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Abstract 

Climate change is predicted to bring changes in weather and water availability.  The effect on 

agriculture depends on the ability of producers to modify their practices in response to changing 

distributions.  We develop a two-stage theoretical model of producer planting and irrigation 

decisions and use a unique dataset to empirically estimate how irrigated agricultural producers 

respond to changes in expected water availability and deviations from expectations.  As water 

supplies decrease, producers respond by planting fewer acres and concentrating the application 

of water. Highlighting the importance of adaptation, failure to account for this behavioral 

response overstates climate change impacts by 29%.
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1. Introduction 

Widespread consensus now exists that climate change is occurring (Stocker et al., 2013). 

Changes in precipitation and temperature patterns are expected to have widespread impacts on 

agricultural systems (Mendelsohn et al. 1994, Schlenker et al. 2005, Deschenes and Greenstone 

2007, Schlenker and Roberts 2009, Massetti and Mendelsohn 2011) but the size and nature of 

these impacts will not only depend on how the climate changes, but also on the ability of 

producers to adapt. Irrigated agriculture accounts for almost half of all agricultural revenue in the 

U.S., yet due to data limitations and other estimation challenges, there exists a gap in the 

understanding of how producers in this sector might respond to climate change. While all 

producers can respond to changing expectations and random weather realizations, the available 

margins of adjustment in irrigated agriculture differ from those available to dryland producers.  

In this paper, we investigate how irrigated agricultural producers respond to changes in 

expectations about the availability of water as well as year-to-year fluctuations in weather and 

the availability of irrigation water.  We then explore what this implies for the ability of producers 

to adapt to climate change. 

Recent empirical studies of agricultural climate change impacts fall into two broad categories.  

The first focuses primarily on dryland production and uses random fluctuations in annual 

weather to identify the impacts of temperature on crop yields (Schlenker and Roberts 2009) and 

agricultural profit (Deschenes and Greenstone 2007).  Results suggest that an increase in average 

temperature could increase agricultural profit but that extreme temperatures may have large 

negative consequences for US agriculture.  While this method is well-identified, it does not allow 

for producer responses to changes in weather distributions that could offset some of the observed 

impacts of variation in weather realizations.  The second category of studies uses a cross-

sectional Hedonic approach to investigate how agricultural land value depends on climate 

variables such as temperature and rainfall averages (Schlenker et al., 2005) and on expected 

water availability (Schlenker et al., 2007).  At the opposite extreme, this approach allows for 

costless behavioral and institutional adjustments as climate and water availability change. 

Our approach uses random fluctuations in weather and water availability for identification but 

allows for changing behavior in response to expectations of surface water availability. 

Specifically, we use the Colorado spring snowpack to model expected water supplies.  We then 



4 
 

examine producer responses to deviations from expectations.  This novel approach provides new 

insight into the potential for agricultural adaptation to climate change by allowing for producer 

responses to observable changes in the distribution of water availability.   

The existing literature has focused on climate change impacts on dryland agriculture because the 

decision to irrigate is largely endogenous and not fully observed.  Producers can choose the 

quantity of water to apply in a given season.  Olen et al. (2015) find that climate and weather 

significantly influence irrigation behavior on the West Coast of the US.  In addition, Schlenker et 

al. (2005) find that controlling for surface water (e.g., Mendelsohn and Dinar 2003) does not 

adequately capture the difference in impacts between irrigated and dryland counties in the US.  

Schlenker et al. (2007) address this by using data on irrigation district water availability to 

estimate the impact of water on agricultural land values in California.    

We overcome these challenges by using a unique measure of surface water availability in 

Northeastern Colorado.  The South Platte River Basin (SPRB) presents an ideal setting for 

measuring the role of surface water because of spatial and temporal variability in its supply.  

Producers in the SPRB receive surface water in the summer from snowmelt and reservoirs that 

fill in the winter.  The variation in surface water supplies across years and counties generates 

sufficient variation to estimate the impact of 1) surface water expectations on planting decisions 

and 2) agricultural season water realizations on producer outcomes, including harvested acres 

and crop yields. These two impacts can be separately identified because of the temporal 

difference between surface water storage (in the winter) and use (during the summer).   

While we use data from one region of Colorado, quantifying these impacts provides new insights 

into the impacts of variability in surface water supplies on irrigated agriculture across many arid 

regions of the world. It also highlights potential differences from dryland impacts.  The results 

have important policy implications because efficient surface water management can mitigate 

negative impacts of climate change (Fischer et al. 2007).  On the other hand, if surface supplies 

decrease as temperatures increase, climate change impacts can become magnified. 

Structural models have also been used in the economics literature to mitigate concerns regarding 

the endogeneity of irrigation decisions but they impose more assumptions about producer 

behavior.  For example, hydroeconomic models have been used to investigate the impacts of 
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droughts and other water supply issues (Harou et al. 2009).  Positive mathematical programming 

also provides a useful tool in evaluating regional impacts of water policies (Howitt 1995, 

Graveline and Mérel 2014). 

Here, a two-stage theoretical model demonstrates how a producer adjusts planting decisions in 

response to expectations about the weather and surface water availability.  The model then 

describes the nature of a producer’s irrigation decision conditional on acres planted.  To test the 

hypotheses from the theoretical model, we use the US Department of Agriculture Natural 

Resource Conservation Service’s Surface Water Supply Index (SWSI) as a measure of surface 

water expectations and confirm that Colorado producers plant more acres of irrigated corn in 

years when a high water supply is expected during the irrigation season.  This innovation allows 

climate change scenarios to include changes in producer behavior that account for updated 

expectations of water availability.  This is a useful departure from using only annual weather 

realizations to predict the agricultural impacts of climate change. 

Next, we use a feature of the Prior Appropriation Doctrine (PAD), which governs water rights in 

the western US, to construct a county-level measure of surface water supply.  Under PAD, older, 

or ‘more senior’ water rights have priority over newer rights.  A “call” is placed on junior water 

rights when water supplies are insufficient to fulfill senior water rights
i
.  If a senior rights holder 

cannot access needed water, s/he can ‘call’ all rights within a basin with a more junior status.  

Junior water rights holders cannot use their right during the period of a call, resulting in less 

water available over the season. We find that producers respond to shocks by concentrating 

available water onto fewer acres to maintain high yields on harvested acres.  Using “calls”, 

which are exogenously driven by weather events, as the basis for our identification strategy, we 

avoid endogeneity concerns typical of this type of study.   

In the context of irrigated agriculture in the SPRB, it is important to control for county fixed 

effects and a time trend.  First, counties vary in their access to surface water on average and this 

affects planting decisions.  Next, moving across space involves significant changes in altitude, 

slope, expected weather, and soil type and these factors influence agricultural productivity 

(Ortiz-Bobea 2013).  The inclusion of county fixed effects and a time trend help minimize 

omitted variable bias: the former controlling for unobserved, time-invariant differences across 
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counties, the latter controlling for factors such as population growth that takes water from 

agriculture (Goodman 2000).  

Some evidence exists on the ability for producers to adapt to climate change.  Burke and 

Emerick (2013) find little evidence of producer adaptation that minimizes climate change 

impacts on yields and farm revenue.  This may occur as dryland producers do not have 

significantly different expectations about the weather from year to year.  It is possible that access 

to irrigation water could offset some of the negative impacts of climate change (Adams 1989).  

Of course, this relies on continued access to water supplies.   

In the region studied here, we find that the ability to adjust planting decisions to changes in 

expected surface water increases county profits by approximately $541,000 per year.  We also 

find that investment in public water storage infrastructure that substitutes for declining natural 

storage can increase profits by $301,000 per county-year.  Therefore, the ability to adapt to 

climate change at the individual producer level and at the basin level can decrease the negative 

impacts of climate change. 

In the following section, we present a simple, two-stage mathematical model that highlights the 

margins of adjustment available to producers who rely on surface water irrigation.  Next, an 

empirical setting and model are described to test the hypotheses generated by the theoretical 

model.  Parameter estimates are used to calculate the impacts of climate change on profit and 

yields in the SPRB.  Finally, we discuss results and conclude. 

 

2. Theoretical Model 

Our analysis focuses on producers who rely on surface water for irrigation.  The model presented 

characterizes how variation in expected and realized surface water supplies affects producer 

decisions regarding planting, harvesting, and irrigation.  A producer makes decisions in two 

stages, reflecting planting decisions based on expectations of available water and irrigation and 

harvest decisions in response to observed realizations.  While this two-stage approach has been 

used in the context of groundwater (Foster et al. 2014), surface water differs because both 
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weather and the quantity of irrigation water available are random variables while groundwater 

well capacities are known upfront.  

 

2.1 Decision Environment 

Consider a profit maximizing producer who, at the beginning of each irrigation season (stage 1), 

decides the number of irrigated acres, 𝐿, to plant.  We assume that the producer is water 

constrained, implying that no land constraint binds. The producer faces a per-acre planting cost 

of 𝑐.  

In stage 2, conditional on planting decisions, the producer makes a decision regarding how much 

to irrigate per acre, 𝑎, assumed to be constant across acres, and how much land to harvest, 𝐻 ≤

𝐿.  As of stage 2, the realization of weather and surface water availability has occurred.  This 

represents a simplification because irrigation decisions are made on a daily basis before full 

information about the weather is revealed.  Nevertheless, separating irrigation decisions into ex 

ante planting decisions and ex post irrigation decisions captures the role of risk in planting while 

accounting for the ability to adjust irrigation as conditions are revealed. 

The producer faces a per-acre harvest cost of 𝑑 and receives 𝑝 dollars per unit of output 

harvested.  Reflecting gravity-fed surface water systems, water can be applied at no cost. 

Conditional on harvesting an acre, per-acre output produced is 𝑦 =  𝑓(𝑤; 𝜃) and is a function of 

the amount of water available to the plant, 𝑤, and a set of random non-water weather conditions, 

𝜃, distributed with mean 𝜇𝜃 and variance, 𝜎𝜃
2. Assume that 𝑓𝑤 ≥ 0 and 𝑓𝜃 > 0 so that more water 

and higher 𝜃 translate (weakly) into yield increases.   

The total amount of water available to an acre is a random variable, 𝑤 = 𝑠 + 𝑎. 𝑠 represents the 

total amount of water available absent any irrigation and is comprised of the sum of available 

pre-season soil moisture and agricultural season precipitation. Every acre receives a realization 

of 𝑠̃ plus the amount of irrigation water applied, 𝑎.  The irrigator is constrained in the total 

amount of water applied such that 𝐻𝑎 ≤ 𝐴, where 𝐴 is a random variable that represents the total 

amount of surface water available to the producer. Both 𝑠̃ and 𝐴̃ represent realizations of the 
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random variables assumed to be symmetric around means 𝜇𝑠 and 𝜇𝐴 with variances 𝜎𝑠and 𝜎𝐴 

respectively.  

The key information realization between stages 1 and 2 comes from a draw of 𝜃̃, 𝑠̃, and 𝐴̃. At the 

time of the stage-1 decision, both are unknown, meaning the producer makes planting decisions 

to maximize expected profits, facing uncertainty in both water availability and the weather.  The 

producer does, however, account for the ability to make irrigation decisions optimally in stage 2 

after 𝑠̃, 𝜃̃, and 𝐴̃ are realized. Mathematically, the producer’s stage-1 problem can be expressed 

as: 

 𝐦𝐚𝐱
𝑳≥𝟎

  𝑬[𝒑𝑯∗(𝒑, 𝒅, 𝒔, 𝑨, 𝑳, 𝜽)𝒇(𝒂∗(𝒑, 𝒅, 𝒔, 𝑨, 𝑳, 𝜽) + 𝒔; 𝜽) − 𝒄𝑳 − 𝒅𝑯∗(𝒑, 𝒅, 𝒔, 𝑨, 𝑳, 𝜽)] (1) 

where 𝐻∗(𝑝, 𝑑, 𝑠, 𝐴, 𝐿, 𝜃) and 𝑎∗(𝑝, 𝑑, 𝑠, 𝐴, 𝐿, 𝜃) are optimal stage-2 decisions.  The first-order 

condition (FOC) of this problem states that: 

 
𝑬 [𝒑 (

𝝏𝑯∗

𝝏𝑳
𝒇(𝒂∗(𝒑, 𝒅, 𝒔, 𝑨, 𝑳, 𝜽)) + 𝑯∗

𝝏𝒇

𝝏𝒂

𝝏𝒂

𝝏𝑳
) − 𝒄 − 𝒅

𝝏𝑯∗

𝝏𝑳
] = 𝟎 (2) 

The solution to this FOC, 𝐿∗(𝑝, 𝑑, 𝑐, 𝑠, 𝐴, 𝐿, 𝜃) characterizes the optimal planting decision. To 

obtain 𝐻∗(𝑝, 𝑑, 𝑠, 𝐴, 𝐿, 𝜃) and 𝑎∗(𝑝, 𝑑, 𝑠, 𝐴, 𝐿, 𝜃), we solve the stage-2 decision, conditional on 

planting decisions and realizations of water availability: 

 𝐦𝐚𝐱
𝑯,𝒂≥𝟎

    𝒑𝑯𝒇(𝒔̃ + 𝒂; 𝜽̃) − 𝒅𝑯         𝒔. 𝒕. 

𝟎 ≤ 𝑯 ≤ 𝑳 

𝑯𝒂 ≤ 𝑨̃ 

(3) 

where the first constraint restricts producers to only harvesting acres that were planted and the 

second to applying no more than the total amount of surface water available to them.  As of stage 

2, random variables are realized, indicated by the tildes.  Note that the number of acres harvested 

enters the objective function linearly.  Therefore, either no acres are harvested or the optimal 𝐻 

occurs when one of the constraints binds.  In addition to this, 
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 𝒑𝑯𝒇𝒘 ≥ 𝟎 (4) 

The subscript indicates a first derivative with respect to the variable.   

Equation 4 exactly equals zero if the water availability constraint does not bind or only weekly 

binds, given the number of acres harvested
ii
. The solution to this stage, 𝐻∗(𝑝, 𝑑, 𝑠̃, 𝐴̃, 𝐿, 𝜃̃) and 

𝑎∗(𝑝, 𝑑, 𝑠̃, 𝐴̃, 𝐿, 𝜃̃), identifies optimal harvest and irrigation decisions, but does not consider 

planting costs which are sunk as of the second stage.  The solution is used in Equation 1, which 

can then be solved for the optimal choice of 𝐿, accounting for stage-2 decisions. 

2.2. Model Predictions for Surface Water Use 

The predictions from both the first- and second-stage problems depend on assumptions made 

regarding the functional form for 𝑓(𝑠̃ + 𝑎; 𝜃). Consistent with empirically estimated agronomic 

yield functions (Berck and Helfand 1990, Letey 1991, Carey and Zilberman  2002, Schneekloth 

and Andales 2009), we narrow our focus to the set of production functions for which the 

following is true: 

 

𝒇𝒘(𝒘; 𝜽) = {𝒈 

𝟎                  𝒊𝒇 𝒘 < 𝑳𝑩
> 𝟎     𝒊𝒇 𝑳𝑩 ≥  𝒘 < 𝑼𝑩

𝟎              𝒊𝒇    𝒘 > 𝑼𝑩
 (5) 

where 𝐿𝐵 denotes an agronomic minimum quantity of water needed for the crop to grow and 𝑈𝐵 

represents the point beyond which additional water has zero marginal impact on yields.  

A minimum water requirement, together with the presence of fixed planting costs implies that 

economic (as opposed to agronomic) lower bounds also exist in both model stages. Let 𝐿𝐵𝑃 and 

𝐿𝐵𝐻 denote the minimum quantity of water needed to produce yields sufficient to recover per-

acre total and harvest costs respectively.  In this case, 

 𝒑𝒇(𝑳𝑩𝑷; 𝜽)  = 𝒄 + 𝒅 and 𝒑𝒇(𝑳𝑩𝑯; 𝜽) = 𝒅 (6) 

Note that 𝐿𝐵𝑃 > 𝐿𝐵𝐻.  As defined, a producer chooses not to plant if known water availability is 

less than 𝐿𝐵𝑃.  Conditional on planting an acre, harvest occurs as long as available water 

exceeds 𝐿𝐵𝐻. Without loss of generality, we further restrict our attention to the cases where 𝑈𝐵 
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is greater than both economic lower bounds and 𝑠̃ is less than 𝐿𝐵𝑃. Together these imply that we 

consider only irrigated crops that have the potential to recover planting and harvest costs but the 

decision is risky. 

We now explore how planting and irrigation decisions in this model are influenced by expected 

and realized water availability.  

Observation 1: Given insufficient water supplies, it is optimal to fully irrigate a subset of planted 

acres. 

To illustrate this, suppose a producer with a given 𝑠̃ has enough water, 𝐴̃ to supply 𝐻0 < 𝐿∗ acres 

with 𝑤0 ∈ (𝐿𝐵𝐻, 𝑈𝐵).  Since the marginal productivity of water is constant and equal to 𝑔 in this 

range, there exists 𝜖 > 0 such that the same quantity of water could be applied on 𝐻0 − 𝜖 acres 

without decreasing total production.  In fact, as long as 𝑤0𝐻0 < 𝑈𝐵 ∗ 𝐻0, harvesting fewer acres 

can increase total production because the inframarginal water between 0 and 𝐿𝐵 on 𝜖 acres has 

zero marginal product but when transferred, the marginal product equals 𝑔.  Therefore, revenue 

does not decrease while costs decrease by 𝜖𝑑 because fewer acres are harvested.  This remains 

true until 𝑤0 = 𝑈𝐵 for all harvested acres.  Therefore, the existence of fixed per-acre harvest 

costs drive the producer to fully irrigates every harvested acre
iii

.   

Observation 2: Negative shocks to water availability result in extensive margin adjustments. 

Observation 2 follows directly from Observation 1. If 𝐴̃ ≤ (𝑈𝐵 − 𝑠)𝐿∗, the producer is unable to 

fully irrigate all planted acres. Given that the producer prefers to fully irrigate any acre harvested 

over partially irrigating, in periods of shortage the producer will reduce irrigated acreage rather 

than reducing per acre application rates.  With a negative shock to water availability, this implies 

fewer acres are harvested. 

Together, observations 1 and 2 suggest that we would expect harvested acreage to fall, but not 

yields in response to a negative shock to water supplies. 

Observation 3: An increase (decrease) in expected water increases (decreases) the number of 

acres planted. 
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Observation 3 can be shown through further analysis of Equation 2.  First, note that the optimal 

number of acres harvested, given that all harvested acres are fully irrigated, is 𝐻∗ =

min {
𝐴̃

𝑈𝐵−𝑠
, 𝐿∗} .  Therefore, in stage 1, the marginal impact of increasing 𝐿 is: 

 
 
𝝏𝝅

𝝏𝑳
=  {

           −𝒄                                             𝒊𝒇 𝑨̃ ≤ (𝑼𝑩 − 𝑺)𝑳

𝒑𝒇(𝑼𝑩; 𝜽) − (𝒄 + 𝒅)                               𝒐. 𝒘.
 (7) 

where the first case occurs when an additional acre is planted but not harvested.  The second case 

occurs when more acres could be harvested if planted. 

The optimal choice of 𝐿∗ in stage 1 sets 𝐸 [
𝜕𝜋

𝜕𝐿
] = 0.  Consider 𝐿𝜇̅𝐴

∗  which represents the optimal 

level of acres planted given expectation of 𝜇̅𝐴 so that 𝐸 [
𝜕𝜋

𝜕𝐿
]

𝜇𝐴=𝜇̅𝐴

 = 0.    This implies that: 

 
𝑬 [

𝝏𝝅

𝝏𝑳
] = 𝒑𝒓 (

𝑨

𝑳𝝁̅
∗ ≤ 𝑼𝑩 − 𝒔) ∗ (−𝒄)

+ 𝒑𝒓 (
𝑨

𝑳𝝁̅
∗ > 𝑼𝑩 − 𝒔) (𝒑𝒇(𝑼𝑩; 𝜽) − (𝒄 + 𝒅)) = 𝟎. 

(8) 

Let 𝑔 (
𝐴

𝐿
; 𝜇𝐴, 𝜎𝐴

2) be the probability distribution function of  
𝐴

𝐿
.  This implies that the probability 

that 
𝐴

𝐿
> 𝑈𝐵 − 𝑠 is decreasing in 𝐿, as planting more acres results in a lower probability of fully 

irrigating all acres planted.  Equivalently, the probability that 
𝐴

𝐿
< 𝑈𝐵 − 𝑠 increases in 𝐿.  

Substituting 𝑔 (
𝐴

𝐿
; 𝜇𝐴, 𝜎𝐴

2) in to Equation 8, 

 

𝒄 ∫ 𝒈 (
𝑨

𝑳𝝁̅
∗ ; 𝝁̅𝑨, 𝝈𝑨

𝟐 ) 𝒅𝑨

𝑼𝑩−𝒔

−∞

= (𝒑𝒇(𝑼𝑩; 𝜽) − (𝒄 + 𝒅)) ∫ 𝒈 (
𝑨

𝑳𝝁̅
∗ ; 𝝁̅𝑨, 𝝈𝑨

𝟐) 𝒅𝑨

∞

𝑼𝑩−𝒔

 (9) 

Holding 𝐿∗ constant, if 𝜇𝐴 increases from 𝜇̅𝐴 to 𝜇̂𝐴, then the left-hand side of Equation 9 

decreases while the right-hand side increases.  In order to maintain equality, 𝐿∗ must increase, 

resulting in 𝐿𝜇̂𝐴

∗ > 𝐿𝜇̅𝐴

∗ . 

 

2.3 Soil Moisture and Weather 
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Given that we have modeled precipitation and soil moisture as perfect substitutes for irrigation 

water, we might expect changes in expectations to have similar impacts as expected surface 

water.  This is likely true with intermediate levels of soil moisture but in practice, when soil 

moisture reaches extreme levels, planting becomes difficult and can result in lower productivity 

as producers alter the timing of planting in response.  Therefore, while the model predicts that 

higher soil moisture should lead to more acres planted, this impact may be nonlinear, as 

producers cannot control oversaturation of fields due to extreme weather events.  

Finally, the impact of 𝜃 in this model depends on how temperature impacts the location of 𝐿𝐵 

and 𝑈𝐵 as well as maximum yields.  Evidence suggests that temperature increases from low 

levels can have a positive impact on crop growth while increases in high temperatures have a 

negative impact (Schlenker and Roberts 2009).  Therefore, conditional on having sufficient water 

to fully irrigate, we expect nonlinear impacts on yields for all acres harvested.   

 

3. Data and Context 

To test the theoretical predictions presented above we focus our analysis on the South Platte 

River Basin (SPRB) of Colorado.  We concentrate on this region because data on agricultural 

water deliveries are available and, unlike in other regions in CO, groundwater supplies are 

administered under the same legal framework as surface water.  According to the State Water 

Plan (Colorado’s Water Plan 2015), the SPRB “has the greatest concentration of irrigated 

agricultural land in Colorado” (2
nd

 draft, p. 43).  We focus on counties that are not over the 

Ogallala Aquifer and thus depend mostly on surface water from the Rocky Mountains.  In 2010, 

surface water accounted for more than 90% of irrigation water used in this region (United States 

Geological Survey).  Surface water supplies rely on reservoirs as well as melting snowpack that 

accumulates during the winter before the agricultural season.  Therefore, producers form an 

expectation for the amount of surface water to be delivered later in the season based on the 

snowpack in a basin’s headwaters region.  Note, however, that actual water delivered does not 

correspond perfectly to beginning-season expectations because random events (e.g., sublimation 

that causes snow to convert to water vapor
iv

 or dust that lands on snow) can rapidly change the 

amount of surface water available for agricultural (or other) use.  This can cause unexpected 
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shocks in the amount of surface water available to some producers.  Figure 1 presents the land 

irrigated by surface water in the SPRB, as well as a map of all water basins in Colorado.  In the 

analysis, we include all counties that have some land area within the SPRB. 

 

[Figure 1] 

      

In the SPRB, we explore planting, irrigation, and harvesting decisions for irrigated corn.  

According to Schneekloth and Andales (2009), corn requires 20-30 inches of water to reach full 

irrigation (𝑈𝐵) in the region.  It also needs at least 10 inches of water for any growth to occur.  

In the SPRB, mean initial season soil moisture is 9.6 inches of water-height equivalent with a 

10
th

 and 90
th

 percentile of 6.3 and 11.78 inches respectively.  Therefore, it is unlikely that soil 

moisture alone could provide enough water to reach 𝑈𝐵.  This means that surface water supplies 

are needed to fully irrigate corn in the region
v
.  Observed fluctuations in initial soil moisture, on 

the other hand, are unlikely to provide enough water to fully irrigate corn without surface water. 

 

3.1 Agricultural Data 

The agricultural data used to test responses to surface water availability come from the USDA 

National Agricultural Statistics Survey (NASS).  We obtain county-year acreage (harvested and 

planted) data as well as yields per acre harvested for irrigated corn
vi

.  



14 
 

Table 1Table 1 presents overall basin-wide averages for the variables used in the analysis.  In 

addition, averages from 2000 and 2002 are presented to demonstrate variation between and wet 

and dry year respectively.  The NASS data create an unbalanced panel for the time period 1982-

2010.   

 

[Table 1] 

 

3.2 Weather Data 

In order to measure historical agricultural season weather, we use daily minimum and maximum 

temperature as well as precipitation from Oregon State University’s high resolution spatial 

climate data model, PRISM (PRISM Climate Group 2015).  We choose PRISM over other 

weather data alternatives because of its consistent spatial and temporal coverage (Auffhammer et 

al. 2013).  Colorado’s extreme topography, including large changes in altitude, means that the 

weather varies significantly across space, even within a county.  To account for this, we use the 

2001 National Land Cover Database (NLCD) to identify agricultural land and only use PRISM 

output from model grid cells that contain agricultural land.   

While the weather data are available on a daily basis, agricultural statistics are only available 

annually.  To create annual weather variables while capturing the role of extremes, we follow the 

standard in the agronomy literature and use growing degree days (GDD) (Wilson and Barnett 

1983, Bassetti and Westgate 1993, Herrero and Johnson 1980) and harmful degree days (HDD).  

This allows for beneficial heat in some range while extreme heat can harm productivity.  

Following Snyder (1985) we assume that temperature within a day follows a sinusoidal pattern 

connecting daily minimum and maximum temperatures (Schlenker and Roberts 2006) and define 

the cut-off between GDDs and HDDs at 30 degrees C.  We also assume that temperatures below 

8 degrees do not contribute to crop growth.  Therefore, a GDD corresponds to temperatures 

between 8 and 30 degrees C.  To construct agricultural season weather, we sum the GDDs and 

HDDs that occur between April and September.  This is also done for precipitation to create 

annual agricultural season precipitation and precipitation squared.   
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3.3 Expected Surface Water Supply 

In the SPRB, surface water supplies flow from melting snow that falls over the winter.  

Reservoirs allow water managers to control the timing of surface water releases within and 

across seasons.  The USDA Natural Resources Conservation Service maintains a basin-specific 

surface water supply index (SWSI) for all of Colorado.   SWSI measures monthly mountain-

based surface water supply.  It ranges from -4 (severe drought) to 4 (abundant supply) and 

includes snowpack as well as reservoir levels for the entire basin.  In this analysis we use the 

average of March and April SWSI to capture surface water expectations at the time of planting.  

Some counties
vii

 in the SPRB have land in the Arkansas Basin in addition to the SPRB.  To allow 

for this, each county’s SWSI is the average SWSI weighted by the amount of agricultural land in 

each basin. Figure 2 demonstrates that the March/April SWSI varies considerably across time in 

the SPRB. This provides exogenous variation in the expectations that producers have for 

available surface water in a given year.   

 

[Figure 2] 

 

3.4 Soil Moisture Data 

Monthly soil moisture data at the county level come from a model developed by the National 

Oceanographic and Atmospheric Administration (Huug van den Dool et al. 2003).  Climate 

Prediction Center soil moisture data were provided by the NOAA/OAR/ESRL PSD, located in 

Boulder, Colorado, USA, (http://www.esrl.noaa.gov/psd/).  Each of the agricultural fields in the 

NLCD was assigned the soil moisture of the cell that contains it.  County-month observations are 

created by averaging across all agricultural fields in a county in each month. 

 

3.5 Surface Water Calls 

http://www.esrl.noaa.gov/psd/
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Yield and surface water allocation decisions ultimately depend on the amount of surface water 

delivered to a producer.  We create a variable that captures the intensity of a negative surface 

water shock by utilizing a feature of the Doctrine of Prior Appropriation which governs water 

allocation in Colorado.  According to Colorado law, all surface water users must own a right to 

use water.  Older rights have a higher ‘priority’ than newer rights.  If a senior water right holder 

cannot fulfill the right, s/he can ‘call’ junior rights holders.  During a call, any user in a basin 

with a more junior right cannot exercise the right.  Therefore, from the perspective of a junior 

rights holder, a call represents a negative shock to surface water supply.  Importantly, because 

water rights are defined based on their historical diversions from the stream, senior water rights 

holders must utilize their rights when available or risk having the right taken away or redefined 

(often referred to as “use-it-or-lose-it”).   

Data on the surface water source for agricultural land as well as the relevant water right for the 

land’s water source are obtained from the Colorado Decision Support System (CDSS).  A call 

history tells the timing and length of calls from specific water rights.  This information is used to 

map called water rights to agricultural land in the SPRB. 

First, water rights are mapped to each diversion structure through which water flows in the basin.  

Water rights data describe the seniority of the water right by indicating the date of 

establishment
viii

.  Next, the history of calls in the SPRB is assigned to each structure-year.  

During a call, the called structure must refrain from diverting water under that right.  Therefore, 

the shock to surface water supply is created by multiplying the duration of each call by a right’s 

allowable flow rate if the right is junior to the calling right.  Consistent with the State of 

Colorado
ix

, it is assumed that producers would water an average of 12 hours per day if the call 

did not occur.  The amount of called water is summed across the agricultural season and across 

rights belonging to a structure to produce a quantity of called water for each structure.  We 

consider called water during the period from June to September.  

The final step includes mapping called water to the agricultural land it corresponds to in order to 

construct county level called water.  Therefore, we use 2005 agricultural land data from CDSS 

for the SPRB.  Each plot of land is mapped to the diversion structure through which water is 

obtained.  The water rights associated with a plot’s structure are divided among land parcels in 

proportion to the size of the parcel.  The annual quantity of called water per land area is summed 
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across all parcels within a county to produce a county-year measurement of agricultural surface 

water, in acre-feet.  This variable is used to model expected called water as a function of 

beginning-year water observations.  Deviations from expectations become an exogenous shock 

to surface water supplies.  We use the combined dataset to investigate producer responses to 

expected water supplies and shocks to supply. 

 

4. Empirical Model 

Using the data described in the previous section, we investigate the impact of water supply 

expectations and shocks on agricultural planting and harvest decisions and crop yields.   

 

4.1 Stage-1 Planting Decision 

Consistent with the theoretical model, stage 1 of the empirical model investigates the number of 

acres planted in corn in county 𝑐 in year 𝑡. 𝐿𝑐𝑡 is a function of expected surface water at the time 

of planting, initial soil moisture levels, and producer expectations about future prices.  In the 

SPRB, corn is planted during the months of April and May.  Therefore, the March and April 

SWSI values reflect the information that producers have about surface water supplies at the time 

of planting and are used as a proxy for 𝜇𝐴 from the theoretical model. 𝐼𝑆𝑀𝑐𝑡 is a measure of 

initial soil moisture in March and April in county 𝑐 in year 𝑡 and informs a belief about 𝜇𝑠.  To 

allow for potentially nonlinear effects of 𝑆𝑊𝑆𝐼𝑐𝑡 and 𝐼𝑆𝑀𝑐𝑡  they enter the regression model 

through a function, 𝑊(𝑆𝑊𝑆𝐼𝑐𝑡, 𝐼𝑆𝑀𝑐𝑡; 𝛽).  We include the average Chicago Mercantile 

Exchange December future price for corn in March and April as a proxy for producer’s output 

price expectations at the time of harvest.  We assume this price is exogenous to county 

production in Colorado but provides producers with a reasonable expectation regarding the price 

of corn at the time of harvest.  The stage-1  model is therefore: 

 𝑳𝒄𝒕 =  𝜶𝒄 + 𝑾(𝑺𝑾𝑺𝑰𝒄𝒕, 𝑰𝑺𝑴𝒄𝒕; 𝜷) + 𝜹𝒑𝒕 + 𝜸𝒕 + 𝒖𝒄𝒕     (10) 

Where 𝛼𝑐 is a county fixed effect that controls for differences in soil type, elevation, and other 

time invariant factors.  𝑝𝑡 is the corn future price.  A trend is included to allow for factors that 



18 
 

evolve over time such as the conversion of agricultural lands due to urbanization.  Finally, 𝑢𝑐𝑡 is 

a random error term and is clustered at the county level.  Identification of the marginal impact of 

𝑆𝑊𝑆𝐼𝑐𝑡 requires that, conditional on county fixed effects, a time trend, soil moisture levels, and 

prices, the annual realization of 𝑆𝑊𝑆𝐼𝑐𝑡 is orthogonal to the error term.  This would occur as 

long as the snowpack in a given basin and year is random from the perspective of agricultural 

producers.   

We estimate Equation 10 including 𝑆𝑊𝑆𝐼𝑐𝑡 and 𝐼𝑆𝑀𝑐𝑡 linearly as well as allowing for their 

interaction and the square of 𝐼𝑆𝑀𝑐𝑡.  

 

4.2 Modeling Expectations 

Next, we model the expected called water in county 𝑐 in year 𝑡 as a function of the March/April 

SWSI.  We do this to generate a measure of unexpected deviations in called water, used to 

explain responses to water availability in stage 2.  𝐶𝑎𝑙𝑙𝑠𝑐𝑡 is the county-year variable created by 

summing called water across the agricultural year and across fields in a county.  We assume that 

the expected number of calls depends on initial season expectations and a trend to reflect the 

impact of increasing demands by municipal and industrial water users driven by population 

growth over time.  Therefore,  

 𝑪𝒂𝒍𝒍𝒔𝒄𝒕 = 𝜶𝒄 + 𝜷𝟎𝑺𝑾𝑺𝑰𝒕 + 𝜷𝟏𝒚𝒆𝒂𝒓𝒕 + 𝝐𝒄𝒕 (11) 

The realization of called water often differs from expectation.  Therefore, we use the predicted 

residual from Equation 11, 𝜖𝑐̂𝑡, as an exogenous shock to surface water that a producer has 

available during the agricultural season.  This exercise is repeated for expected agricultural 

season soil moisture as a function of initial soil moisture levels. 

 

4.3 Stage-2 Harvest Decision 

Finally, we model the impact of an exogenous shock to water supplies on agricultural decisions 

and output.  The stage-2 outcome, 𝑦𝑐𝑡 is modeled as: 
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 𝒚𝒄𝒕 =  𝜶𝒄 + 𝜷𝟎𝜖𝑐̂𝑡 + 𝜷𝟏𝑯𝑫𝑫𝒄𝒕 + 𝜷𝟐𝑮𝑫𝑫𝒄𝒕 + 𝜷𝟑𝑷𝒄𝒕 + 𝜷𝟒𝑷𝒄𝒕
𝟐 + 𝜹𝒑𝒕 + 𝜸𝒕 + 𝒗𝒄𝒕 (12) 

where 𝑦𝑐𝑡 is irrigated corn acres harvested or yield in county 𝑐 in year 𝑡.  𝝐̂𝒄𝒕 is a vector of 

unexpected water availability and potentially includes surface water and soil moisture shocks as 

well as interactions between them.  We include measures of precipitation (𝑃𝑐𝑡 and 𝑃𝑐𝑡
2 ) and 

temperature (𝐻𝐷𝐷𝑐𝑡 and 𝐺𝐷𝐷𝑐𝑡) to investigate the role of agricultural season weather.  Finally, 

we control for the December future price as of July
x
 to allow for variations away from planting 

season price expectations.  To test robustness, we also estimate Equation 12 with planting season 

controls (planting month price, SWSI, and soil moisture).  A time trend is included to control for 

factors such as technological change in agricultural productivity.  Finally, county fixed effects 

control for time-invariant differences across counties and 𝑣𝑐𝑡 is a random error term.  To 

correctly estimate the standard errors in this second-stage model, we bootstrap because 𝝐̂𝒄𝒕 is an 

estimated variable, resulting in larger standard errors than normal (Murphy and Topel 1985). 

The effect of surface water shocks on yields and harvesting decisions is identified if, conditional 

on expected availability, prices, and weather, the occurrence of a call is unexpected.  One 

concern includes the ability for producers to use groundwater in response to surface water 

shocks.  In this case, our results show a net impact of surface water shocks after producers 

respond by increasing groundwater use.  If producers can substitute groundwater for surface 

water, our estimates represent lower bound impacts of water shortages.  In practice, 

groundwater-surface water linkages mean that when surface water is called in the SPRB, 

groundwater also faces restrictions.   

Another identification concern involves inter-basin transfers through projects such as the 

Colorado-Big Thompson project that transfers water from the west slope of the Rockies (and the 

Colorado River Basin) to the east slope (SPRB).  These transfers are often correlated with shocks 

to one basin because they are used to mitigate the negative impacts of supply shocks.  While this 

also biases our results towards zero, the majority of surface water in the South Platte basin is 

native water (total C-BT water supplies are approximately 15% of agricultural water on 

average
xi

).   
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5. Econometric Results 

    5.1 Stage-1 Planting Decision 

Estimation results for the stage-1 planting decision are presented in Table 2. Three alternative 

specifications are estimated: linear and non-linear models of soil moisture, as well as soil 

moisture interacted with 𝐼𝑐𝑡 . Coefficient estimates across all three specifications are consistent, 

suggesting that expected surface water availability influences corn planting decisions while 

initial soil moisture levels play a limited role. The first column of Table 2 shows that the impact 

of the planting season SWSI is positive and significant at the 10% level.  A move from extreme 

drought (SWSI=-2) to normal water supplies (SWSI=0) leads to ~900 additional acres planted on 

average (or 2% of average county irrigated corn acreage).  The magnitude of this impact 

indicates that producers respond to changes in expectations of surface water availability in an 

economically significant way (an increase of 900 acres is equivalent to the impact of a 16% 

increase in corn price). 

The impact of initial soil moisture is not statistically significant from zero.  This remains true 

when soil moisture enters the regression as a quadratic (column 2) and when interacted with 

𝑆𝑊𝑆𝐼𝑐𝑡 (column 3).  Two possible explanations exist for this. First, the response to variations in 

initial soil moisture conditions may be limited given that even under the best conditions, 

expected precipitation during the growing season is insufficient to fully satisfy crop water 

demands for corn. If some producers anticipate getting “called” during the irrigation season, they 

may not plant regardless of early season soil moisture conditions. Alternatively, it is also 

possible that effect of soil moisture during stage 1 is nonlinear in a way not fully captured by our 

model. While never statistically significant, the coefficients on soil moisture imply that more soil 

moisture is beneficial at relatively low levels.  On the other hand, too much soil moisture leads to 

a decrease in corn planted.  This is consistent with anecdotal evidence that wet springs prevent 

producers from planting some acres of corn. 
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[Table 2] 

 

Initial soil moisture conditions do, however, impact planting decisions, in an indirect way. Figure 

3 presents the implied marginal effects (with 90% confidence intervals) of planting season SWSI 

across different initial soil moisture levels associated with the estimates presented in column 3 of 

Table 2.  It becomes clear that the impact of surface water expectations on corn planting 

decisions is largest when initial soil moisture is low.  

Finally, the sign of the coefficient on the Chicago corn futures price is positive across all three 

specifications. This suggests that, not surprisingly, higher prices incentivize an increase in 

irrigated acres planted.   

 

[Figure 3] 

 

5.2. Stage-2 Harvesting Decision 

Table 3 presents estimation results for models of expected calls and seasonal soil moisture 

(Equation 11).  As expected, higher SWSI corresponds to a decrease in the amount of water 

called during the summer.  There is a trend in called water equal to approximately 3,000 acre-

feet per year (equal to less than 1% of annual diversions in the basin (South Platte Roundtable)).  

This can be explained by population growth in the region of almost 1.5 million people over the 

time span considered here (https://www.colorado.gov/pacific/dola/node/104466).  If population 

growth resulted in 500,000 additional households with an average of 2.5 people per household, 

this corresponds to 0.14 acre-feet transferred to municipal use, or approximately 51.5 gallons per 

capita per day of additional municipal water per household-year. Given that a portion of the new 

M&I demand over this period would be met through the purchase of water rights (not effecting 

calls), as opposed to growing into existing supplies (would affect calls), this number is consistent 

with expectations. 
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[Table 3] 

 

The impacts of agricultural season weather and water supply shocks on harvested acres and 

yields per acre harvested are presented in Table 4. As before, three alternatives specifications 

were estimated to test the robustness of the results.  Coefficient estimates are consistent across all 

three specifications and suggest that unexpected shocks in surface water supplies lead to a 

reduction in irrigated acreage and have a negative, but statistically insignificant, impact on 

average yields.    

An acre-foot of unexpected called water corresponds to a decrease in acres harvested of 0.09 

acres (Column 1).  On the other hand, unexpected water shocks do not lead to lower yields per 

acre harvested (Column 4). These results are consistent with Observation 1 and 2 and the 

hypothesis that, faced with shortages, irrigators concentrate available surface water supplies on a 

subset of planted acreage, thereby minimizing yield losses on harvested acres. 

 

[Table 4] 

 

Agricultural season temperature significantly affects corn yields but does not influence the 

number of acres harvested.  Consistent with agronomic predictions, growing degree days 

increase yields while harmful degree days result in decreased crop yields despite access to 

irrigation water.  In contrast to Mendelsohn and Dinar (2003), this suggests that higher average 

temperatures could negatively affect irrigated crop yields if it also means an increase in the 

number of days with high temperatures.   

Interestingly, while producers concentrate water on fewer acres when called, weather does not 

affect acres harvested. Instead, producers continue irrigating all acres planted even when high 

heat means reduced yields.  We hypothesize that this could occur if high heat reduces yields even 

when sufficient water is available to fully irrigate the crop.  Therefore, without an unexpected 



23 
 

shortage of surface water, all acres can remain fully irrigated but with lower yields.  Also, yields 

do not fall sufficiently low to make harvesting unviable.   

While precipitation has the potential to increase yields, this variable likely also captures the 

effect of factors that correlate with rain and could affect crop growth (e.g., wind, cloud cover, 

etc.), especially when controlling for soil moisture.   

Coefficients on soil moisture shocks have an unexpected sign.  Point estimates suggest that soil 

moisture greater than what was expected can damage crop yields.  This is consistent with 

nonlinear impacts of soil moisture.  While moderate levels of soil moisture are beneficial, higher 

levels can harm yields (e.g., through flooding and water-logging).  To test the robustness of 

results to the inclusion of the soil moisture variable, columns 3 and 6 in Table 4 present estimates 

of Equation 12 without this variable.  The coefficients on weather and water realizations do not 

change with the exclusion of the soil moisture shock variable. 

Higher expected water supplies increase the number of acres harvested but decrease the yield per 

acre harvested.  This could occur because more acres are planted but with decreasing marginal 

quality. The agricultural season corn price (December future price in July) does not affect the 

number of acres harvested but appear to increase yields.  Interestingly, higher planting season 

price decreases yields. This is consistent with producers using marginal lands when price 

expectations are high.  Finally, there has been an upward trend in irrigated corn yields across the 

time period of our study but no statistically significant change in the number of acres harvested. 
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6. Economic Impact of Weather and Surface Water 

Global climate change will affect temperature and water availability in Colorado (Lukas et al. 

2014).  For example, under the emissions scenario, Representative Concentration Pathway 4.5, 

statewide annual temperatures will rise by 1.4-2.8 degrees Celsius (C) by 2050
xii

.  Precipitation 

patterns are expected to change but no consensus exists about changes in overall annual 

precipitation.  Nevertheless, changes in temperature will likely decrease spring snow pack.  The 

period of peak runoff in the state is projected to move forward 1-3 weeks.   

We use our econometric results to simulate the effects of these changes in climate on irrigated 

agriculture and assess the value of adaptation by updating expectations about water availability.  

We also explore the benefit of adaptation by maintaining surface water supplies at current levels 

through improved storage infrastructure and management. 

To obtain estimates of profits from irrigated agriculture in the basin, we assume a corn output 

price of $4.98 per bushel, pre-harvest costs of $419.50 per acre of corn planted, and $52.92 per 

acre of corn harvested (Colorado State University Extension Service 2010 Crop Enterprise 

Budget
xiii

).  We exclude fixed costs such as general farm overhead, assuming that these do not 

change as producers marginally adjust the intensive and extensive margins of production.  

Average irrigated yields in 2010 were 184 bushels per acre.  Given this, profit for an average 

county with 40,589 acres planted and 32,486 acres harvested equals $11,021,327.   

To estimate the impact of climate change and how updating beliefs about water availability 

mitigates damages, we compare the simulated profit losses that result with and without updating 

expectations at the time of planting.  In the base climate change simulation considered here, daily 

average temperatures rise by 2 degrees C and spring surface water supplies fall by 2 SWSI units.  

This corresponds to a warmer world with a new average expected water supply equivalent to a 

moderate drought today.   

Adding 2 degrees C to daily minimum and maximum temperatures in the PRISM dataset leads to 

an increase in HDDs of 36 and an increase in GDDs of 253.  Using our coefficient estimates, this 

corresponds to a change in irrigated corn yield of -9.5 bushels per acre.  This represents a 6% 

decline in irrigated yields.  For comparison, Schlenker and Roberts (2009) predict a decrease in 

dryland corn yields of 30-46%.  This suggests that irrigation water has the ability to mitigate 
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some of the crop yield losses predicted for dryland agriculture (though base yields are lower for 

dryland).  Allowing for updated beliefs, this yield loss and a decrease in water supply cause 

county gross
xiv

 irrigated corn profits to fall by $1.8 million per county-year for a total of $22 

million across the 12 counties. This change comes from the combined effect of reduced yields 

and fewer acres planted
xv

. 

We now compare the base profit loss with the loss that occurs when producers continue planting 

as if water availability were maintained at current levels.  We assume that without updating 

expectations, the number of acres planted continues at the historic average. The number of acres 

harvested, however, falls to the level associated with the 2-unit reduction in SWSI.  Given this, 

average county profit falls by $2.4 million when compared to current levels.  This is an 

additional decrease of $541,000 per county-year relative to the case where producers adjust to 

less water by planting fewer acres.  Across the 12 counties of the study, this results in a gain of 

$6.5 million per year because of the ability to adapt to changes in expected water availability.  

Therefore, if the ability to reduce acres planted because of changing expectations is ignored, the 

negative impact of climate change is over-stated by 29%.  

Next, we investigate the gains from investment in water infrastructure that maintains surface 

water availability at current levels despite warmer temperatures and decreased natural storage as 

snowpack. This could occur through increased intra-seasonal storage capacity that continues to 

allow surface water availability to align with its demand in agriculture.  If surface water supplies 

are maintained, extensive margins are likely to remain at historical levels while only reduced 

yields from higher temperatures are experienced by producers.  If this occurs, county average 

profits fall by $1.5 million dollars as a result of climate change. 

The increased-storage scenario suggests that county irrigated corn profits would be ~$301,000 

greater per year with more reliable water supplies.  This corresponds to ~3% of annual profits or 

16% of base profit losses from climate change.  Across the 12 counties of the study, this 

translates into an annual agricultural willingness-to-pay (WTP) for maintaining water supplies of 

$3.6 million.  Using a discount rate of 3%, this implies a present value WTP for infrastructure 

improvements of $120.5 million. 
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The WTP for water infrastructure is not larger because of the yield losses that occur despite 

better access to irrigation water.  While higher temperatures are good for irrigated corn in the 

range of GDDs (8-30 degrees C), the increase in HDDs more than cancels out this beneficial 

effect.  This highlights the importance of allowing for nonlinear impacts of temperature on crop 

growth. 

Overall, climate change is projected to bring negative impacts to irrigated agriculture in the 

SPRB of Colorado.  Nevertheless, profit losses can be partially offset through producer-level 

adaptation as well as state or basin-level investment in better storage.  The magnitude of the 

benefits of adaptation is substantial but is not likely to fully offset the predicted profit loss from 

lower yields in the basin. 

 

7. Discussion and Conclusion 

Here, we have explored the implications of climate change for irrigated agriculture in the 

western United States, allowing for producer responses to changing distributions and realizations 

of water supply.  In irrigated agriculture, producers have the ability to choose the allocation of 

scarce water across planted land.  We show theoretically that the optimal allocation of scarce 

water involves concentration of the water on fewer acres in order to maintain high yields while 

incurring lower harvest costs.  In addition, producers receive a signal about surface water 

supplies at the time of planting.  This allows adjustment of planting decisions based on 

expectations. 

This represents a novel attempt to conceptualize and measure the margins along which producers 

can respond to variation in expectations about water availability.  This has important 

implications for the ability of irrigated agricultural producers to respond to climate change.  It 

also represents a contribution to the empirical climate change literature, which has focused 

disproportionately on dryland agriculture.  Impacts on irrigated crops differ from dryland 

impacts because surface water can mitigate some of the negative impacts of agricultural season 

weather.  Investigation of alternative climate change scenarios demonstrate that climate change 

will significantly affect irrigated corn yields by ~6% and that the number of irrigated acres 

would fall without further investment in supplies.  Overall, the ability for producers to modify 
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planting decisions as expectations change leads to an increase in basin profits of $6.5 million 

dollars a year compared to the case when producers do not update expectations. 

This study has several shortcomings that must be recognized.  First, while we capture changes in 

expected surface water availability, we do not model changes in expected weather.  As the 

climate changes, producers will adjust based on warmer temperatures distributions as well.  

Given the lack of clear variation in historical temperature means during our study period, we 

cannot empirically capture the role of changes in these expectations.  As is common with 

empirical climate change impacts studies, we have not accounted for the ability of producers to 

adapt to long-run changes in temperature and precipitation.  We also cannot capture all the 

margins along which producers can adapt.  For example, if the timing of snowmelt changes, 

producers may adjust the timing of planting and watering.  Better data are needed to capture the 

behavior along these margins.  Also, it is possible that hotter temperatures on average could 

incentivize the adoption of more heat and drought-tolerant corn varieties.  These factors have not 

been considered here but deserve attention in the climate change impacts literature.   

United States crop insurance policies may also affect irrigation decisions.  For example, some 

crop insurance programs require full irrigation to insure land as ‘irrigated’ (USDA).  This could 

partly explain the extensive margin adjustment observed in this study as producers are reluctant, 

for insurance reasons, to deficit irrigate insured cropland.   

Finally, our climate change scenario assumes that the variance in unexpected water shocks in the 

United States does not change.  In reality, changing precipitation patterns may make drought 

more frequent even if average rainfall remains constant.  If unexpected surface water supply 

shocks become more frequent, our profit simulations do not account for the resulting change in 

the proportion of planted acres that is harvested.  Also, with increased drought, the impacts on 

profit could be especially large in some years. 

Despite these simplifications, the results presented here have several policy implications.  First, 

the net impact of climate change will depend on the use of the acres that are not planted in 

irrigated corn and policy could influence the use of newly dried land.  It is also clear that better 

information about changing weather distributions can mitigate negative climate change impacts.  

Therefore, research and outreach efforts that inform producers about expected weather and water 
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availability as of the planting season can greatly reduce the negative impacts associated with a 

hot, dry year.   

Another policy implication that follows from this research is that more reliable storage 

infrastructure can better align producer expectations with realized surface water availability, 

mitigating economic losses from shocks to production and maintaining acres in production.  Part 

of the adaptation process likely involves collective action and coordination.  For example, while 

individual producers respond to updated expectations, constructing increased storage capacity 

requires public institutions, potentially complicating this adaptation pathway. 

Finally, policymakers may value the maintenance of land in agriculture because of potential 

economy-wide effects.  Keeping land in production can continue to support economically vibrant 

rural communities (Hornbeck and Keskin 2015, Jablonski and Schmit 2015). 

Overall, agriculture in much of the Western United States depends on the availability of surface 

water.  The impacts of climate change include changes in agricultural season temperatures as 

well as surface water supplies that form over the winter.  A full understanding of the impacts of 

climate change on US agricultural must account for these changes as well as producer responses 

to the changes.  The work presented here represents a first attempt at empirically modeling 

climate change impacts while explicitly accounting for producer adaptation in response to 

information about surface water availability.
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Table 1: Data Summary: Variable Means 

Overall 2000 2002

Acres of Irrigated Corn Planted 40589 46956 32350

(50906) (53616) (39944)

Acres of Irrigated Corn Harvested 32486 37722 23950

(38260) (39599) (26912)

Corn Yield Per Irrigated Acre Harvested (Bushels) 148 151 145

(20) (17) (20)

Corn Price (Mar-Apr Average of December Future Cents/Bushel 266 256 250

(46) n.a. n.a.

Planting SWSI (March and April Average) 0.8 1.8 -2.0

(1.6) (0) (0.1)

Called Water, June-Sept (acre-ft) 39132 42193 112263

(77043) (51856) (154677)

Harmful Degree Days (Degrees C) 16 25 34

(12) (14) (14)

Growing Degree Days (Degrees C) 1517 1662 1652

(173) (163) (150)

Precipitation (mm) 146 100 132

(37) (26) (20)

Observations 257 9 10

Table presents the mean of variables across all years (column 2) and for 3 sample years used in the 

econometric analysis (columns 3-5).  Variables are for the South Platte Water Division of Colorado.  
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Table 2: Water Supply Expectations and Planting of Irrigated Acres 

(1) (2) (3)

VARIABLES

Acres of Irrigated 

Corn Planted

Acres of Irrigated 

Corn Planted, 

Nonlinear Soil 

Moisture

Acres of Irrigated 

Corn Planted, 

Soil Moisture 

SWSI Interaction

Mar-Apr SWSI 453.0* 352.5** 3,820

(235.9) (147.0) (2,735)

Mar-Apr Soil Moisture -2.738 161.2 14.11

(6.313) (175.0) (15.89)

Mar-Apr Soil Moisture Squared -0.354

(0.376)

SWSI*Soil Moisture -16.62

(12.96)

December Future Price in Mar-Apr 20.36** 20.66** 18.44**

(7.591) (7.942) (6.986)

Year -695.5 -709.6 -673.3

(498.7) (510.9) (483.2)

Constant 1.422e+06 1.433e+06 1.375e+06

(993,088) (1.000e+06) (960,728)

Fixed Effects County County County

Observations 257 257 257

R-squared 0.136 0.141 0.144

Number of Counties 12 12 12

Note: Standard errors clustered at the county.

*** p<0.01, ** p<0.05, * p<0.1  
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Table 3: Predicting Agricultural Season Water Loss 

(1) (2)

VARIABLES

Summer Called 

Water

July Soil 

Moisture

Mar-Apr SWSI -4,271*

(2,216)

Mar-Apr Soil Moisture 0.574***

(0.0284)

Year 2,979* -1.391***

(1,470) (0.204)

Constant -5.897e+06* 2,897***

(2.929e+06) (409.3)

Fixed Effects County County

Observations 257 257

R-squared 0.164 0.268

Number of Counties 12 12

Note: Standard errors clustered at the county.

*** p<0.01, ** p<0.05, * p<0.1  
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Table 4: Impact of Weather and Water Shocks on Irrigated Corn Acres Harvested and 

Yields 

(1) (2) (3) (4) (5) (6)

VARIABLES

Acres of 

Irrigated Corn 

Harvested

Acres of 

Irrigated Corn 

Harvested

Acres of 

Irrigated Corn 

Harvested

Irrigated 

Corn 

Yield

Irrigated 

Corn 

Yield

Irrigated 

Corn 

Yield

Water Supply Shocks

Unexpected Called Water -0.0877* -0.0872* -0.0839* 5.63e-06 2.99e-06 5.15e-06

(0.04988) (0.04961) (0.00003) (0.00003) (0.00003) (0.00003)

Unexpected Soil Moisture -67.30 -66.26 -0.0399* -0.0391*

(49.13885) (48.91267) (0.02261) (0.02256)

Agricultural Season Weather

Harmful Degree Days -82.00 -43.87 -83.71 -0.792*** -0.946*** -0.963***

(104.3951) (138.58525) (0.1976) (0.15065) (0.18309) (0.1976)

Growing Degree Days -6.187 -8.072 5.932 0.0799*** 0.0924*** 0.100***

(6.95059) (9.2247) (0.02172) (0.01871) (0.02302) (0.02172)

Precipitation (mm) 134.2 137.9 102.3 0.164 0.258* 0.234*

(90.9109) (120.27243) (0.1308) (0.14061) (0.13569) (0.1308)

Precipitation Squared (mm) -0.365 -0.385 -0.298 -0.000358 -0.000570 -0.000505

(0.23377) (0.28298) (0.00046) (0.00049) (0.00047) (0.00046)

Planting Season Controls

Mar-Apr Soil Moisture -7.047 -12.73 0.0389 0.036

(14.28592) (0.02279) (0.02379) (0.02279)

December Future Price in Mar-Apr -1.539 -6.310 -0.133*** -0.139***

(46.18316) (0.03788) (0.03968) (0.03788)

Mar-Apr SWSI 494.7 577.5* -1.361* -1.297*

(367.36068) (0.73645) (0.71013) (0.73645)

Other Controls

December Future Price in July 44.21 44.85 36.77 -0.0175 0.0879** 0.0857**

(31.60493) (62.04975) (0.03938) (0.02319) (0.0386) (0.03938)

Year -572.7 -552.2 -578.7 1.269*** 1.224*** 1.208***

(480.93056) (471.61303) (0.2118) (0.21228) (0.22144) (0.2118)

Constant 1.162e+06 1.125e+06 1.165e+06 -2,504*** -2,438*** -2,413***

(956782.46) (935177.33) (397.71) (400.48) (415.98) (397.71)

Fixed Effects County County County County County County

Observations 257 257 257 230 230 230

R-squared 0.263 0.265 0.237 0.503 0.523 0.518

Number of Counties 12 12 12 11 11 11

Note: Boostrapped standard errors.  Columns 1 and 4 include only agricultural season (post planting)

variables.  Columns 2, 3, 5, and, 6 control for planting season variables.  Columns 3 and 6 omit soil

moisture shock to test robustness of result.

*** p<0.01, ** p<0.05, * p<0.1  
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Figure 1: Map of Colorado Water Basins, Counties, and SPRB Agricultural Land 

Source: Colorado’s Decision Support Systems Map Viewer, 

http://cdss.state.co.us/onlineTools/Pages/MapViewer.aspx 
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Figure 2: March and April Average Surface Water Supply Index for SPRB, 1982-2010 

 

 

 

Figure 3: Marginal Effect of SWSI at Different Soil Moisture Levels 

 

 

                                                           
i
 Under the PAD, water rights holders who fail to divert water when it is available risk losing their right, suggesting 

that even for the water right holder actually placing the call, a disconnect exists between the decision to make the 

call and the immediate need for water 
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ii
 Solving using a Lagrangian multiplier 𝜆 for the water constraint, 𝑝𝐻𝑓1 = 𝜆 where 𝜆 ≥ 0 if 𝐻𝑎 − 𝐴̃ = 0 and 𝜆 = 0 

otherwise. 
iii

 Note, this results holds for large values of 𝐿𝐵 and high fixed costs even when 𝑓(𝑤; 𝜃) is concave between 𝐿𝐵 and 

𝑈𝐵. 
iv
 Certain weather conditions are known to speed this process, including low humidity and dry winds.  Winds known 

as the Chinook (or snow eater) winds can vaporize snowpack, resulting in a shock to surface supplies (USGS). 
v
 According to the PRISM dataset (described below), average growing season precipitation is roughly 5.7 inches 

(146 mm). 
vi
 When counting irrigated acreage, NASS requests that producers ‘Include as irrigated any land to which partial, 

supplemental, or preplant irrigation water was applied’ (USDA NASS 2013 Farm and Ranch Irrigation Survey).  
vii

 Douglas, Elbert, Logan, Park, and Teller counties. 
viii

 The date of the water right is reported in days since December 31
st
 1849. 

ix
 Information provided by Sara Dunn (Ray Liesman), Division 1 Water Court, “South Platte River Basin.” 

x
 Results are robust to the month chosen for this price. 

xi
 Calculation based on an average delivery of 232,500 acre-feet from the C-BT (310,000*0.75) and on USGS data 

on total surface water use by agriculture in the Basin in 2010 (~1.5 million acre-feet) 
xii

 Under RCP 8.5, this range is from 1.9 to 3.6 degrees C.   
xiii

 Available at http://www.coopext.colostate.edu/ABM/cropbudgets.htm 
xiv

 This is the gross impact as some irrigated corn acres may be replaced by other crops. 
xv

 For this calculation, we assume a constant proportion of acres planted is harvested.  This exercise also assumes 

homogeneous land.  If lower margin land is taken out of production first, this impact represents an upper bound 

estimate.  Finally, we do not account for a trend in population growth.  If this results in less land in irrigated 

agriculture, our estimates could be overstated. 
xvi

  


