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Abstract

We analyze the effects of climate conditions and crop insurance on farm-level land allocation

decisions among corn, soybeans, winter wheat, and hay in 10 Midwest states. Based on

ARMS data, we estimate farmers’ land allocation equations that control for market condi-

tions, climate and soil variables, and insurance. A multivariate sample selection model is

used for estimation. We find that: 1) beneficial heat has positive effects on corn and soybean

acreage but negative effects on winter wheat acreage, 2) excessive heat has negative effects on

corn and winter wheat acreage but have positive effects on soybean acreage, 3) an increase in

precipitation by 1% increases corn acreage by 0.6% but decrease soybean and winter wheat

acreage by 1.0% and 1.6%, 4) soybean acreage is more sensitive to summer drought, and 5)

crop insurance alters farmers land allocation.
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1 Introduction and Background

Recent climate models predict that climate change over the next few decades will have neg-

ative effects on Midwest agriculture. Increasingly hot and dry summers, increased spring

precipitation, and more frequent extreme weather events could reduce crop yields and lower

agricultural net returns (Pryor et al., 2014). Midwest agriculture is an important component

of U.S. agriculture. Farmland accounts for more than two-thirds of land in the Midwest and

constitutes 27% of U.S. cropland. The region also produces roughly 64% of U.S. corn and

soybeans. Thus, projected climate change in the Midwest raises concerns not only about

regional agricultural output but may also have important national and international impacts

in many sectors.

Econometric analyses that do not consider adaptive behavior tend to overestimate the

damage of climate change (Mendelsohn, Nordhaus and Shaw, 1994). Since agricultural

production depends on local climate conditions, farmers generally respond to the harmful

effects of weather and, in the long run, climate change. The government provides indirect

and short-run adaptation options for farmers through agricultural policies, such as income

support programs, as well as long-run options through public research and development

(Malcolm et al., 2012).

An important farm-level adaptation option is to reallocate existing cropland between

crops. The regional distribution of agricultural production will depend on these farm-level

cropland allocations. Changes in cropland allocations also affect environmental conditions.

For example, intensification of row cropping may alter precipitation patterns (Pielke et al.,

2007; Anderson et al., 2013). Nitrogen-intensive crops may contribute to leaching and runoff

that degrade water quality and contribute to adverse environmental outcomes. Analyzing

cropland allocation also makes it possible to understand farmers’ responses to government

policies and unintended policy effects. For example, crop insurance may induce farmers to

grow higher value, riskier crops that are less well-suited for their land and operations (Wu,
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1999).

Corn and soybeans have been the dominant crops in Midwestern agricultural land use

for the past several decades. The cropland allocated to corn has increased in recent years,

while cropland allocated to soybeans has gradually trended downward. However, after 2012

the share of soybean acreage has increased relative to corn. This is largely due to changes

in the relative output price of soybeans to corn. Cropland allocated to wheat and hay has

been gradually decreasing throughout this time period.

However, aggregate land use change trends mask farmers’ cropland allocation decisions.

Farmers respond to local market and environmental conditions in different ways, i.e., farmers

have crucial underlying heterogeneity. Natural resource endowments can differ among neigh-

boring fields on the same farm. Thus, capturing heterogeneity within and between farms is

useful in understanding more aggregate responses to weather and climate.

This study analyzes farm-level land allocation among corn, soybeans, winter wheat, and

hay in the Midwest in response to regional weather and climate conditions. Since crop in-

surance has become an important agricultural policy tool (Goodwin, Vandeveer and Deal,

2004; Babcock, 2011; Walter et al., 2012) and is an adaptation options, this study identifies

insurance effects on land allocation decisions. We seek to answer two research questions.

First, how do weather and climate conditions influence farmers’ land allocation at planting

time? Second, how does government-subsidized crop insurance alter farmers’ land allocation

decisions? To help answer these, we specify equations for farmers’ land allocation decisions

and then estimate by using farm-level data in 10 Midwest states. To control for correlation

between crop selection and cropland allocation, we use the two-step procedure. The remain-

der of the article is organized as follows. The next section reviews relevant literature. Section

3 illustrates basic assumptions of our model and describes how we estimate the acreage allo-

cation equations. Section 4 explains how we construct farm data, county-level climate and

soil data, and state-level price data. Section 5 explains the results. Section 6 discusses our

conclusions and the limitations of our study. Section 7 appends summary statics of data and
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our estimation results.

2 Literature Review

Our paper is based on three research streams: land use change, climate change, and sam-

ple selections. First, research on land use change shows the effects of government policies,

especially income support programs, on land allocations and unintended policy effects on

environmental conditions (Wu, 1999; Young, Vandeveer and Schnepf, 2001; Goodwin, Van-

deveer and Deal, 2004; Walter et al, 2013).3 Wu (1999) analyzes the effects of corn crop

insurance on farmers’ land allocation and derives policy implications related to groundwater

quality. He finds that corn crop insurance increases corn acreage, but its influence dimin-

ishes as farm size increases. Goodwin, Vandeveer and Deal (2004) perform a comprehensive

analysis, including cropping pattern and insurance participation, and find modest effects of

crop insurance on cropland allocation.

Climate variables and their interpretations in this study are based on recent climate

change studies. To capture climate effects on crop yield, we use agronomic weather vari-

ables, such as growing degree days and extreme heat degree days similar to Schlenker and

Roberts (2009), Ortiz-Bobea and Just (2012), and Roberts, Schlenker and Eyer (2013).

Our approach uses farm data from the Agricultural Resource Management Survey (ARMS)

of USDA. The data contain variables that are censored at zero, which are the result of in-

dividual farmers’ decisions (e.g., farmers’ land use). The sample selection model (Heckman,

1976) has been widely used to resolve the indecisive censoring problem in micro-level data.

In this latent variable model, researchers observe their variables of interest only when selec-

tion equations are greater than predetermined values (or latent values).

In general, the error terms are correlated between selection equations and the equations

3We focus on studies about U.S. agriculture policies.
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for the variables of interest. Addressing these correlations is critical for consistent estimation.

Some studies allow general correlation among all equations (Yen and Lin, 2006; Barslund,

2011). However, this approach is computationally burdensome and convergence is sensitive

to initial points (Barslund, 2011). Millimet and Tchernis (2009) and Kasteridis, Yen, and

Fang (2011) use a Bayesian approach. Even though a Bayesian approach is more robust

to initial values, this approach is also computationally burdensome. In contrast, we use a

two-step procedure that assumes independence between selection equations (Catsiapis and

Robinson, 1982; Shonkwiler and Yen, 1999; Sckokai and Moro, 2006; Lacroix and Thomas,

2011).

3 Empirical Specification and Estimation

We use a reduced-form approach because it credibly identifies parameters of exogenous vari-

ables (e.g., climate) with simple specifications.4 Results are also much more straightforward

to interpret (Timmins and Schlenker, 2010; Chetty, 2008). One disadvantage is the omitted

variable problem: if exogenous variables are correlated with omitted variables, resulting es-

timates are biased. A careful model specification with reasonable assumptions is necessary

to alleviate omitted variable bias.

We impose the following assumptions: 1) farmers consider profit risk as well as expected

profits when they allocate land; 2) output prices and production are assumed to be inde-

pendent at the farm level; 3) farmers consider possible loss of production caused by extreme

weather events, as well as expected climate conditions during the growing season; 4) farmers

expected output and variance of output are represented by a function of output and input

prices, variances and covariances of output prices, unexpected weather events, agricultural

policies, total land, and climate conditions; and 5) farmers choose insurance before planting

4Although the definition of reduced-form methods has changed over time, key features include only using
exogenous variables and imposing fewer assumptions than structural models (Timmins and Schlenker, 2010).
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crops, i.e., farmers make land use decisions given insurance availability.5

There is correlation between farmer’s crop choice and subsequent land allocation because

of unobserved heterogeneity. This is similar to the correlation between labor market partici-

pation and subsequently earned wages (Heckman, 1976). To account for correlation between

crop selection and land allocation, we specify crop selection equations and then assume that

land allocation for each crop is observable when the corresponding crop selection equation

is greater than zero. Consider the problem of farmer i who plants crop j among four crops.

Our approach can describe this problem as

lij = τij · l∗ij, j = 1, ..., 4

lij = l∗ij if τij > 0

lij = 0 if τij ≤ 0,

(1)

where τij represents farmer i’s crop selection about crop j, lij is the observed amount of land

allocated to crop j, and l∗ij represents farmer i’s latent land allocation to crop j (Wooldridge,

2010). If we assume a linear function for crop selection and land allocation, the reduced form

equation for farmer i’s acreage allocation to crop j (l∗ij) and the corresponding crop selection

equation (τij) are as follows.

l∗ij = αj + Z ′iβj + γjLi +X ′i,cθ1j + υij

s.t.

4∑
j=1

βj =
4∑

j=1

αj =
4∑

j=1

θ1j = 0,
4∑

j=1

γj = 1

τij = S ′iξj +X ′i,cθ2j + uij,

(2)

where Zi = (p,Ωp,Ωy, Xi,ins,Wi)
′. Note that p is the vector of output and input prices, Ωp is

the vector containing variances and covariances of output prices, and Ωy is a vector of county-

5Farmers have to choose their coverage and products prior to the “sales closing date” before planting.
Land is then allocated and reported to their insurance company. For example, the sales closing date for Iowa
farmers is March 15. Moreover, we assume that farmers can borrow money for farm operations regardless
of their insurance status, e.g., no credit constraints due to insurance
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level crop yield variances. We assume that county-level crop yield variance is independent

of individual farmers’ behavior and use it as a proxy for the effects of unexpected weather

events on crop production. Further, Xi,ins is a vector of crop insurance dummies, Xi,c includes

variables related to climate and soil quality, and Wi is farmers’ initial wealth (to control for

changes in farmers’ risk attitudes, i.e., risk aversion).

Farmers’ total land is Li and is used to take into account returns to scale of land. The

sum of land allocated to four crops equals total land, implying the constraints on the sum of

parameters in Equation (2). The coefficients from the hay equations are derived from these

constraints to keep total acreage fixed.

To control for the effects of farmers’ characteristics on crop selection, we include climate

and soil conditions and farmers’ socioeconomic characteristics (Si), i.e., age, education, off-

farm income in the preceding year, and whether they have considered retirement recently.6

To reduce computational burden, we assume independence between the crop selection

equations i.e., uij ⊥ uik for j 6= k. We also allow correlation between uij and υik for j 6= k

because of unobserved agronomic constraints such as crop rotations (Lacroix and Thomas,

2011). Lastly, we assume that (uij, υik) for j 6= k has a bivariate normal distribution and uij

follows the standard normal distribution. Then farmer i’s expected land allocation to crop

j becomes

E(l∗ij|Xij) = Pr(l∗ij > 0|Sij, Xi,c)× E(l∗ij|τik > 0, k = 1, ..., 4, Xij) + Pr(l∗ij < 0|Si, Xi,c)× 0

= Φ(Siδj +X ′i,cθ2j)× (X ′ijψj +
h∑

k=1

πkjλki),
(3)

where Xij represents a vector of the explanatory variables in acreage allocation equations

and ψj is the the corresponding vector of parameters. Note that Φ(.) and φ(.) are the

cumulative density function (cdf) and probability density function (pdf) of the standard

normal distribution. The probability that farmer i chooses crop j is Φ(Siδj + X ′i,cθ2j). The

6One limitation of this model specification is excluding dynamic agronomic constraints such as crop
rotation and pest management
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selection correction term from the selection equation for crop k is λki, the inverse mills’ ratio.

The term is calculated as φ(Siδj +X ′i,cθ2j)/Φ(Siδj +X ′i,cθ2j). The covariance between uij and

υik is πkj. We first estimate each crop selection equation by using a binary probit model,

and calculate the predicted values of the sample correction terms. Then linear regression is

applied to Equation (3) based on the predicted correction terms.

Environmental conditions (Xi,c) affect crop selections directly (θ2j), acreage equations

directly (θ1j), and acreage equations indirectly though sample correction terms. For one

environmental regressor, qi,c, in Xi,c, the marginal effect of it is calculated as

∂E(l∗ij|Xij)

∂qi,c
= Φ(Siδj +X ′i,cθ2j)× [θ1j,q −

4∑
k=1

πkj × θ2k,q × (λkj × (Siδk +X ′i,cθ2k) + λ2kj)]

+ φ(Siδj +X ′i,cθ2j)× θ2j,q × (X ′ijψj +
h∑

k=1

πkjλki),

(4)

where θ1j,q and θ2j,q are scalar coefficients corresponding to qi,c in θ1j and θ2j for j = 1, ...4.

Since the climate variable units are unintuitive, we calculate the average acreage response

elasticities of explanatory variables. These elasticities are weighted averages of each acreage

response elasticity across our sample (Arnade and Kelch, 2007).

To correct the standard errors from the two-step procedure and control for the sampling

scheme of the ARMS data, we use probability-weighted bootstrapping with replacement

(Goodwin and Mishra, 2005). Specifically, we construct 2,000 random bootstrap samples

based on farm-level probability weights in ARMS data, and then estimate Equation (2),

Equation (4) and average acreage response elasticities 2000 times.7 The reported boot-

strapped standard errors are the standard deviations from the bootstrap samples.

7This approach implicitly assumes that population is equal over our research period.
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4 Data

This study constructs a farm-level data set based on the Agricultural Resource Management

Survey (ARMS) Phase III. One major benefit is that constant-returns-to-scale production

need not hold for farm-level data, in contrast to aggregate data. We select 11,230 farms

by four criteria: 1) farms’ largest sources of gross farm income is from grains, oilseeds, dry

beans and dry peas,8 2) farms operating in 10 states of the Midwest during 2004 - 2011,9 3)

farmers cultivate more than 50 acres (Goodwin and Mishra, 2005), and 4) crops covered by

crop insurance should be identifiable.10 We use information on land allocation, crop insur-

ance status, and socioeconomic characteristics. Since the ARMS data only contain harvested

land, we use harvested land as a proxy for planted land. Farm equity is used for farms’ initial

wealth (Sckokai and Moro, 2006). The crops considered are corn, soybeans, winter wheat

and hay.11

Daily PRISM (Parameter-elevation Regression on Independent Slope model) data are

used to calculate climate variables from Roberts, Schlenker and Eyer (2013): growing degree

days (GDD), extreme heat degree days (HDD), vapor pressure deficit (VPD), and precipi-

tation. Based on daily maximum and minimum temperatures in the PRISM data, we use

Snyder’s (1985) simple method to compute GDD and HDD during the growing season (see

the Appendix). GDD and HDD measure the amount of exposure to beneficial heat and

harmful heat, respectively. Precipitation is calculated as the sum of total precipitation dur-

8These farms correspond to Type 1 farms in the ARMS data.
9We choose Iowa, Illinois, Indiana, Kentucky, Michigan, Minnesota, Missouri, Ohio, Pennsylvania, and

Wisconsin as our study area to control for irrigation status. Since some questions related to farmers’
characteristics and government policies changed after 2003, we restrict the study period after 2004 to achieve
consistency of data.

10Specifically, we include farms whose entire cropland is covered by crop insurance programs. We also
include farms whose cropland are partly covered by crop insurance. For example, when one farm plants four
crops, and the sum of acreage of any three crops is less than acreage covered by farm’s crop insurance, then
we assume that the remaining crop is also covered by crop insurance. Finally, when the sum of acreage of
any combination of crops is the same as acreage covered by crop insurance, then we assume that farmers
bought crop insurances for these crops. For example, if the sum of corn and wheat acreage is the same as
acreage covered by insurance, we assume that corn and wheat are covered by crop insurance, even though
there may be other other crops planted.

11Hay includes alfalfa and other hay.
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ing the growing season. VPD is the difference between how much water the air can hold

when it is saturated and how much water it currently holds. Since high VPD means higher

water requirements and greater solar radiation, high VPD has a positive correlation with

crop yield when soil moisture is adequate (Roberts, Schlenker and Eyer, 2013). High VPD

has a negative correlation with crop yields when soil moisture is inadequate. High VPD with

inadequate soil moisture also causes stress similar to drought. Since VPD may be the most

harmful during the hottest month of the growing season, we calculate VPD during July and

August (V PDJA) and include them in our model. All climate variables are averaged over

the 20 years prior to each farm operating year. Finally, growing seasons for corn, soybeans

and winter wheat differ across states and crops (USDA, 2010).12

Soils data are based on the Soil Survey Geographic database (SSURGO). We include

slope, saturated hydraulic conductivity (Ksat), available water capacity (AWC), K-factor,

depth to water table, and percentage of organic matter as variables representing soil quality

and land characteristics. Slope is the difference in elevation, expressed in percent terms.

Ksat measures the permeability of soil, and AWC represents how much water soil can store.

K-factor indicates the susceptibility of soil to water erosion. “Depth to water table” is the

minimum depth above a wet soil layer. Organic matter is the amount of decomposed plant

and animal residue in the soil. Since the ARMS phase III data only contain county-level

location information, all climate and soil variables are aggregated to the county.

For expected output prices, state-level futures prices are constructed by adjusting re-

gional differences in farm-gate prices (Barr et al., 2011).13 For example, the expected prices

of corn (pec) are calculated as follows.

pec = F̄ f
c −Bc, Bc = F̄ d

c − p̄rc,

12Since USDA (2010) has no information about hay planting dates and harvesting dates, we use the
growing season of corn for hay.

13Chicago Board of Trade (CBOT) futures prices are used for corn and soybeans, and the Kansas City
Board of Trade futures prices are used for winter wheat.

9



where F̄ f
c is the average of daily February closing prices of December corn futures contracts.

Bc is called the “basis”, and used to delete systematic differences between farm-gate prices

and futures prices. F̄ d
c is the average of daily December closing prices of December corn

futures contracts, and p̄rc is the state-level farm received price. For futures prices of soybeans

and winter wheat, we use daily February closing prices of November soybean futures con-

tracts and daily February closing prices of July winter wheat futures contracts, respectively.

Since there is no future market for hay, previous market prices are used as expected prices.

To control for price support programs, we use the higher price between futures prices and

national loan rates, i.e., max{future prices, national roan rates}, (Wu et al., 2004). We only

include nitrogen prices as input prices, and multi-regional anhydrous ammonia prices are

used as nitrogen prices. For Pennsylvania, we use prices of Urea for fertilizer with 44 ∼ 46%

nitrogen content.

The expected covariance between output prices and variance of output prices are calcu-

lated as:

V ar(pi,t) =
3∑

j=1

ωj[pi,t−j − Et−j−1(pi,t−j)]
2

Cov(pi,t, pk,t) =
3∑

j=1

ωj[pi,t−j − Et−j−1(pi,t−j)][pk,t−j − Et−j−1(pk,t−j)]

where the weights ωj are 0.5, 0.33, and 0.17, respectively (Chavas and Holt, 1990; Sckokai

and Moro, 2006; Wu et al., 2004). pi,t−j is the state-level farm-received prices of crop i

in year t − j and Et−j−1 is farmers’ expectation of harvest output prices at planting time

in year t − j. All price variables are normalized by the planting year price index for the

other inputs.14 We regress county-level crop yields on a time trend and a constant, and its

14We construct the price index for the other inputs as I =
∑

j w
jIjPPI , where wj is the relative weight

of the jth input and IjPPI is the USDA-published price paid index of the jth input. Since the USDA-
published relative weights of each inputs are based on farms’ expense, including nitrogen cost, we adjust
these weights by excluding nitrogen weights. Unfortunately, USDA does not publish nitrogen weights of crop
farms. Instead, we use nitrogen weights of all farms. The other inputs include several production items,
financial fees and family living expense (USDA, 2011).
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residuals are used to calculate the county-level variance of each crop yield (Chavas and Holt,

1990; Wu et al., 2004).15 Table 1 and Table 2 in the Appendix show the summary statics of

the data used in the analysis.

5 Preliminary Results

The results show that climate conditions have significant and diverse effects on farmers

acreage allocation and crop selections.16 The results related to farmers’ crop selections are

in Table 3. First, HDD have negative effects on corn selections, but precipitation affects corn

selection positively. These results are intuitive because corn is water-intensive and sensitive

to drought. Second, GDD have positive but small effects on soybean selections. Third,

precipitation affects winter wheat selection positively, but VPD during the growing season

influence winter wheat selection negatively. These results would reflect the fact that high soil

humidity at planting time prevents farmers from converting winter wheat to corn. Lastly,

GDD have negative effects on hay selection, but HDD has positive effects. Since we use

the same growing season for corn and hay, we may interpret these results as good climate

conditions for corn, such as adequate GDD and fewer HDD, have negative effects on hay

selections. Since summer drought has negative effects on hay production, the negative sign

of V PDJA on hay selection equation is understandable.

Table 5 shows the effects of climate conditions on farmers’ acreage adjustment among

four crops, given farmers’ crop selections. Since the second step results do not account for

climate effects on crop selection, the direction of some estimates are less-intuitive. First,

GDD have positive effects on soybeans but negative effects on winter wheat. GDD also

15For counties having fewer than eight yield observations, we we use state-level yield to avoid reducing
observations (Carriquiry, Babcock, and Hart, 2005)

16Table 3 gives the estimation results of crop selection equation and Table 4 and 5 present results of
estimating the land acreage equations.
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negatively affect corn acreage, even though the size of influence is small.17 Second, HDD

(excessive heat) have negative effects on soybean and winter wheat acreage. Third, VPD

have positive effects on soybean and winter wheat. These results reflect that soybeans and

winter wheat are grown in the drier areas than corn. However, during the summer, the

positive effects of VPD on soybean acreage become negative. Lastly, estimates related to

precipitation are consistent with the results of crop selection equations: precipitation has

positive effects on corn acreage but negative effects on soybeans and winter wheat.

To understand the overall effects of climate conditions, we examine the results of acreage

response elasticities (see Table).18 First, GDD have positive effects on corn and soybean

acreage but negative effects on winter wheat acreage on average. When GDD increase by

1%, corn and soybean acreage increase by 0.6% and 1.4%, but winter wheat acreage decrease

by 1.3%. Since corn and soybeans require more GDD to mature, farmers prefer to grow corn

and soybeans when they expect adequate GDD. Second, when HDD increase by 1%, soybeans

supplant corn and winter wheat. Specifically, soybean acreage increases by 0.14%, while corn

and winter wheat acreage decrease by 0.16% and 0.18%. This is intuitive: soybeans are more

heat tolerant relative to corn and winter wheat. Third, when precipitation increases by 1%,

corn acreage increases by 0.6%, but soybean and winter wheat acreage decrease by 1.0%

and 1.6%. Since corn requires more water than soybeans and winter wheat, other things

being equal, farmers who expect adequate precipitation have an incentive to shift land from

winter wheat and soybeans to corn. Fourth, farmers’ acreage allocation between soybeans

and winter wheat depends on humidity and plant-cooling stresses. An increase in V PDJA

by 1% decreases soybean acreage by 6.9%. This implies that a severe summer drought could

decrease the proportion of soybean acreage substantially, even though soybeans are relatively

17Since winter wheat require less GDD to mature, the negative effect of GDD on winter wheat is under-
standable. However, the negative effects on corn acreage is counter-intuitive. These results may be due to
the correlation between GDD and omitted harmful weather variables not addressed by HDD (Ortiz-Bobea,
2011). To resolve this problem, we may have to calculate climate variables based on specific crop development
stages (Ortiz-Bobea, 2011).

18Since marginal effects of climate variables depend on estimated coefficients, covariance between the
first and the second step equations, and individual explanatory variables, the sighs of the acreage response
elasticities can differ from coefficient estimates in Table 5.
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tolerant to heat. Increases in VPD and V PDJA by 1% increase winter wheat acreage by

3.9% and 9.2%. Winter wheat is more tolerant to this source of stress because it requires

relatively less water to mature and has a wide and deep root system. Winter wheat is also

harvested before July, so large increase in V PDJA relative to other crops provides greater

incentive for farmers to increase their proportion of winter wheat acreage holding everything

else constant.

The results of county-level yield variance are less-intuitive (See Table 7). Since we use

county-level yield variance as a proxy for the effect of unexpected extreme weather events, we

can expect that acreage responses to own yield variance are negative and acreage responses

to the other crops’ yield variance are positive. However, estimates of hay and wheat yield

variances have sighs opposite expectations. Since hay and wheat are minor crops in our

study area, their production risk may be less important to farmers in determining land

allocation.19 Because alfalfa is a perennial crop, land allocation to alfalfa would be less

responsive to annual land use allocation. This means that it is necessary to adjust crop

choice sets according to regional characteristics in our study area.

Insurance effects are also significant. Since crop insurance programs reduce the variation

of farms’ profit related to crop production, we can expect that farmers will shift land from

crops not covered by crop insurance programs to crops covered by crop insurance programs.

This could be due to adverse selection and moral hazard (Wu, 1999). The results show that

corn, soybeans, and winter wheat acreage increase when farmers have corresponding each

crop insurance.

19Table 2 shows that the average acreage of hay and winter wheat is only 10% of the acreage for corn or
soybean. Also, only about 17% and 27% of farms allocate their land to wheat and hay, respectively. But
the proportion of farms growing corn or soybeans is larger than 90%. Our data set use state-level hay and
winter wheat yield data for many counties’ yield variances. Thus it is possible that counties that mainly
grow corn and soybeans have state-level hay and winter wheat yield variances, which is generally less than
county-level yield variance.

13



6 Conclusion

Future climate change is expected to have negative effects on Midwest agriculture. Research

on climate change has been limited farmers adaptation behaviors in measuring climate change

effects. This study identifies Midwest farmers’ responses to climate conditions by analyz-

ing their cropland allocations. Specifically, this study asked two questions. First, how do

climate conditions influence cropland allocation in the Midwest? Second, how do crop in-

surance programs alter farmers land use decisions? To answer these two questions, we use a

reduced-form approach to construct acreage allocation equations based on risk-averse farms

and apply it to farm-level information in the Midwest. Our findings are: 1) an increase in

overall temperature has negative effects on winter wheat acreage and positive effects on corn

and soybeans, 2) excessive heat and summer drought reduce corn and soybean acreage, and

3) crop insurance programs distort farmers land allocation.

The findings contribute broadly to our understanding of climate change and land alloca-

tion. First, they can be used to predict the direction of future land use in the Midwest based

on projected changes in climate variables (Kunkel et al., 2013). Farmers in the northern

Midwest may grow more corn since average temperatures and precipitation are predicted to

increase, holding soil productivity fixed. Average temperatures in the southern Midwest are

expected to remain constant. However, the frequency of very hot days (over 95 ◦F) is pre-

dicted to increase, while precipitation is predicted to decrease in the southwestern Midwest.

Farmers in this region may increase soybean acreage.

The results reported in this paper are preliminary. Thus, we plan to extend the analyses.

First, we now have data that we can control for farm-level spatial heterogeneity of climate

and soil. Second, by constructing farm-level measures of extreme weather events, we can

identify farmers’ adaptive response to extreme weather events directly. Third, based on data

containing historical land use information, we plan to consider the impact of agronomic con-

straints, such as crop rotations, on land use decisions. Fourth, we plant to test the empirical
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hypothesis that crop insurance effects on land allocation are independent of crop selection.

The effects of corn crop insurance may differ between farmers growing only corn and farmers

growing both corn and soybeans. Crop insurance effects may depend on the combination

of crops grown in the region and covered by insurance. Lastly, these results will be used

with structural or simulation models combined with climate forecasting models to forecast

Midwest crop acreage allocations in response to climate change.
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7 Appendix

7.1 Climate Variables

To calculate GDD and HDD, we must consider 4 cases depending on the daily temperature

distribution, upper and lower thresholds. Let the upper bound be 34◦C and the lower bound

be 8◦C (Ritchie and NeSmith , 1991). “tmax” is a daily maximum temperature, “tmin” is a

daily maximum temperature, “lower” is the lower threshold, “upper” is the upper threshold,

M = (tmax + tmin)/2 and W = (tmax-tmin)/2.

• Case 1: tmin ≥lower, GDD = M − lower.

• Case 2: tmin < lower and tmax ≤ upper,

GDD = (M − lower)(π/2− θ) +Wcos(θ)/π,

where θ = arcsin((lower −M)/W )

• Case 3: tmin ≥ lower and tmax > upper,

GDD = M − lower − (M − upper)(π/2− τ) +Wcos(τ)/π,

where τ = arcsin((upper −M)/W )

• Case 4: tmin<lower and tmax>upper,

GDD = (M − lower)(π/2− θ) +Wcos(θ)/π − (M − upper)(π/2− τ) +Wcos(τ)/π

HDD is only calculated at case 3 and case 4. HDD and VPD can be calculated by below

equations.

HDD = ((M − upper)(π/2− τ) +Wcos(τ))/π

V PD = 0.6107[exp((17.269tmax)/(237.3 + tmax))− exp((17.269tmin)/(237.3 + tmin))]
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7.2 Data and Estimation Results

Table 1: Summary Statistics - Environmental Conditions

Variables Definition Mean Std.Dev Min Max

Soil

Slope slope (%) 2.58 2.14 0.08 16.19

Depth Depth to water table

(cm)

32.68 15.68 0.40 122.64

Ksat Hydraulic conductivity

(Ksat, m/s)

6.31 6.19 0.46 69.64

AWC Available water capac-

ity (AWC, in./in.)

0.12 0.06 0.01 0.22

K-factor K factor 0.19 0.10 0.01 0.44

OM Organic matter (%) 1.93 1.09 0.14 5.67

Climate

GDD GDD for corn 1801.95 156.56 1195.01 2250.58

GDD for soy 1772.73 170.88 1243.26 2420.79

GDD for Wheat 973.52 129.33 642.25 1500.65

HDD HDD for corn 0.93 0.82 0.00 6.11

HDD for soy 0.95 0.88 0.00 6.93

HDD for Wheat 0.08 0.15 0.00 1.08

V PD VPD for corn 278.56 16.40 204.67 338.50

VPD for soy 267.20 17.58 192.74 352.17

VPD for Wheat 242.97 33.47 154.25 334.59

Pre Precipitation for corn 474.06 46.16 257.77 597.56

Precipitation for soy 437.05 41.45 288.45 583.66

Precipitation for Wheat 593.21 132.34 246.71 990.89

V PDJA VPD in July and Au-

gust

316.82 22.48 218.66 414.14
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Table 2: Summary Statistics - Market Variables

Variables Definition Mean Std.Dev Min Max
Harvested Acreage

Corn Corn grain (acre) 467.28 684.15 - -
Soy Soybean (acre) 389.94 520.84 - -
Wheat Wheat grain (acre) 26.97 148.04 - -
Hay alfalfa, other hay (acre) 14.38 58.22 - -
Land Sum of land for 4 crops 898.57 1124.43 - -

Expected Price
Pcorn Corn grain ($/bu) 3.99 1.35 1.98 6.50
Psoy Soybean ($/bu) 8.81 3.11 5.00 14.44
Pwheat Wheat ($/bu) 4.80 2.05 2.59 9.17
Phay alfalfa, other hay ($/ton) 106.40 23.13 58.50 173.00

Covariance of Prices
V ar(corn) Corn and Corn 1.00 0.93 0.03 2.36
Cov(corn, soy) Corn and Soybean 1.91 1.83 0.07 4.53
Cov(corn,wheat) Corn and Wheat 0.67 0.86 -0.31 2.25
Cov(corn, hay) Corn and hay -2.61 6.92 -32.94 16.79
V ar(soy) Soybean and Soybean 5.44 3.47 0.80 10.58
Cov(soy, wheat) Soybean and Wheat 1.64 1.94 -0.15 5.42
Cov(soy, hay) Soybean and Hay 2.80 20.90 -40.13 58.54
V ar(wheat) Wheat and Wheat 0.90 0.96 0.02 3.04
Cov(wheat, hay) Wheat and Hay 4.22 8.83 -20.03 26.22
V ar(hay) Hay and Hay 338.21 336.99 1.99 1387.69

Variance of production
V arcorn Corn grain 372.87 126.06 82.53 1078.17
V arsoy Soybean 31.47 12.09 2.24 86.03
V arwheat Wheat 84.60 36.67 9.22 226.59
V arhay Hay 0.22 0.11 0.02 0.73

Farm Characteristics
Age Age 55.16 12.09 - -
Equity Equity ($1,000) 1946.4 3096.4 - -
Off−farm Previous year off-farm income

($1,000)
36.94 63.95 - -

Dummy variables
Retire Intention of retirement=1 0.06 0.24 - -
Edu1 less than high school=1 0.04 0.21 - -
Edu2 high school=1 0.46 0.50 - -
Edu3 Some college=1 0.29 0.45 - -
Edu4 4-year college graduate and be-

yond=1
0.20 0.40 - -

Ic Insurance for corn 0.66 0.47 - -
Is Insurance for soybean 0.65 0.48 - -
Iw Insurance for wheat 0.10 0.30 - -
Ih Insurance for hay 0.15 0.36 - -
PNitrogen Nitrogen Price ($/pound) 0.37 0.10 0.23 0.55
# of obs 11,230

Note: Min and Max information related to ARMS data is omitted because of the confidential
reason.
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Table 3: Estimates of crop selection equations

Corn Soybean Wheat Hay

Cons -2.602** -0.591 0.597 0.300
(1.088) (1.146) (0.541) (0.730)

GDD 0.000 0.001** -0.000 -0.001*
(0.001) (0.001) (0.000) (0.000)

HDD -0.259*** -0.116 -0.411 0.118**
(0.060) (0.076) (0.294) (0.051)

V PD 0.002 -0.009 -0.0127*** 0.005
(0.006) (0.012) (0.001) (0.004)

Pre 0.003*** -0.000 0.003*** 0.001
(0.001) (0.001) (0.000) (0.001)

V PDJA 0.007 0.001 -0.002 -0.006*
(0.005) (0.011) (0.002) (0.003)

OM 0.102 0.005 0.021 -0.143**
(0.087) (0.082) (0.069) (0.060)

Slope -0.020 -0.087*** -0.072*** 0.115***
(0.020) (0.017) (0.017) (0.014)

Ksat -0.006 -0.024*** 0.000 0.005
(0.006) (0.005) (0.004) (0.004)

AWC 7.664** 6.860** -9.258*** -0.006
(3.543) (3.274) (3.207) (2.627)

K-factor -3.780*** -2.698** 4.490*** -0.050
(1.253) (1.313) (1.451) (1.101)

Depth -0.000 0.004* 0.003 -0.004**
(0.002) (0.002) (0.002) (0.002)

Edu1 -0.180 -0.083 0.161 0.040
(0.160) (0.160) (0.152) (0.126)

Edu2 0.115 0.082 0.080 0.036
(0.101) (0.105) (0.097) (0.079)

Edu3 0.1219 0.165 -0.045 0.018
(0.099) (0.106) (0.098) (0.080)

Age -0.009*** -0.003 0.004 0.005**
(0.003) (0.003) (0.002) (0.002)

Retire -0.531*** -0.548*** -0.345*** -0.121
(0.112) (0.115) (0.116) (0.102)

Off farm -0.001*** -0.001*** -0.001 -0.000
(0.000) (0.000) (0.000) (0.000)

Year Dummies Yes Yes Yes Yes

Note: *** means significance at 1% level. ** means significance at 5% level. * means
significance at 10% level. () means standard deviations of estimates.
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Table 4: Estimates of acreage equations

Corn Soybean Wheat Hay
Cons -20.448 50.192*** -2.336*** -27.408**

(16.423) (17.067) (0.616) (16.339)
t 6.117 -2.170 -266.312*** 262.365***

(8.883) (8.096) (23.621) (20.821)
Equity 0.000*** -0.000*** -0.000** 0.000**

(0.000) (0.000) (0.000) (0.014)
Pcorn 22.744*** -18.266** -28.106 23.628

(7.987) (7.514) (22.220) (20.851)
Psoy -7.662* -0.442 128.266*** -120.162***

(5.577) (5.620) (15.883) (15.129)
Pwheat -20.344*** 11.233** 114.176*** -105.066***

(6.258) (5.722) (15.679) (13.591)
Phay -0.604*** -0.072 -0.388 1.064**

(0.168) (0.172) (0.605) (0.571)
V arp(corn) -31.015 -318.225*** 2051.914*** -1702.674***

(61.077) (50.757) (195.654) (178.688)
Covp(corn, soy) 51.932** 136.473*** -841.422*** 653.017***

(31.945) (26.551) (95.690) (87.579)
Covp(corn,wheat) -223.998*** 62.059* 1535.077*** -1373.138***

(51.497) (44.481) (134.563) (119.347)
Covp(corn, hay) -1.677*** -0.061 -0.258 1.996**

(0.349) (0.356) (1.159) (1.087)
V arp(soy) 9.057 -6.045 -169.148*** 166.135***

(7.314) (7.008) (18.784) (17.002)
Covp(soy, wheat) 22.171** 10.077 -237.461*** 205.212***

(10.336) (9.113) (26.612) (25.001)
Covp(soy, hay) 0.287*** 0.104 -0.663** 0.271

(0.114) (0.108) (0.312) (0.289)
V arp(wheat) 68.087*** -16.957* -427.135*** 376.005***

(12.902) (11.992) (46.034) (39.787)
Covp(wheat, hay) 0.327** 0.261* 2.566*** -3.154***

(0.169) (0.171) (0.355) (0.331)
V arp(hay) 0.009** -0.007* 0.013 -0.016*

(0.004) (0.005) (0.012) (0.011)
Nitrogen -325.697*** 147.108*** -625.310*** 803.899

(50.903) (45.007) (177.345) (158.108)
πcorn,j 248.144*** -173.307*** 261.280*** -

(38.147) (15.298) (35.417) -
πsoy,j -156.595*** 280.162*** -360.715*** -

(22.149) (37.201) (61.102) -
πwheat,j 43.162*** -6.413 141.078*** -

(6.758) (6.550) (36.560) -
πhay,j 87.090*** -157.340*** 330.849*** -

(24.290) (23.124) (74.314) -

Note: Standard deviations are from 2,000 bootstrap runs. *** means significance at 1% level. **
means significance at 5% level. * means significance at 10% level. () means standard deviations of
estimates.
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Table 5: Estimates of acreage equations (continue)

Corn Soybean Wheat Hay
GDD -0.057*** 0.238*** -0.593*** 0.413***

(0.024) (0.026) (0.068) (0.066)
HDD -2.666 -4.504* -528.787*** 535.956***

(3.074) (2.943) (60.592) (60.908)
V PD 0.545 1.360* 3.406*** -5.311***

(1.148) (0.983) (0.701) (1.376)
Pre 0.525*** -0.411*** -0.425*** 0.311***

(0.039) (0.040) (0.108) (0.099)
V PDJA -0.761 -1.381* -0.038 2.180**

(0.986) (0.848) (0.612) (1.253)
OM -9.147*** 16.911*** -19.696** 11.932

(3.195) (3.142) (11.199) (10.539)
Slope 9.531*** -19.824*** 29.441*** -19.149

(2.577) (2.503) (7.879) (7.726)
Ksat 3.029*** -3.394*** 4.451*** -4.086***

(0.318) (0.325) (0.789) (0.796)
AWC 23.407 -434.499*** -2282.242*** 2693.334***

(120.361) (121.420) (446.748) (426.471)
K-factor -45.058 263.830*** 971.390*** -1190.162***

(53.472) (52.665) (197.900) (188.566)
Depth -0.503*** 0.754*** 0.005 -0.255

(0.123) (0.133) (0.362) (0.363)
V ary(corn) -0.030*** -0.016** 0.020 0.027*

(0.009) (0.008) (0.022) (0.020)
V ary(soy) 0.261*** -0.153** -0.259 -0.367

(0.078) (0.079) (0.312) (0.293)
V ary(wheat) -0.073*** 0.094*** 0.239*** -0.260***

(0.029) (0.027) (0.095) (0.086)
V arY (hay) 88.200*** -38.932*** -148.412** 104.143***

(8.558) (8.453) (25.624) (23.313)
Insc 107.585*** -80.492*** -148.576*** 121.483***

(3.627) (3.773) (10.850) (10.060)
Inss -100.543*** 99.915*** 3.414 -2.785

(3.674) (3.292) (7.803) (7.190)
Insw -90.379*** -15.665*** 382.073*** -276.029***

(3.555) (2.989) (9.937) (7.886)
State dummies Yes Yes Yes Yes

Note: Standard deviations are from 2,000 bootstrap runs. *** means significance at 1% level. **
means significance at 5% level. * means significance at 10% level. () means standard deviations of
estimates.
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Table 6: Acreage response elasticities to environmental conditions

corn soy wheat

GDD 0.604* 1.411** -1.316**

(0.452) (0.040) (0.696)

HDD -0.160*** 0.135*** -0.177***

(0.037) (0.039) (0.036)

V PD 4.517 2.229 3.865**

(3.625) (3.223) (2.074)

Pre 0.630** -1.013*** -1.554***

(0.328) (0.315) (0.630)

V PDJA 0.151 -6.889** 5.654***

(3.505) (3.123) (1.656)

OM 0.087** -0.164*** 0.351***

(0.046) (0.049) (0.103)

Slope 0.027 0.030 -0.185***

(0.030) (0.030) (0.073)

Ksat 0.120*** -0.176*** 0.124***

(0.018) (0.019) (0.032)

AWC 7.721*** -2.347 6.613**

(2.169) (2.162) (2.985)

K-factor 1.021* 0.053 3.978***

(0.623) (0.586) (0.863)

Depth 0.026 -0.052** 0.407***

(0.033) (0.033) (0.088)

Note: Standard deviations are from 2,000 bootstrap runs. *** means significance at 1%

level. ** means significance at 5% level. * means significance at 10% level. () means

standard deviations of estimates.*** means significance at 1% level.
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Table 7: Acreage response elasticities

Corn Soybean Wheat Hay

Equity 0.099*** -0.122*** -0.089** 0.298***

(0.036) (0.044) (0.042) (0.121)

Pcorn 0.782** -0.656* -0.753 2.012

(0.444) (0.425) (0.875) (2.273)

Psoy -0.574 -0.035 7.523*** -22.274***

(0.667) (0.687) (1.366) (3.517)

Pwheat -0.818** 0.467 3.488*** -10.342***

(0.410) (0.376) (0.674) (1.648)

Phay -0.572** -0.071 -0.318 2.498*

(0.251) (0.274) (0.734) (1.676)

V arp(corn) -0.301 -3.125*** 17.364*** -40.209***

(0.892) (0.782) (2.197) (5.423)

Covp(corn, soy) 0.966 2.574*** -13.676*** 29.493***

(0.883) (0.780) (2.002) (4.993)

Covp(corn,wheat) -1.448*** 0.397 8.936*** -21.203***

(0.436) (0.399) (1.051) (2.375)

Covp(corn, hay) 0.036*** 0.001 0.001 -0.110*

(0.013) (0.010) (0.019) (0.072)

V arp(soy) 0.507 -0.346 -8.167*** 22.855***

(0.597) (0.608) (1.257) (2.850)

Covp(soy, wheat) 0.335* 0.151 -3.278*** 7.518***

(0.218) (0.195) (0.451) (1.131)

Covp(soy, hay) 0.006 0.002 -0.033 0.014

(0.005) (0.005) (0.039) (0.015)

V arp(wheat) 0.574*** -0.142 -3.252*** 7.756***

(0.163) (0.155) (0.444) (1.036)

Covp(wheat, hay) 0.013* 0.010 0.137*** -0.308***

(0.009) (0.011) (0.022) (0.028)

V arp(hay) 0.032* -0.023 0.057 -0.134

(0.023) (0.026) (0.056) (0.101)

Nitrogen -0.867*** 0.406** -1.363*** 5.302***

(0.208) (0.189) (0.552) (1.327)

V ary(corn) -0.082** -0.046* 0.043 0.180

(0.036) (0.033) (0.072) (0.179)

V ary(soy) 0.062** -0.037 0.045 -0.214

(0.029) (0.029) (0.082) (0.223)

V ary(wheat) -0.043** 0.059** 0.117** -0.373***

(0.026) (0.025) (0.064) (0.156)

V ary(hay) 0.607*** -0.294*** -0.868*** 1.886***

(0.100) (0.102) (0.229) (0.551)

Insc 0.784*** -0.609*** -0.869*** 2.199***

(0.041) (0.044) (0.229) (0.231)

Inss -0.733*** 0.756*** 0.020 -0.050

(0.042) (0.039) (0.068) (0.165)

Insw -0.659*** -0.118*** 2.234*** -4.998***

(0.040) (0.035) (0.091) (0.195)

Note: Standard deviations are from 2,000 bootstrap runs. *** means significance at 1% level. **

means significance at 5% level. * means significance at 10% level. () means standard deviations of

estimates.*** means significance at 1% level.
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