogeochemical

model (Parton et al., 1998) used in the EPA’s GHG Inventory (US EPA, 2014) to estimate GHG emissions

from agricultural soils. Daycent is a widely used and highly cited process model that simulates carbon,

nitrogen, phosphorous and sulfur dynamics for agroecosystems on a daily timestep based on site specific

characteristics for soil and weather. Critically, Daycent is able to simulate the carbon in grain and straw

yields, the N2O emissions resulting from N available from synthetic fertilizers, livestock manure, crop residues

and the mineralization of soil organic matter and asymbiotic fixation, and N volatilization and leaching. The

model is capable of simulating a wide range of crop patterns and numerous management practices, including

fertilization rates, irrigation status and tillage practice.

To generate a dataset from which the yield and emissions functions can be estimated, Daycent simulations

were conducted for a large sample of agricultural sites across the US. The simulations are based on site-specific

soil attributes and daily weather and the outputs represents average yield and N2O emissions over a 30 year

period after a management change. Linear mixed effects models are used to estimate the relationship between

yields and emissions, and crop and management choices from the Daycent model outputs. The explanatory

variables in the regression models include N applied and N applied squared, organic amendments and organic

amendments squared, the crop residue removal rate, dummy variables for crop, tillage, irrigation status and

34Parry (1999) uses -0.4 for the uncompensated demand elasticity for agricultural products, and 0.4 for the income elasticity
of agricultural products. (Muhammad et al., 2011) suggest values closer to 0.35 and -0.3 for the income and uncompensated
demand elasticities for food, respectively.
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fertilizer timing and site specific average temperature, a soil moisture index and soil sand fraction as well as

first order interactions between all variables. Separate models were estimated for broad regions defined in

Table A.1. Yield and emissions as functions of N applied are obtained for each county, irrigation status and

crop combination, ijk, by evaluating the models for all other variables. County level heterogeneity arises

from state level average temperature and county level data for the moisture index.

An adjusted set of yield functions are derived from the estimated yield functions for use in the economic

model. The yield functions that enter the economic model are calibrated so that, given baseline prices, the

yield and N input rate predictions of the economic model match baseline economic data at the regional level,

while Daycent output drives the heterogeneity in yields and optimal N application rates at the parcel level.

Additional details are provided in section A.3.

Land Management Costs

Parameters αAi in the land management cost function are assumed to be uniform and are calibrated so that

in the baseline the corn area elasticity with respect to the corn price is 0.35, which is between the short and

long run estimates of (Hendricks et al., 2014) and is consistent with more dated evidence (Lin et al., 2000).

The remaining own price elasticities for the remaining crops lie between 0.16 (wheat) and 0.38 (sorghum).

Given values of αAi , parameters ξijk are set so that predicted land shares match observed land shares. Finally,

lij are set so that total management costs for each parcel are zero at the baseline land allocation.

ROW Utility

σROWU is calibrated so the uncompensated elasticity of demand for F is -0.45. This value is chosen so that

the elasticity of demand for F is slightly more elastic in the ROW than the US, consistent with the findings

of Muhammad et al. (2011).35

ROW Production

The elasticity of land supply is calibrated to 0.1, which is consistent with empirical estimates from Barr

et al. (2011). A low elasticity value is chosen here because ROW agricultural production represents all

agricultural activities, so the extensive margin will not account for shifts between agricultural uses, such as

between cropland and pasture. The elasticity of substitution between A and L in the production of ROW

agricultural products, σAGROW , is set to 0.05 so that the elasticity of output per unit land with respect to

the price of agricultural products is small (Berry and Schlenker, 2011; Scott, 2013).

35A standard CES utility function is used for the ROW because evidence suggests that the income elasticity of food con-
sumption is closer to 1 outside the US (Muhammad et al., 2011).
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The elasticity of substitution for the ROW agricultural aggregate and the elasticity of substitution for

US agricultural products are calibrated so the aggregate ROW demand for US crops is -0.4 and the ROW

demand elasticity for corn imports is -0.6. The remaining elasticities of demand for crop imports range from

-0.53 to -0.66. These elasticities of export demand are roughly in line with Gardiner and Dixit (1987).

The elasticity of substitution for the ROW agricultural consumption good is set so that labor is nearly

a perfect compliment to agricultural products (σ = 0.05).

6 Preliminary Results

The numerical model is used to evaluate the welfare implications of reducing agricultural N2O emissions for

an emissions tax, and a range of policy options based on easily observable quantities. In addition to a tax

on emissions and a uniform N tax, a non-uniform N tax that varies by region (tNi) along with combinations

of the N taxes and crop-specific acreage taxes, both uniform (tN + tAk,tNi + tAk) and non-uniform across

regions (tN + tAik and tNi + tAik) are considered.36 Costs are simulated for a series of decreasing total

emissions targets, up to a 5% overall reduction in agricultural N2O.

The first step in the analysis is to obtain the values of the taxes that minimize the primary costs of

achieving the series emissions targets by solving the problem in equation (18). To recover optimal policy

values that account only for the environmental motivation, θr are set to one for each country, tL is set to zero

and all government revenue to be returned to the consumer as a lump sum transfer. These modifications

prevent the environmental policies from being set for terms of trade or revenue raising purposes or to alleviate

a pre-existing distortion.

Marginal Primary Costs

The marginal primary costs of emissions reductions for each policy are plotted in Figure 1 and presented in

tabular form, along with the ratio of primary costs to the primary costs of the emissions tax, in Table 2. To

aid with interpretation, the average N application rate for all US cropland and the N2O conversion factor,

the percent of N applied that is converted to N in N2O, are also reported in Table 2. The simulation results

suggest that even with first-best policies, only small cuts in N2O are achievable at reasonable costs. With

the unavailable tax on N2O, a 2.5% reduction in emissions can be achieved at marginal costs of just over 60

$/tCO2e. The costs of second-best policies are markedly higher, but can approach first-best.

The uniform tax on N is the most costly policy considered and is not close to Pigouvian. At a 2.5%

36The costs of the two sets of acreage taxes are also simulated independently, but these policies from the results presented
below because the marginal primary costs are considerably higher than any of the other policies.
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reduction in emissions, the marginal costs of this instrument are nearly 40% higher than the emissions tax.

The additional costs are incurred because the tax on N cannot account for differences in emissions rates

across crops or parcels. As a result, the uniform tax on N induces too drastic a reduction in N use and too

small a reduction in the N2O conversion rate, relative to the tax on emissions.

Allowing the N tax to vary across regions drastically reduces primary costs. The non-uniform N tax

achieves a 2.5% reduction at marginal costs only 10% higher than the emissions tax, but more than 20%

percent lower than the uniform N tax. The non-uniform N tax is able to exploit regional differences in

marginal yield and N2O rates, so the land allocation and input use effects more closely resemble those of

the emissions tax. As a result, the reduction in N use is not nearly as drastic as with the uniform N tax.

However, heterogeneity in emissions rates and yields within broader regions prevent the non-uniform N tax

from achieving the first-best. That the non-uniform tax on N reduces emissions with costs approaching the

first-best policy indicates that the majority of the heterogeneity in yield and emission rates occurs at a fairly

broad spatial scale.

Regionally differentiated policies could create incentives for evasion by transporting taxed goods across

borders. However, only 10 broad regions are considered in this analysis, so transporting fertilizer from

outside a region is unlikely to be cost effective for a vast majority of parcels.

Pairing N taxes with crop-specific acreage taxes is another strategy that will lower marginal costs relative

to N taxes alone. N taxes alter the land allocation based on N application rates, rather than emissions rates.

When paired with an N tax the acreage taxes will, to a limited extent, correct the allocation of land by

altering the relative returns to crops. However, the reductions in costs due to the inclusion of acreage taxes

are small. For a 2.5% reduction in emissions, pairing crop-specific acreage taxes with a uniform N tax lowers

marginal costs by only 3% relative to the uniform N tax alone. Pairing crop-specific acreage taxes with a

non-uniform N tax leads to cost reductions of a similar magnitude. Allowing the acreage taxes to vary by

region lowers costs further but only by a small amount, less than 1% relative to the crop-specific acreage

taxes.

Although the cost reductions that come with pairing acreage taxes are small, the marginal costs of a

non-uniform N tax and acreage taxes are nearly as low as the unavailable emissions tax. The combinations

of the non-uniform N tax with uniform and regionally varying acreage taxes are only 5% and 6% more

expensive than the unavailable emissions tax. This illustrates that a well designed policy that regulates

easily observable quantities can reduce N2O emissions at costs only slightly higher than the first-best policy.

Marginal primary costs increase at an increasing rate for larger cuts in emissions. The rate of increase

is similar for all policies. For a doubling in emission reductions from 2.5% to 5%, the marginal cost of

the emissions tax increased by a factor of 2.16. As illustrated by the roughly constant primary cost ratios,
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the marginal costs of the second-best policies increase at nearly the same rate as the marginal costs of the

emissions tax. For example, for the same doubling of emission reductions, the marginal costs of the uniform

N tax increases by a factor of 2.21.37

Optimal Emission Reductions

The optimal level of emissions reductions for a given marginal social cost of CO2 can be determined from

Figure 1 by finding the level of emissions reductions that equates a given marginal social cost of CO2 and

marginal primary costs. These optimal levels of emissions reductions for each policy under three estimates

for the social cost of CO2 (Interagency Working Group on Social Cost of Carbon, 2013) are reported in

Table 3.38 At a social cost of carbon of 50 $/tCO2, it would be optimal to reduce N2O emissions by 2%

if the emissions tax were available. Optimal emissions reductions would only be 1.5% for a uniform N tax.

But, optimal emissions reductions are 1.9% for the differentiated N tax and nearly 2% for the combinations

of a differentiated N tax and crop specific acreage taxes.

Impacts on Agricultural Sector

Figure 4 allows for a comparison of alternative policies along a number of key dimensions that affect welfare

of the agricultural sector in addition to primary costs. The first row in each panel reports total costs of

achieving the targeted reduction in emissions, in terms of negative equivalent variation (EV). The second

row reports total costs as a ratio of the total costs of the emissions tax. Overall, the trends in total costs

follow very closely the trends in marginal costs discussed above.

The next four rows report changes in agricultural profit and agricultural tax payments due to each policy,

both on a per hectare basis, and as a ratio of the emissions tax outcome. For a 2.5% reduction in emissions,

the emissions tax causes a modest, 28 $/ha, reduction in agricultural profit. This reduction in profit is

smaller than the increase in agricultural taxes, 44 $/ha, because reductions in supply due to shifts in land

and N use due to the policy elevate crop prices. The final row in each panel reports the sum of the change

in profit and tax payments, which quantifies the change in profits due to changes in crop prices.

Even though the alternative policies result in costs similar to the emissions tax, there are considerable

differences in the impacts on profits of the agricultural sector. The impact of the uniform and non-uniform N

taxes on profits are only 14% and 20% of the impacts of the emissions tax, respectively. The smaller impacts

37Note, the N2O conversion ratio increases with larger emissions reductions because marginal emissions, the change in N2O
due to a change in N, is less than one on average. Reducing N2O by scaling back N applications will therefore cause the N2O
conversion ratio to increase.

38The social costs of carbon used here are based on US government estimates for the social cost of carbon to be used in
regulatory impact analyses (Interagency Working Group on Social Cost of Carbon, 2013). These values range from 11 to
90 $/tCO2 for 2010 The 30 and 50 $/tCO2 values used in 3 correspond to the estimates using 3% and 2.5% discount rates
respectively. The 90 $/tCO2 estimate is meant to represent larger than expected impacts of climate change.
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on profit for the N taxes are due primarily to lower tax payments, which are about 40% of the emissions

tax payments. Change in profits do to elevated crop prices are much more similar. The large differences in

tax payments for the emissions and N tax follows a theoretical result by Stevens (1988), who shows that for

the same reduction in emissions the ratio of taxes collected by an input tax and emissions tax will be below

one if the emissions function exhibits decreasing returns to scale, and above one if the emissions function

exhibits increasing returns to scale.39 The aggregate emissions function, as a function of only N application

rates, exhibits returns of to scale of 0.4-0.33 depending on the level of emissions reductions, so the ratio of

tax revenues will be well below one.40

Unlike the N taxes alone, the combinations of N taxes and acreage taxes have a larger impact on farmer

profit than the emissions tax. This is because these policies induce larger tax payments than the emissions

tax. For combinations of policies, the land allocation and N application rates are both inputs to the aggregate

emissions function, and the emissions function exhibits increasing returns to scale.41 Even more striking is

the difference in farmer profit between N taxes alone and N taxes paired with acreage taxes. Pairing the

uniform N tax with either set of acreage taxes causes the reduction in profits to jump from just under 4 $/ha

to over 30 $/ha. Similar results occur when pairing the non-uniform N tax with either set of acreage taxes,

although the impact on profits is not as large. These results raise questions about second-best combinations

of policies if the welfare of the regulated sector is a concern. The small efficiency gains due to pairing acreage

taxes with a N tax leads to substantial increases in tax payments and reductions in farmer profit.

7 Conclusion

This paper analyzes the primary costs of reducing N2O emissions from the agricultural sector using an

integrated biophysical and economic framework. Preliminary simulations suggest that an emissions tax can

reduce emissions by 2.5% at a marginal cost of about 60 $/tCO2e. A uniform N tax is substantially, 40%

more expensive than the emissions tax. The most promising alternative policy is a non-uniform N tax that

varies by region. Using this instrument emissions reductions are only 10% more costly than the emissions

tax and has a much smaller impact on farm profit. Pairing input taxes with crop acreage taxes can slightly

lower costs, but at the expense of large reductions in farmer profit.

The marginal cost estimates presented here are high relative to previous studies (McCarl and Schneider,

39Specifically, Stevens (1988) shows that, if the emissions function is homogeneous, the ratio of tax revenues will equal the
degree of homogeneity of the emissions function.

40The relevant emissions function for the N taxes is E(nij) =
∑

ijk Aijk(nij)eijk(nijk), where Aijk(nijk) is the land
allocation resulting from the choice of N rates. Local approximations of the returns to scale for this function are obtained by
calculating the change in emissions due to a 1% increasing all N application rates, while allowing the land allocation to adjust.

41In this case, E(nij ,Aij) =
∑

ijk Aijkeijk(nijk). If nij is fixed, E exhibits constant returns to scale. Therefore when both
nij and Aij are treated as inputs returns to scale must be greater than one.

24



2001; Garnache et al., 2014). However, these cost estimates are likely to be lower when mitigating inputs are

included in the numerical model. Further, these costs are heavily dependent on key parameter assumptions,

such as the crop area elasticities and the elasticity of food demand. A methodical sensitivity analysis of

these parameter assumptions to identify the range of potential costs is a crucial next step.
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Table 1: Baseline Input-Output Flows for Production and Consumption (billion $)

A. US

Endow, Supply HAY SB ETOH MEAT F C CF U

L 12,944.7 9.29 5.96 83.6 214.26 9,307.25 3,250
Corn 63.98 16.12 29.43 6.91
W. Wheat 9.11 4.46
Sorghum 2.95 1.37
Cotton 4.99 1.25
Grass Hay 6.08 6.08
Alfalfa 7.94 7.94
Soybean 32.9 19.74
O 1.66 1.66
HAY 14.02
SB 18.87 4.35
ETOH 22.09
MEAT 51.75 147.3
F 88.5 377.29
C 9,372.71
CF 9,750

B. ROW

Endow, Supply AG, ROW AG, US AG F C U Imports

L 28,992.6 912.6 1,031.13 27,048.87
A 643.5 257.4 386.1
Corn 11.52 11.52
W. Wheat 4.65 4.65
Sorghum 1.58 1.58
Cotton 3.74 3.74
Soybean 13.16 13.16
SB 5.81 5.81
AG, ROW 1,170
AG, US 40.46
AG 1,210.46
F 2,241.58
C 27,008.42 -40.46

Notes: In the US, the value of labor used for agriculture is $74.33 billion. Profit from agriculture, which enters the consumer’s
income, is $55.3 billion.
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Table 2: Marginal Primary Costs

tE tN tNi tN + tAk tNi + tAk tN + tAik tNi + tAik

2.5% Reduction
$/tCO2e 60.78 84.69 66.20 82.10 64.41 81.27 64.10

ratio to tE 1.00 1.39 1.09 1.35 1.06 1.34 1.05

N Use (kg/ha) 83.11 81.18 82.64 81.44 82.83 81.51 82.85
% N to N2O−N 1.79 1.83 1.80 1.82 1.79 1.82 1.79

5% Reduction
$/tCO2e 131.28 187.63 145.63 180.09 140.88 178.01 140.10

ratio to tE 1.00 1.43 1.11 1.37 1.07 1.36 1.07

N Use (kg/ha) 78.51 74.67 77.50 75.25 77.91 75.39 77.96
% N to N2O−N 1.85 1.94 1.87 1.93 1.86 1.92 1.86
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Table 3: Optimal Level of Emission Reductions (%)

Cost of Carbon tE tN tNi tN + tAk tNi + tAk tN + tAik tNi + tAik

30 $/tCO2e 1.27 0.92 1.17 0.94 1.20 0.95 1.21
50 $/tCO2e 2.08 1.50 1.92 1.54 1.97 1.56 1.97
90 $/tCO2e 3.59 2.61 3.29 2.69 3.38 2.72 3.40
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Table 4: Impacts of Alternative Policies

tE tN tNi tN + tAk tNi + tAk tN + tAik tNi + tAik

2.5% Reduction
-EV (million $) 55.63 78.13 60.54 75.88 58.97 75.06 58.69

ratio to tE 1.00 1.40 1.09 1.36 1.06 1.35 1.06

∆ΠA ($/ha) -27.95 -3.89 -5.59 -32.01 -28.25 -36.30 -28.75
ratio to tE 1.00 0.14 0.20 1.15 1.01 1.30 1.03

∆ taxes ($/ha) 43.99 19.70 17.99 52.84 44.99 57.58 45.58
ratio to tE 1.00 0.45 0.41 1.20 1.02 1.31 1.04

∆ΠA + ∆taxes ($/ha) 16.04 15.81 12.39 20.83 16.73 21.28 16.83

5% Reduction
-EV (million $) 232.37 329.74 255.58 318.31 248.03 314.62 246.74

ratio to tE 1.00 1.42 1.10 1.37 1.07 1.35 1.06

∆ΠA ($/ha) -58.47 -6.29 -10.19 -69.06 -59.83 -77.68 -61.03
ratio to tE 1.00 0.11 0.17 1.18 1.02 1.33 1.04

∆ taxes ($/ha) 92.63 39.93 36.63 113.64 95.70 123.14 97.13
ratio to tE 1.00 0.43 0.40 1.23 1.03 1.33 1.05

∆ΠA + ∆taxes ($/ha) 34.16 33.64 26.44 44.58 35.87 45.46 36.09
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Figure 1: Marginal Primary Costs
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Appendix

A.1 Deriving Analytical Results

A.1.1 First-Best Policies

If fiscal considerations are ignored, the Pigouvian prescription holds in the analytic framework. The social

optimum outcome is achieved by setting an emissions tax equal to the marginal damages of emissions.

Suppose the government can implement taxes or subsidies on emissions, tE , the purchase of n and m,

tN and tM , and the land allocation, tk. The first order conditions of the representative consumers problem

are:1

Uk = Pk ∀k ∈ K (A.1)

where Uk is the derivative of the utility function with respect to crop k.

Let ynijk and ymijk be the derivatives of the yield functions with respect to n and m respectively, and

define the superscripted emissions functions in the same manner. Let Lkij be the derivatives of the land

management cost function of parcel ij with respect the land allocated to crop k. Assuming interior solutions

for all Aij , nij and mij , the first order conditions for competitive equilibrium are:

Ukynijk = (1 + tN ) + tEe
n
ijk

Ukymijk = (1 + tM ) + tEe
m
ijk

Ukyijk = (1 + tN )nijk + (1 + tM )mijk + lijk + Lkij + λij + tEeijk + tk

∀i ∈ I, j ∈ Ji, k ∈ K (A.2)

and the land constraint for each parcel, where λij is the multiplier on the land constraint and derivatives

Uk have been substituted in for Pk following equation (A.1).

Social Planner’s Problem

Let A, n and m be vectors of the land allocations and input use for each crop and parcel. The social planner

maximizes utility of the representative consumer by choosing all Aijk, nijk and mijk while recognizing that

the choices impact emissions:2

max
A,n,m

U
(
Y1, . . . , YK , L̄−M −N − LA

)
− φ (E)

subject to:∑
k

Aijk ≤ Āij ∀i ∈ I, j ∈ Ji (A.3)

where M , N and LA are the total labor used for crop production defined in Section 3.

1The budget constraint is met with equality so C = ΠA + L̄+G−
∑
kPkCk, which can be plugged into the utility function.

2The land allocation and input rates are the only choice variables because Ck = Yk, Yk is fully determined by the other
variables, and C is the difference in the labor endowment and the total labor inputs to crop production.
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The first order conditions of the social planner’s problem are:

Ukynijk = 1 + φ′enijk

Ukymijk = 1 + φ′emijk

Ukyijk = nijk +mijk + lijk + Lkij + λSPPij + φ′eijk

∀i ∈ I, j ∈ Ji, k ∈ K (A.4)

along with the land constraint for each parcel. λSPPij are the multipliers on the land constraints.

A emissions tax set equal to the marginal damages of a unit of pollution establishes socially optimal

outcomes; if tE = φ′ and all other taxes are zero then (A.2) match (A.4).

The emissions tax is optimal because it taxes, or subsidizes, all inputs and the land allocated to crop

production at the marginal contribution to emissions. Provided these taxes and subsidies can be mimicked,

the first-best can be achieved with other policies even if emissions are unobservable.

A.1.2 Derivations of Marginal Welfare Formulas

The indirect utility function, excluding disutility from emissions, is:

V (P1 . . . PK ,ΠA, G) = max
C1,...,Ck,C

u(C1, . . . , Ck, C) + λI

[
G+ ΠA + L̄−

∑
k

PkCk − C

]
(A.5)

and from the envelope theorem:

∂V

∂Pk
= −λICk

∂V

∂ΠA
=
∂V

∂G
= λI . (A.6)

Totally differentiating V with respect to a generic policy Ω yields:3

dV

dΩ
=
∑
k

∂V

∂Pk

dPk
dΩ

+
∂V

∂ΠA

dΠA

dΩ
+
∂V

∂G

dG

dΩ

= −λI
∑
k

Ck
dPk
dΩ

+ λI

(
dΠA

dΩ
+
dG

dΩ

)
− 1

λI

dV

dΩ
=
∑
k

Ck
dPk
dΩ
− dΠA

dΩ
− dG

dΩ
(A.7)

where the second line substitutes in the values from equation (A.6).

Likewise, the indirect profit function is:

ΠA (P1 . . . PK ,Ω) =
∑
ij

(
max

Aij ,nij ,mij

∑
k

πijkAijk − Lij + λij

[
Āij −

∑
k

Aijk

])
(A.8)

and
∂ΠA

∂Ω
=
∑
ijk

Aijk
∂πijk
∂Ω

∂ΠA

∂Pk
=
∑
ij

Aijkyijk = Yk. (A.9)

3The policy is assumed to only indirectly impact the consumer through prices, but directly impacts landowners.

A.2



The total derivative of profit with respect to the policy is therefore:

dΠA

dΩ
=
∑
k

∂ΠA

∂Pk

dPk
dΩ

+
∂ΠA

∂Ω
=
∑
k

Yk
dPk
dΩ

+
∑
ijk

Aijk
∂πijk
∂Ω

. (A.10)

Recognizing that Yk = Ck in equilibrium, and plugging equation (A.10) into equation (A.7) yields:

− 1

λI

dV

dΩ
= −

∑
ijk

Aijk
∂πijk
∂Ω

− dG

dΩ
(A.11)

which can be used construct the marginal impacts of the policy being analyzed.

Emissions Tax For an emissions tax, dG
dtE

= tE
dE
dtE

+E and
∂πijk
∂tE

= eijk. Plugging these expressions into

equation (A.11) provides:

− 1

λI

dV

dtE
= −tE

dE

dtE
.

Equation (8) is obtained by substituting in the total derivative of emissions with respect to the emissions

tax:
dE

dtE
=
∑
ijk

eijk
dAijk
dtE

+
∑
ijk

Aijke
n
ijk

dnijk
dtE

+
∑
ijk

Aijke
m
ijk

dmijk

dtE

along with the relationships tE =
Pky

n
ijk−1

enijk
and tE =

Pky
m
ijk−1

emijk
, which are the first order conditions for input

use.

Uniform Input Tax For a uniform input tax, dG
dtN

= tN
dN
dtN

+N and
∂πijk
∂tN

= nijk, so (A.11) becomes:

− 1

λI

dV

dtN
= −tN

dN

dtN
.

Equation (9) is obtained by substituting in the total derivative of N with respect to the input tax:

dN

dtN
=
∑
ijk

nijk
dAijk
dtN

+
∑
ijk

Aijk
dnijk
dtN

(A.12)

and the first-order conditions for input use tN = Pky
n
ijk − 1.

Acreage Tax In this case, dG
dth

= th
dAh
dth

+ Ah where Ah =
∑
ij Aijk and

∂πijk
∂th

= 1 if k = h and is

zero otherwise. Finally, the first order conditions for the land allocation provides the expression th =

πijk − Lkij − λij .

A.2 Data

A.2.1 Production and Consumption

General Overview

The value of inputs and output for each intermediate sector and each end use, displayed in Table 1 are

established using the end-use shares and the share of labor to the total value of production for each good
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and by setting the value of labor in aggregate consumption to satisfy the representative consumers’ budget

constraints. The total value of the endowments are then determined based on assumptions regarding the

value of the endowments consumed directly by the representative consumer.

The total value of consumption (CF) in US is set to $9.75 trillion, which is total personal consumption

expenditures from 2007 (BEA, 2015). End-use shares for crops and intermediate goods are based on NIPA

data and the average of 2006 to 2008 PSD data and more detailed USDA data. To simplify the model, end

uses that account for only a small fraction of total production or are economically insignificant are ignored.

The share of labor inputs to the value of output for processed soybeans, meat and food is based on NIPA

data, while the labor share of ethanol production is set to be broadly consistent with values used in the

literature (Plevin and Mueller, 2008; Bento et al., 2015). See section below for more details regarding the

construction of the baseline shares. Finally, the ratio of the value of leisure to the value of consumption is

set based on the chosen compensated and uncompensated labor supply elasticities.

Total value of consumption in the ROW is $29.25 trillion. This value is based on the assumption that the

US accounts for 25% of world GDP, which is broadly consistent with data for the years 2000 to 2010 (World

Bank, 2015). The ROW agricultural aggregate is constructed under the assumptions that ROW agricultural

production makes up 4% of the total value of consumption (World Bank, 2015), and that the factor share

of land in agricultural production is 0.22 (ERS, 2014).4 The total value of agricultural products in ROW is

domestic production plus all imports of crops and intermediate agricultural goods. In the ROW, 40% of the

land endowment is used for agricultural production. This is based on FAO statistics for the years 2000 to

2010 for the share of land used for agricultural purposes to total land for all countries except the US (FAO,

2015). The share of labor in food production in ROW is assumed to be the same as in the US.

Baseline Shares

This section describes how input and end-use shares for US intermediate production are constructed from the

2007 Bureau of Economic Analysis NIPA Input-Output tables (BEA, 2015), the USDA’s Foreign Agricultural

Service Production, Supply and Distribution (PSD) data (FAS, 2015) and other USDA sources.5 These shares

are used to construct the baseline production and consumption data presented in Table 1.

Sector Definitions The industry codes used to define processed soybeans, meat and food sectors in the

model are: 1) processed soybeans: 31122A - Soybean and other oilseed processing 2) Meat: 1121A0 -

Beef cattle ranching and farming, including feedlots and dual-purpose ranching and farming; 112120 - Dairy

cattle and milk production; 112A00 - Animal production, except cattle and poultry and eggs; 311119 - Other

animal food manufacturing 3) Food: all industries classified as 311 - Food manufacturing or 312 - Beverage

and Tobacco Product Manufacturing, excluding for animal food manufacturing, tobacco manufacturing and

industries already included as processed soybeans or meat.

End-use Shares Since the model is static, changes in crop stocks are not considered. On average, stock

changes are a relatively unimportant portion of US crop supply for corn, sorghum and soybeans, with the

change in stocks making up less than 10% of total consumption for at least nine of the ten years from

2003 to 2010. Stock changes can be much more significant for wheat and cotton, but are associated with

unexpectedly low or high production levels. The model reflects long-run average yields, so stock changes

4These values are broadly consistent for the time period around 2007. However, the share of agricultural production to
ROW GDP is falling over time (World Bank, 2015).

5The detailed producer price NIPA IO tables after redefinition are used.
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become a less critical portion of total US crop supply. Crop imports to the US are also not included. Hay is

largely not traded, and the US is a major net importer of each of the remaining crops. Imports make up less

than a 1% share of total domestic consumption for corn, soybeans, sorghum and cotton.6 Wheat imports

are more significant, but make up only about 10% of total US consumption in the years 2006-2008, and a

smaller percentage in the years immediately preceding and proceeding years.

Corn is used for ethanol, food, feed (used in meat production) and exported. Feed and export shares

are from PSD data. Food and ethanol shares are based on PSD data and consumption end-use data in the

USDA Economic Research Service (ERS) Feed Grains Yearbook Tables (ERS, 2015a). In the PSD data,

36% of corn is used for food, seed and industrial uses. The Feed Grains Yearbook data shows that roughly

70% of corn used for food, feed or industrial use goes to ethanol for fuel. This is based on the average of

2006 to 2008. The remainder is assumed to be used for food.7 All ethanol is assumed to be used in the

production of the aggregate consumption good.

Wheat is used in food production or exported. The small portion of wheat production that is used

as feed is ignored because it accounts for less than 7% of total consumption between 2006 and 2008. All

wheat consumption categorized as “Food, seed or industrial uses” in the PSD data is assumed to go to food

production because there are no major industrial uses of wheat.8

Soybeans are either exported or processed into meal and oil.9 Soybean meal and oil are then used as

food or feed and can be exported.10 The vast majority, 75%, of cotton is exported. The remainder is used

domestically to produce the composite good.

Based on the NIPA data, 74% of meat production is used in food production. The remainder of meat

production is own-used. Likewise, 81% of food production is consumed, while the remainder is own-used.

To construct these shares, exports (1.6% for meat 5.6% for food) and other end uses (2% for meat and 20%

for food) are ignored.

Labor Shares The share of labor in the total value of processed soybeans, meat and food production are

0.32, 0.42 and 0.46 respectively. These shares represent the total value of inputs from sectors in the NIPA

data that are not explicitly represented in the model. For the purposes of calculating labor input shares

from the NIPA data, industry codes 1111A0-Oilseed farming, 1111B0-Grain farming and 11900-Other crop

farming are assumed to represent the value of crops supplied to the intermediate production sectors and

325190-Other basic organic chemical manufacturing represents ethanol production. The share of labor used

in ethanol productions is 0.27, which is broadly consistent with cost estimates for the baseline period and

values used in the literature (Plevin and Mueller, 2008; Bento et al., 2015).

A.2.2 Agriculture

Crop and County Coverage

The seven crops encompass the majority of US crop production, accounting for roughly 90% of land allocated

to field crops, and 87% of the value of crop production in 2002, 2007 and 2012 according to USDA data (NASS,

6Imports of processed soybeans (mean and oil) are also very small less than 1% of US consumption.
7A larger share of corn for ethanol is used because in more recent years ethanol production becomes more prominent in later

years.
8See Table 5 of the USDA’s Wheat Data (ERS, 2015b).
9Unprocessed soybeans used domestically as animal feed are ignored because this end use accounts for less than 4% of total

consumption between 2006 and 2008.
10Soybean oil used for industrial purposes is not considered because it is less than a 3% of total processed soybean output.
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2014). Only the most significant crop variety in terms of land shares and quantities is modeled. Therefore,

cotton represents upland cotton and wheat represents winter wheat. Upland cotton has made up more than

97% of total land planted to cotton in each year between 2000 and 2013 (NASS, 2014). Pima cotton made

up more than 10% of cotton acres in only New Mexico and California, both of which account for less than

3% of total land allocated to cotton. Winter wheat accounted for more than 69% of total wheat in each year

from 2000 to 2014. Over this same time period, durum wheat never accounted for more than 5% of total

wheat acres, while spring wheat accounted for approximately 25% of total wheat acres.

Counties must meet two criteria based on the quantity of land allocated to the seven modeled crops to

be included in the model. First, only counties located in states that contain more than 0.25% of total land

allocated to the modeled crops in both 2007 and 2012 are included. This criteria drops 13 states from the

analysis, but only a very small portion, less than 1.5%, of land allocated to the modeled crops.11 Second,

counties must contain more than 10,000 hectares of land allocated to the modeled crops in 2007 or 2012.

There are 864 counties within the included states that fail to meet this criteria, but these dropped counties

accounted for less than 3% of total land allocated to the modeled crops in the included states.

Irrigated agriculture is modeled in counties if the share of irrigated cropland is at least 5% of total land.

Rainfed agriculture is not modeled in counties with more than 90% irrigated cropland. Just under 90% of

irrigated cropland in the modeled counties and crops is accounted for with these assumptions.

Yields, Inputs and Costs

County level yields for rainfed and irrigated crop production are from the Census of Agriculture. These

county level values, along with county level harvested crop shares are used to calculate state and regional

average yields for each crop and irrigation category for the counties included in the model. These aggregate

statistics are used along with Daycent output to calibrate the yield functions that enter the economic model.

N fertilizer application rates for rainfed and irrigated corn, soybeans, wheat, cotton and sorghum are

calculated from multiple survey years of state level ARMS data. State level application rates are calculated

from the ARMS data by multiplying the percent of acres treated with N fertilizer by the units of N applied

per unit land. Since the ARMS breaks down farms by irrigation system, application rates for irrigated crop

production are a weighted average rates for farms with gravity or pressure irrigation systems. The application

rates used in the model are averages across each available survey year between 2002 and 2012.12 Since grass

hay is not covered by ARMS, N application rates by region for grass hay are from the FASOM model data

set, which was used to conduct the EPA’s Regulatory Impact Assessment of the expanded Renewable Fuel

Standard program (Beach et al., 2010). Legume hay is assumed to receive no N fertilizer.

County level data on yields and application rates are required for any county, irrigation category and

crop that is included in the model, but for which the N choice is not modeled. If county level data is not

available, the first available average data from the state, region, or national level is used.

Productions costs for corn, soybeans, wheat, cotton, and sorghum are based on data from the Commodity

Costs and Returns. Total production costs are calculated as the sum of all items designated operating

costs plus the costs from hired labor, capital recovery on machinery, taxes and insurance and general farm

11The states dropped are Arizona, Connecticut, Delaware, Florida, Maine, Massachusetts, Nevada, New Hampshire, New
Jersey, New Mexico, Rhode Island, Vermont and West Virginia. The model focuses on the continental US, so Alaska and
Hawaii are not included.

12The 2002 survey year is included so that at least two survey years will be used to construct the average application rates.
The two most recent available soybean survey years are 2002 and 2006.

A.6



overhead.13 The cost of purchased irrigation water is included only for irrigated crops. The Commodity

Costs and Returns data is available for nine Farm Resource Regions and at the national level. Cost data is

assigned to counties based on Farm Resource Region designation. If no cost data is available at the Farm

Resource Region for a particular county and crop, then the national average values are used.

Labor inputs to agriculture, lijk, are total costs less the costs of N fertilizer, which are calculated using

the Daycent yield functions and baseline prices for crops and N.

A.2.3 Prices

Baseline prices are reported in Table A.2. Crop prices are calculated from the national prices reported in

the NASS annual surveys. The price of N is calculated from the national price of anhydrous ammonia. In

the model, N represents nutrient N as opposed to N fertilizer material. The price of nutrient N is calculated

as the price of anhydrous ammonia divided by the nutrient N content of anhydrous ammonia, 0.8. All other

prices are normalized to one in the baseline.

A.3 Biophysical Model

To generate a data set from which the yield and emissions functions can be estimated, Daycent simulations

were conducted for a large sample of agricultural sites across the US. Sites are selected from points in the

Natural Resource Inventory (NRI), a rotating panel sample of all non-federal land (USDA-NRCS, 2009). Site

specific data on historic land use, cropping patterns and management practices from the NRI, soil attributes

from the Soil Survey Geographic Database (SSURGO) and gridded daily weather from the North America

Regional Reanalysis (NARR) products are inputs to the Daycent simulations. Yields and emissions are

simulated for a 30 year period following changes in crop or management practice.

Linear mixed effects models were used to estimate the relationships between Daycent model outputs,

yields and emissions, and crop and management choices and site characteristics. Separate models were

estimated for broad regions defined in Table A.1. The dependent variables in these regression models are the

carbon content of grain and straw yields, the flux of N2O, N volatilized as NOx and NH3, and N leached as

NO3.14 The explanatory variables in the regression models include N applied and N applied squared, organic

amendments and organic amendments squared, the crop residue removal rate, dummy variables for crop,

tillage, irrigation status and fertilizer timing and site specific average temperature, a soil moisture index and

soil sand fraction and first order interactions between all variables.15

An adjusted set of yield functions for use in the economic model are derived from the estimated yield

functions, which are of the form y = β0 + β1n + β2n2. The yield functions that enter the economic model

are calibrated so that, given baseline prices, the yield and N input rate predictions of the economic model

match baseline economic data at the regional level, while the Daycent yield functions drive the heterogeneity

in yields and optimal N application rates at the parcel level. For each region, crop and irrigation status the

distribution of β2s is shifted so that average N application rates predicted by the economic model match

observed average N application rates. Given the shifted β2s, the distribution of β0s is shifted so that yields

at the optimal N application rates match observed yields by region, crop and irrigation status.

13Operating cost categories include: seed, fertilizer, soil conditioners, manure, chemicals, custom operations, fuel, lube and
electricity, repairs, purchased irrigation water, commercial drying, ginning, straw baling and interest on operating capital.

14Although Daycent tracks daily emissions values, annual totals are used for this analysis.
15Explanatory variables are dropped from the models if the coefficients are not significant and the variable does not greatly

improve overall model fit.
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N application rate decisions are not modeled in the county-crop combinations for which yields are unre-

sponsive to N. Therefore, the N application rate decisions are not modeled for the legume crops: soybeans

and legume hay. N application rate decisions are also not modeled for a parcel-crop combination ijk if β2
ijk

falls in the lowest 1% of all β2s. For any ijk where the N application decision is not modeled N application

rates are fixed at observed baseline levels. The crop choice decisions is still modeled in these counties. In

total, 10,444 crop/counties combinations are included in the model, with the N application rate decision

modeled in 6,748 crop/counties.
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Table A.1: Region Designations

Corn Belt
460 total counties, 460 with rainfed land and 42 with irrigated land
States: Illinois, Indiana, Iowa, Missouri, Ohio
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa, Soybean

Plains
311 total counties, 309 with rainfed land and 150 with irrigated land
States: Kansas, Nebraska, North Dakota, South Dakota
Crops: Corn, W. Wheat, Sorghum, Grass Hay, Alfalfa, Soybean

Lake States
194 total counties, 194 with rainfed land and 34 with irrigated land
States: Michigan, Minnesota, Wisconsin
Crops: Corn, W. Wheat, Grass Hay, Alfalfa, Soybean

Northeast
103 total counties, 103 with rainfed land and 5 with irrigated land
States: Maryland, New York, Pennsylvania
Crops: Corn, W. Wheat, Grass Hay, Alfalfa, Soybean

Pacific Northwest
40 total counties, 37 with rainfed land and 32 with irrigated land
States: Oregon, Washington
Crops: Corn, W. Wheat, Grass Hay, Alfalfa

California
20 total counties, 16 with rainfed land and 20 with irrigated land
States: California
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa

Mountains
150 total counties, 124 with rainfed land and 130 with irrigated land
States: Colorado, Idaho, Montana, Utah, Wyoming
Crops: Corn, W. Wheat, Sorghum, Grass Hay, Alfalfa, Soybean

South Central
291 total counties, 291 with rainfed land and 80 with irrigated land
States: Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Tennessee, Texas
Crops: Corn, W. Wheat, Sorghum, Cotton, Grass Hay, Alfalfa, Soybean

Southeast
177 total counties, 177 with rainfed land and 60 with irrigated land
States: Georgia, North Carolina, South Carolina, Virginia
Crops: Corn, W. Wheat, Cotton, Grass Hay, Alfalfa, Soybean

Southwest
222 total counties, 222 with rainfed land and 86 with irrigated land
States: Oklahoma, Texas
Crops: Corn, W. Wheat, Sorghum, Cotton, Grass Hay, Alfalfa, Soybean

Texas is listed under both South Central and Southwest because a portion of
eastern Texas is designated as South Central.
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Figure A.1: Included Counties by Region
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Figure A.2: Included Counties by Irrigation Category

 

 

Rainfed
Rainfed and Irrigated
Irrigated Only
Not Included

A.11



Table A.2: Baseline Prices

Product Value Unit

Corn 197.50 $/t
W. Wheat 227.44 $/t
Sorghum 182.65 $/t
Cotton 1576.30 $/t
Grass Hay 127.92 $/t
Alfalfa 173.43 $/t
Soybean 415.57 $/t

N 0.92 $/kg N
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