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Multiple Choices, Strategic Interactions, and Market Effects in Livestock Disease Risk 
Management 

 

1. Introduction 

Infectious livestock diseases have become major public health and economic concerns (The 

Economist 2014). These problems are generally characterized by infection risks along multiple 

pathways: spread from infected neighbors, as well as import risks. Import risks are increasingly 

important as the livestock production supply chain tends to be disaggregated by production 

process, resulting in the need to transport many live animals. Livestock markets therefore play a 

key role in management of disease risks. 

Prior work on infectious disease transmission in livestock systems (e.g., Hennessy 2007, 

2008; Reeling and Horan 2015) makes one or more of the following simplifying assumptions: 

only a single transmission pathway is modeled (imports or spread), all possible risk management 

choices are reduced into a single biosecurity variable that reduces risks along all modeled 

pathways, and role of import markets in pricing and allocating risks is generally ignored.   

Much of the prior work focuses on strategic interactions among producers, as the 

biosecurity choices made to protect one herd generate positive spillover effects that enhance the 

protection of neighboring herds.  Hennessy (2007) shows that protection to reduce the likelihood 

of pathogen spread across neighboring farms exhibits strategic substitutability among producers. 

Hennessy (2008) finds that actions to protect a farm from import infection exhibit strategic 

complementarities among producers. Reeling and Horan (2015) consider a single action that can 

protect a farm from importing infectious pathogen and from contacting with infected neighboring 

farms. They find that biosecurity exhibits strategic complementarities (substitutability) among 

neighbors when producers have less (more) control over their own risks via the spread pathway 
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relative to their neighbors’ impact over their risks. One of their main concerns is that multiple 

equilibria could arise in the case of strategic complementarities, in which case the resultant 

equilibrium depends on producers’ beliefs about others’ decisions.  Suboptimal equilibria may 

arise if producers are unable to coordinate their beliefs on the Pareto-dominant outcome; this 

situation is also known as coordination failure (Krugman 1991, and Vives 2005).  

Few studies have focused on trade, and those that do have not examined the impacts on 

biosecurity choices and any associated strategic behavior. For instance, Hennessy et al. (2005) 

model trade and the scale of production, but they do not model biosecurity. Rich and Nelson 

(2007) use a simulation approach to study foot and mouth disease in South America. They have 

trade in the model, but they simply take supply and demand as given rather than considering the 

underlying decision processes of producers. Understanding these decision processes can aid in 

the design of public policies to efficiently manage infection risks. 

The present paper expands on prior work by examining how strategic risk management 

behaviors are affected by the availability of multiple biosecurity choices to affect transmission 

risks along multiple pathways, as well as the role of import markets in pricing and allocating 

risks. We also explore the role of government policies in risk management decisions made by 

private sector.  

We begin in section 2 by providing details of the model, including the different disease 

transmission pathways, how neighboring producers’ decisions affect a particular producer’s 

disease risk, what a producer can do to manage this risk, and the economic climate within which 

producers operate. Next in section 3, we examine the decentralized problem where each producer 

optimizes based on his own self-interest. With potential spillover effects, we apply a game-

theoretic approach to obtain the equilibrium. Our analysis begins by examining important 
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properties of the equilibrium including uniqueness and stability. Then, we explore the presence 

of multiple choices, market effects and government policies and illustrate key findings via 

numerical examples in section 4. 

 

2. Model 

Consider a region that has multiple, homogeneous feedlot managers or producers indexed by i ∈ 

{1,2,…,N,N+1}, where N is the number of neighbors for a particular producer. The feedlots 

operate by importing young animals, feeding them to enhance their weight, and then selling them 

for slaughter. Imports may come from two regions: region 1 initially has no infected animals, 

whereas there are some infected animals in region 2. Producers are put at risk either when they 

import from region 2 or when their neighbors do. 

We model the producers’ decisions by a static game with two strategies. The first strategy 

is the import decision. We simplify matters by assuming each producer must import one unit of 

cattle in each period (e.g., to fill the feedlot to its fixed capacity, which has been normalized to 

one). Producer i’s choice in this matter is the proportion of imports from each region, with the 

proportion from region 1 denoted by ]1,0[∈iz  and the proportion from region 2 being iz−1 .1 

Because there are infected animals in region 2, we assume that the region 2’s cattle price is less 

than the region 1’s price. This means that producers face a trade-off between lower purchasing 

cost and a higher probability of importing infected animals. Hence, we could consider a 

producer's allocation of imports a form of risk management, with a larger zi reducing the 

probability of importing infected animals. 

Now consider the second strategy. If a particular herd avoids becoming infected via 

                                                 
1 Note that we could generalize zi to include any action attempting to reduce imported risk such as testing of 
incoming cattle; however, we use only import share for simplification. 



 

5 
 

imports, then it may still face infection risks from neighboring producers who have imported 

infected cattle.  Specifically, neighboring herds may generate risks to others via either direct or 

indirect contact.  Producer i can protect his herd with biosecurity, denoted bi. Without loss of 

generality, we normalize ]1,0[∈ib . Each producer makes both decisions simultaneously. The 

health status of the imported animals is not known when the import decision is made, but the 

probability of infection along this pathway is known.  At the end of the game, the health status of 

each importer’s herd is revealed and payoffs to each importing producer are realized. 

The epidemiological and economic details of the model are presented in the subsequent 

sections. To further simplify our analysis, we will focus on symmetric Nash equilibria (SNE) 

since the game is symmetric.2 We therefore follow Hefti (2013) and model all neighbors to 

behave in the same way, with zj = Z and bj = B ∀j≠i. In equilibrium, zi = Z and bi = B. 

 

2.1 The probability of infection 

Infection is analyzed with the herd being the primary unit of analysis.  That is, we examine the 

probability that individual herds, rather than individual animals, become infected.  There are two 

pathways along which infection can occur: imports and spread. First consider the import 

pathway. The probability of producer i’s herd becoming infected via imports is denoted by pm(zi). 

We assume 0<m
zi

p , which implies that the higher import share from the risk-free region, the less 

likely the producer will import infected animals (note that the subscripts indicate partial 

derivatives). Moreover, 0≥m
zz ii

p  is assumed, which implies a larger zi yields diminishing returns 

                                                 
2 See Hefti (2013) for a discussion of asymmetric Nash equilibria.  
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to reducing the probability of importing infected animals.3 

The second pathway is disease spread across neighboring farms.  The probability that the 

herd contracts infection from any particular neighbor, conditional on producer i having not been 

infected via her own imports and also conditional on the neighbor having already become 

infected, is denoted by ),( Bbp i
c . Note that the probability of herd i becoming infected via spread 

from the neighbor is zero when that neighbor’s herd is healthy. We assume that both biosecurity 

actions reduce the conditional probability of contacting infection 0,0 << c
B

c
b pp

i
with decreasing 

rates, 0,0 >> c
BB

c
bb pp

ii
. We further assume that the neighbor’s biosecurity reduces the 

effectiveness of producer i’s biosecurity, 0>c
Bbi

p .  The probability of becoming infected from 

any one neighbor, conditional only on producer i having not been infected via her own imports, 

is pc(bi,B)pm(Z) = pc(bi,B)pm(Z)+0⋅(1– pm(Z)). Since a particular producer has N neighbors, we 

must calculate the probability that a particular producer becomes infected from at least one 

neighbor, conditional on that producer having not imported infected animals.  A Bernoulli 

process is used to derive this probability, which is one minus the probability of avoiding 

infection from each of the infected neighbors: Nm
i

c
i

s ZpBbpZBbp ))(),(1(1),;( −−= .  We 

denote this expression as the probability of spread infection. 

Given the specification for the probability of infection along each pathway, we can obtain 

further insight on the technical relationship between the two risk management choices. First, 

suppressing functional arguments, the first derivatives of the probability of spread infection are 

negative which imply that all risk management choices reduce the probability of spread 

                                                 
3Since the probability of infection is considered a “bad” to producers, then the notion of diminishing return is 
captured by the positivity of the associated second derivative. We could write the probability of a “good” outcome 
(healthy herd) as 1-pm, in which case the second derivative is negative to indicate diminishing returns. 
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infection: 0)()1( 1 <−= − Mc
b

NMcs
b ppppNp

ii
, 0)()1( 1 <−= − Mc

B
NMcs

B ppppNp ,  

0)()1( 1 <−= − M
Z

cNMcs
Z ppppNp . However, the sign of second derivatives and cross 

derivatives are ambiguous.  For example, consider 

(1) ])1()1][()1([ 2 c
B

c
b

Mc
Bb

McNMcMs
Bb pppNpppppNpp

iii
−−−−= − . 

Since the first bracketed right-hand-side (RHS) term is always positive, the sign of s
Bbi

p depends 

on the sign of the second bracketed RHS term. As we can see that both terms in the second 

bracketed term are positive, the sign will be determined by the relative magnitude of these terms. 

For example, if there is one neighbor, N = 1, then the second bracketed term becomes 

0)1( >− s
Bb

Mc
i

ppp  and so 0>s
Bbi

p . The derivative remains positive as N is increased as long as 

the expected number of contacts with infected neighbors is sufficiently small, as can be seen in 

Table 1. But if N is sufficiently large, the second bracketed term will be negative and could 

change the sign of s
Bbi

p  from positive to negative.4 Similar ambiguities also hold for s
bb ii

p  and 

s
Zbi

p . 

Combining the two probabilities of infection (import and spread), the total probability 

producer i becomes infected is 

(2) ),,())(1()(),,,( ZBbpzpzpZBzbp i
s

i
m

i
m

ii −+= . 

Equation (2) can be used to derive the marginal impact of each risk control measure on the total 

probability of infection as follows. First, 0)1( <−= m
z

s
z ii

ppp , which implies that importing a 

                                                 
4 It is important to note that Hennessy (2007) shows that biosecurity preventing spread infection is a technical 
substitute, while the technical relationship is ambiguous in our model. The difference can be explained from the fact 
that Hennessy assumes disease transmits across only the nearest neighbor, so effectively N is 1 in his specification of 
ps. According to equation (1), when N = 1, then biosecurity is unambiguously a technical substitute across 
producers. So, we could argue that the approach of modelling the probability of spreading disease used in this paper 
is more generalized. 
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larger proportion of animals from safe sources reduces one's total probability of infection via the 

import pathway, although the effect is diminished by a greater probability of infection via the 

spread pathway. Note that 0)1( >−= m
zz

s
zz iiii

ppp , so that there are diminishing returns to this 

effect. Second, 0)1( <−= s
b

m
b ii

ppp , which implies that one's biosecurity reduces the total 

probability of infection via the spread pathway, although the effect is diminished by a greater 

probability of infection via the import pathway. The second derivative, s
bb

m
bb iiii

ppp )1( −= , is 

ambiguous in sign, as we have discussed earlier that s
bb ii

p  is ambiguous in sign. Third, 

0<−== s
b

m
zbzzb iiiiii

pppp  implying that the marginal effect of biosecurity bi in reducing the total 

probability of infection is increasing with higher level of zi and vice versa.5 Intuitively, as 

producer i increases one risk management choice, it increases the probability of not being 

infected through that pathway, thereby increasing the marginal effectiveness of the other risk 

management choice (i.e., bi and zi are technical complements). Fourth, 0<−= m
z

s
BBz ppp

i
 and

0<−= m
z

s
ZZz ppp

i
.6 neighbors' risk management choices are technical complements to zi. The 

reasoning is analogous to that for our third point above: more risk management by neighbors 

increase producer i’s probability of not being infected through the spread pathway, putting more 

weight on the import pathway and increasing the marginal effectiveness of reducing risk by 

importing from the disease-free region. Finally, s
Zb

m
Zb

s
Bb

m
Bb iiii

pppppp )1(,)1( −=−=  

have ambiguous signs due to the ambiguous signs of s
Bbi

p  and s
Zbi

p , as discussed earlier. Please 

see Table 1 for a summary of the second derivatives of the total probability function. 
                                                 
5 Analogy to the traditional Cobb-Douglas’s production function where the output is a function of two inputs, labor 
and capital. It can be shown that the marginal product of labor is increasing when capital increases, and vice versa. 
6 In general, actions s1 and s2 are technical complements (substitutes) in managing the probability of infection if 

0))1((
2121 >−=∂∂−∂∂ ssi i

pssp  (< 0) where s1 and s2 are any risk management choice, which is equivalent to the 
expression in the text. 
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2.2 Economic model 

After the animals are fed to the target weight, they are sold to slaughterhouses. If the lot is 

healthy, the net return (i.e., revenue less feeding costs, excluding biosecurity and purchasing 

cost) for the lot equals R > 0.  There is a loss associated with the infection, so the return of 

infected should be less than R. Without loss of generality, we assume the infected lot receives 

zero net return in order to simplify the calculation. 

The cost of biosecurity is assumed to be a convex function represented by )( ibC with 

0,0 >′′>′ CC . We assume cattle are purchased in competitive, region-specific spot markets.  

The cost of procurement is )1()1()( 21 ZwzZwz ii −−+ , where )(1 Zw , and )1(2 Zw −  are inverse 

excess supply functions for feeder cattle from regions 1 and 2, respectively. By the law of 

supply, we assume 01 >Zw  and 02 <Zw .  Note that these supply relations depend only on 

aggregate import decisions of producers; individual producers operate in competitive markets 

and therefore take these prices as given.  Procurement costs are rewritten as ziw1(Z) + (1 – zi)w2(1 

– Z), where )1()()( 21 ZwZwZW −−=  is the difference in supply prices, with 0>Zw  so that 

W(Z) is an upward sloping relative price function. 

It is also interesting to investigate an impact of government policy on the decentralized 

outcome. We select three policies including (i) a biosecurity subsidy, sbi where s is the subsidy 

rate, (ii) a tax on risky imports, t(1 – zi), where t is the tax rate, and (iii) an indemnity payment, v 

where v is a fixed payment to infected producers regardless of their risk management choices. 

We complete the economic specification by assuming each producer is risk-neutral, so 

that producer i’s objective is to maximize his expected profit, 

 )1()1()()())(,,,( 2 ZwztzZWbsbCvRZBzbpR iiiiiii −−−−−+−−−=p . 
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3. Decentralized Strategic Behavior 

In this section, we analytically discuss the decentralized equilibrium of the disease risk 

management game described in previous section. We start with a derivation of the SNE solution 

and discuss its associated properties including existence, uniqueness and stability. Since the 

conclusions about uniqueness and stability are ambiguous due to the complexity of interactions 

between producers, we will impose certain assumptions based upon insights from prior works. 

Then, we explore some interesting implications stemming from (i) multiple choices, (ii) market 

effects, and (iii) government policies. 

 

3.1 SNE solution and its existence 

Recall that the strategy set is already assumed to be compact and convex. If we also assume the 

profit function is twice differentiable concave in own strategies, then at least one SNE is 

guaranteed to exist (Debreu 1952, Cachon and Netessine, 2004).7 The concavity of the profit 

function is not too restrictive; for instance, multiple SNE could still arise despite the assumption. 

Unfortunately, uniqueness and stability of SNE are more difficult to verify. Before we are able to 

discuss those properties, we need to derive the SNE. Consider the representative producer’s 

optimization problem (which allows us to drop the subscript i), defined as  

(3) ),;,(max
,

ZBzb
zb
π  subject to 10 ≤≤ b , and 10 ≤≤ z  

The associated first-order conditions (FOCs) of an interior solution are 

(4) 0),,,( =∇ ZBzbπ  

                                                 
7 0<

ii zzπ  is already satisfied by definition given in section 2. The additional assumptions for concavity of the 

profit function are 0<
iibbπ and 02 >− zbzzbb iiiii

πππ . In Table 2, we explore the conditions under which the profit 
function is likely to be concave. 
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where 0),,,( =∇ ZBzbπ  is the gradient vector of the profit function with respect to the 

producer’s own strategies, 







+−−−

−′−−−
=








≡∇

tZWvRp
sCvRp

ZBzb
z

b

z

b

)()(
)(

),,,(
p
p

π . 

The simplest way to solve for the SNE is to impose symmetry, b = B and z = Z, so that 

relation (4) becomes 

(5) 0
),,,(
),,,(

),(

),(
),(

,
*

*
* =








≡












≡∇

== ZzBbz

b

z

b

ZBzb
ZBzb

ZB
ZB

ZB
π
π

π

π
π  

The solution to relation (5) is the SNE. 

The conditions for uniqueness and stability of the SNE depend on the first derivatives of 

relation (5) with respect to B and Z (please see section 3.2 for uniqueness and 3.3 for stability 

discussion). To aid in our analysis of these properties, it is helpful to introduce notation for the 

first derivatives of the FOCs, or the Jacobian matrices of relation (4).  This is because the 

derivatives of relation (5) can be written as a function of the Jacobian matrices of relation (4) 

with respect to one’s own strategies and neighboring strategies. 

Denote the Jacobian matrices of the FOCs with respect to one’s own strategies, and 

neighboring strategies as follows 









−−−−
−−′′−−−

=







=

)()(
)()(

1 vRpvRp
vRpCvRp

zzbz

bzbb

zzzb

bzbb

pp
pp

F , and 









′−−−−−

−−−−
=








=

WvRpvRp
vRpvRp

zZbB

bZbB

zZzB

bZbB

)()(
)()(

2 pp
pp

F , respectively. 

Note that F1 is a standard Hessian matrix with respect to own strategies. Since we assume the 

profit function is concave in own strategies, F1 is negative semi-definite. F2 represents the 

marginal impact of neighboring strategies on marginal profit of representative producer’s 

strategies which indicates the strategic relationship among producers. The positive sign of an 



 

12 
 

element in F2, say πmn, implies strategic complementarity between one’s own choice m and 

others’ choice n (i.e., one’s marginal net benefits of choice m are increasing in other’s choice n), 

while a negative sign implies strategic substitutability between these choices (i.e., one’s marginal 

net benefits of choice m are decreasing in other’s choice n). Note that in the absence of market 

effects )0( =′w  and the indemnity (v = 0), the RHS of the expression for F2 indicates the 

strategic relationships are implied by the technical probabilistic relationship involving the 

variables of interest. 

 Now we derive the first derivatives of relation (5). Let G be the Jacobian matrix of 

),( ZB*π∇  with respect to B and Z, which we can write as the summation of F1 and F2 evaluated 

at b = B and z = Z: 

 



















∂

∂

∂

∂
∂

∂

∂

∂

≡



















∂
∂

∂
∂

∂
∂

∂
∂

≡
====

====

Z

ZBzb

B

ZBzb
Z

ZBzb

B

ZBzb

Z
ZB

B
ZB

Z
ZB

B
ZB

ZB
ZzBbzZzBbz

ZzBbbZzBbb

zz

bb

,,

,,

**

**

)],,,([)],,,([

)],,,([)],,,([

),(),(

),(),(

),(
ππ

ππ

ππ

ππ

G  

 
ZzBb

zZzzzBzb

bZbzbBbb
==

+=







++
++

=
,21 )( FF

ππππ
ππππ

. 

 

3.2 Uniqueness of SNE 

There are several ways to verify uniqueness of SNE including (i) the diagonal dominance 

approach, (ii) the univalence approach, (iii) the index theorem approach, and (iv) the algebraic 

approach (see Vives (1999), Cachon and Netessine (2004), and Hefti (2013) for detailed 

discussions). We adopt the index theorem approach (Vives 1999; Cachon and Netessine 2004; 

Hefti 2013) because it is more general than the diagonal dominance and univalence approaches. 

Vives (1999) mentions that the diagonal dominance approach is a specific case of the univalence 
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approach, while we find that the univalence approach is a specific case of the index theorem 

approach in case of two-dimensional strategies (see appendix A1 for the proof). The sufficient 

condition for a unique SNE is indicated in Theorem 1, which is a re-statement of the Poincare-

Hopf index theorem (Vives 1999, and Cachon and Netessine 2004) 

 

Theorem 1 (sufficiency for uniqueness). If 0),( >− ZBG  whenever ),(* ZBπ∇ = 0 (i.e., 

0),( >− ZBG  at each SNE), then there is only one interior SNE. Specifically, the sufficient 

condition for a unique SNE is8 

(6) )
),(

)(),(()),()(
),(

(
****

Z
ZB

B
ZB

Z
ZB

B
ZB bzzb

∂
∂

∂
∂

−
∂

∂
∂

∂ ππππ
0>  at each SNE. 

Condition (6) can be verified numerically.  Multiple SNE and/or corner solutions may arise if 

condition (6) does not hold.  

 

3.3 Stability of SNE 

Dixit’s (1986) pseudo-dynamic approach for modeling a tâtonnement process (e.g., see Krugman 

1987) is adopted to examine the local stability of an SNE. This approach essentially models a 

myopic tâtonnement process (rather than a real dynamic optimization process) that indicates 

what would happen if the system did not begin at the SNE. Specifically, the representative 

producer adjusts myopically to neighboring decisions, B and Z, which we assume are the average 

decisions in the region.  The adjustment process is specified to be proportional to the marginal 

                                                 
8 Vives (1999) uses 0),( >− ZBG  which is same as our representation, whereas Cachon and Netessine (2004) use 

0),()1( >− ZBn G where n is the dimension of G.  Both representations are equivalent since

),(),( ZBZB GΙG −=−  and n)1(−=− I . Vives (1999) also notes that this condition is “almost” necessary 

condition except for vanishing ),( ZBG−  at the equilibrium point. 
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profits associated with an activity: 









=








),,,(
),,,(

ZBzb
ZBzb

z
b

zZ

bB

πδ
πδ




 

For instance, if 0),,,( >ZBzbbπ , then the representative producer would increase his level of 

biosecurity. All producers would do the same due to the homogeneity of producers; the average 

biosecurity therefore increases. The same argument applies to the adjustment process of the 

average import decision. Hence, after imposing symmetry, the adjustment process becomes 

(7) 











=













),(

),(
*

*

ZB
ZB

Z
B

zZ

bB

πδ

πδ



  

where 0, >ZB δδ are parameters defining the speed of adjustment of B, and Z, respectively. 

Notice that a steady state for system (7) means that condition (5) is satisfied. Hence, the steady 

state(s) of system (7) are, by definition, the SNE.  In subsequent numerical examples, as well as 

in our discussion of government policy, we use the dynamic system (7) to construct phase planes 

to provide a graphical aid in the analysis of stability and uniqueness. 

Analytically, the local stability properties of a potential steady-state equilibrium 

associated with system (7) are derived by linearizing the adjustment process (i.e., the right hand 

side of (7)) around that the equilibrium.  The Jacobian matrix associated with this linearization is 

 



















∂
∂

∂
∂

∂
∂

∂
∂

=

Z
ZB

B
ZB

Z
ZB

B
ZB

z
Z

z
Z

b
B

b
B

),(),(

),(),(

**

**

π
δ

π
δ

π
δ

π
δ

J . 

Define the trace of J as tr = ZZBBZB zZbB ∂∂+∂∂ ),(),( ** πδπδ , and the determinant of J as 

det = )])(())([( **** ZBZB bzzbZB ∂∂∂∂−∂∂∂∂ ππππδδ .  Following Dixit (1986) (see Conrad and 

Clark 1987 for a complete derivation), a SNE is locally stable if all eigenvalues contain a 
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negative real part, which implies certain restrictions on tr and det, as summarized in Theorem 2. 

 

Theorem 2 (local stability). A SNE is locally stable (either node or focus) if and only if the 

following are both satisfied: 9 

(8a)      det > 0 

(8b)     tr < 0. 

Note that det > 0 is also required in condition (6) in Theorem 1 (because 0, >ZB δδ ), 

except that here det > 0 is not required for all SNE. This means stability does not imply 

uniqueness. Assume there is more than one SNE.  Then, if we apply Theorem 1 to the results in 

Theorem 2, we find that det > 0 cannot hold for all SNE as Theorem 1 indicates there should 

only be one SNE in this case. This means we must have det < 0 for at least one SNE in the case 

of multiple SNE. In other words, not all SNE can be stable. This situation could create the 

potential for multiple, locally stable SNE separated by unstable SNE. Hefti (2013) also shows 

that this result holds for a symmetric game with more than two strategies. Theorem 2 indicates 

we need an additional requirement for a SNE to be stable: tr < 0 or 

0)),(()),(( ** <∂∂+∂∂ ZZBBZB zZbB πδπδ . This condition holds for any value of 0, >ZB δδ  

when  0),(* <∂∂ BZBbπ  and 0),(* <∂∂ ZZBzπ . This result implies that not all unique SNE are 

stable. Finally, global stability is ensured if conditions (8a) and (8b) hold whenever

0),(* =∇ ZBπ  (i.e., for all interior SNE), in which case the interior SNE is unique.  If condition 

(8a) is satisfied for all interior SNE, while condition (8b) is not, then the interior SNE is unstable 

(a saddle). In this case, the corners would be stable SNE. 

                                                 
9 In general case with n strategies, the condition (8a) changes to (-1)n det J >0 which is same as condition (6). See 
Dixit (1986) page 117.  Note that stability is an intertemporal concept and depends on the nature of the underlying 
adjustment processes.  The conditions presented here are based on the assumption of continuous-time adjustment. 
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4 Implications 

We will now attempt to understand the influence of three features of the model: behavioral 

feedbacks arising from multiple choices, market effects, and government policies. To facilitate 

the discussion, we first establish a baseline case with two choices, no market effects, and no 

government policy. We then examine several modifications of the baseline model: (i) modeling 

one choice, (ii) adding market effects, and (iii) adding government policies. We draw insights by 

comparing results between the modified case and the baseline case. 

 

Case 0: The baseline case, two choices, no market effect and no policy 

Our baseline case is where each producer has two choices for protecting his herd, no 

market effects )0( =′w , and no policy )0( === vts . This case is most closely related to Reeling 

and Horan (2015), with the only difference being two risk management choices. The uniqueness 

and stability condition depends on sign and magnitude of the second derivatives represented in 

G, which remain ambiguous in this case. However, we can obtain insights by comparing the 

uniqueness condition between the two-choice model and the one-choice model.  

 

Case 1: “One choice”, no market effect and no policy. 

Consider a special case of the model where there is a single individual choice, x, and a 

single neighboring choice, X. The relation between x and b and z (and X and B and Z) are 

described below. The producer’s optimization problem can be rewritten as 

(9) ),(max Xx
x
π  subject to 10 ≤≤ x  

We use problem (9) to relate the single-choice models of prior work to the two-choice model 
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defined by problem (3). Note that if we apply Theorems 1 and 2 to the single-choice model, the 

uniqueness and stability conditions become identical: 

(10) 0<+ xXxx ππ  for all interior SNE. 

We examine three prior studies in the context of the single-choice model. First, Hennessy 

(2007) models the single choice as a protection against spread risk (b) whereas protection against 

import risk (z) is effectively held constant i.e. x=b, X=B and z=Z=Z0, where Z0 is fixed. In his 

model, the number of effective neighbors is sufficiently low (N=1), he argues that b and B 

exhibit technical and strategic substitution ( 0<bBπ ) which we will also assume. The SNE is 

unique and stable if 

(10a) 
 

0
)()(

<+
−−

bBbb ππ  for all interior SNE. 

Obviously, 0<+ bBbb ππ  for any value of B because 0<bbπ  due to concavity of the profit 

function. This implies that any SNE for the single-choice model of b is unique and stable since 

the source of instability from the two-choice model, Z, is essentially held fixed in this case. 

We can illustrate this result graphically in terms of the best response function, ),(~
0ZBb , 

that solves 0),,,( 00 =ZBZbbπ .  The graph is presented in Fig.1, with B on the horizontal axis 

and the vertical axis indicating ),(~
0ZBb . The slope of ),(~

0ZBb  is bbbB ππ− , which is negative.  

By definition, the SNE is the solution to ),(~
0

** ZBbB = , this means that the SNE is the 

intersection of ),(~
0ZBb  and the 45° line. We can conclude that the SNE is unique because the 

intersection of positively-sloped and negatively-sloped lines is unique. 

To analyze stability, consider a reduction in both b and B. We know that 0<+ bBbb ππ  

which implies that *
00 ,0),,,( BBZBZBb <∀>π . The second order condition implies that the 
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producer will increase his biosecurity choice. Other producers will do the same thing, due to 

symmetry, so the biosecurity choice will converge to the SNE level. The opposite adjustment is 

true *BB >∀ . This adjustment process applies to all symmetric choices, which implies the SNE 

is unique and globally stable SNE (see arrows). If this adjustment process does not hold for one 

SNE, then a small deviation from this SNE will cause a divergence to another SNE. 

The second type of single-choice model is where z is chosen, holding B fixed.  For 

instance, Hennessy (2008) considers a decision that reduces import risk, x=z, X=Z, where spread 

risk is effectively assumed to be exogenously determined: b=B=B0, where B0 is fixed. Without 

market effects, he shows z and Z exhibit technical and strategic complementarities ( 0>zZπ ). 

According to condition (10), the SNE is unique and stable if 

(10b) 
 

0
)()(

<+
+−

zZzz ππ  for all interior SNE. 

The sign of zZzz ππ +  is generally ambiguous due to the strategic complementarity term zZπ  > 0. 

This implies that multiple SNE could arise when the degree of complementarity is sufficiently 

large i.e. zzzZ ππ −> . This result is shown graphically in Fig. 2 using a best response function, 

denoted z(Z,B0), that solves 0),,,( 00 =ZBzBzπ .  In contrast to Fig. 1, the best response function 

in Fig. 2 is upward sloping due to the complementarity.  Accordingly, z(Z,B0) may intersect the 

45° curve multiple times. Figure 2 illustrates an example with three SNE, represented at points 

E0, E1, and E2. It is not difficult to see that E0 and E2 are stable whereas E1 is an unstable SNE 

(see arrows). 

We can compare condition (10b) to condition (6) to determine when the two-choice 

model SNE is more likely to be unique than the single-choice model SNE.  Using the notation 

defined in G, we rewrite condition (6) which states that the two-choice SNE is unique if 
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(6a) 0
),(

),(
),(),(

(?)

*

)(

*

*

(?)

*

<
∂

∂








∂∂−
∂∂

+
∂

∂

+
),)+*))) ,))) +*),)+*

Z
ZB

BZB
BZB

Z
ZB b

b

zz π
π
ππ

 or 

 0
),(),( **

<
∂

∂
+

∂
∂

Z
ZB

A
Z

ZB bz ππ
 for all interior SNE 

where 0
),(

),(
*

*

>
∂∂−
∂∂

=
BZB

BZBA
b

z

π
π

. 

 The first term of condition (6a) is the same as the RHS of condition (10b), which we refer 

to as the “direct” effect.  Recall from (10b) that this effect is the potential source of multiple 

SNEs: multiple SNEs may arise when the degree of complementarity between z and Z is 

sufficiently strong. The second term in condition (6a) is an adjustment, which we refer to as the 

“indirect” effect, that can enhance or offset the direct effect.  In particular, the direct effect may 

be (partially or fully) offset if the indirect effect is negative, such that 

(11) 0),(*

<
∂

π∂
Z

ZBb , 

so that condition (6a) is less stringent than condition (10b). In this case, the SNE of the two-

choice model is more likely to be unique than the single-choice model SNE.  Condition (11) also 

promotes stability by ensuring (8b) is satisfied. When we discuss equation (6b) below, we show 

that the indirect effect represents the biosecurity adjustment made in response to the change in Z. 

This interpretation means the ability to adjust biosecurity can increase the likelihood that an SNE 

is unique and stable.  

The interpretation of the indirect effect as an adjustment emerges from an analysis of 

dynamics as described in equation (7). We depict the dynamic system (7) using the two-

dimensional phase plane in Fig. 3, where the SNE is the intersection(s) of the 0=B  and 0=Z  

isoclines (see Appendix B for a description of the numerical example). All points along the 
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0=B  isocline represent the SNE of the single-choice model when Z is held constant. Similarly, 

the 0=Z  isocline represents the SNE of the single-choice model when B is held constant. The 

phase arrows are derived as follows. First, we derive 0)),((| *
0 <∂∂== bZBdBBd bBB πd

 , which 

means 0<B  above the 0=B  isocline, and vice versa below the isocline. Similarly, 

0)),((| *
0 >∂∂== bZBdBZd zZZ πd

  implies 0>Z  above the 0=Z  isocline, and vice versa 

below the isocline. 

The slopes of the isoclines are derived by taking the total derivative of each isocline with 

respect to the state variables to obtain 

(12a)  




>
<∂∂<

=
∂∂
∂∂

−== otherwise,0
0),( if,0

),(
),(

|
*

*

*

0

ZZB
BZB
ZZB

dZ
dB b

b

b
B

π
π
π

 , and  

(12b)  




<
<∂∂>

=
∂∂
∂∂

−== otherwise,0
0),( if,0

),(
),(|

*

*

*

0

ZZB
BZB
ZZB

dZ
dB z

z

z
Z

π
π
π

 . 

Notice that the 0=B  isocline is negatively sloped if 0),(* <∂∂ ZZBbπ , which is the same as 

condition (11). Moreover, we use expression (12a) to rewrite condition (6a) as 

 (6b) 0|),(),(
0

**

<
∂

π∂
+

∂
π∂

=B
zz

dZ
dB

B
ZB

Z
ZB

 . 

Similar to condition (6a), condition (6b) decomposes the marginal impact of Z on the marginal 

incentives for z, *
zπ , into a direct effect (first term) and indirect effect (second term). However, 

here the indirect effect clearly represents an adjustment of B in response to a change in Z. The 

adjustment process occurs because, when Z changes, B adjusts along the 0=B  isocline. The 

term BZBz ∂π∂ ),(*  is positive (Table 2), with z and B being complementary. Hence, the indirect 

effect offsets the direct effect when B is a substitute for Z along the 0=B  isocline, so that this 

isocline has a negative slope. Note that the steeper the 0=B  isocline, the more likely for SNE to 
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be unique and stable. 

The slope of 0=Z isocline is generally ambiguous and depends on the sign of 

ZZBz ∂π∂ ),(* , which determines uniqueness and stability in the single-choice model for z (from 

condition (10b)). If 0),(* <∂∂ ZZBzπ  for all Z, then the 0=Z  isocline has an unambiguously 

positive slope and there is a unique value of Z for each B (i.e., the SNE of the single-choice 

model for z is unique for all values of B). However, if the 0=Z  isocline is U-shaped, then points 

on the downward-sloping portion of the isocline (with 0),(* >∂∂ ZZBzπ ) will be unstable while 

points on the upward-sloping portion (with 0),(* <∂∂ ZZBzπ ) will be stable.  According to 

table 2, a SNE with 0),(* <∂∂ ZZBbπ  arises if and only if 

M
Z

m

m
z

MMc
Mc

pp
pppppNp

)1(
)1(1

−
−

−< . 

This inequality is likely to hold when the number of expected infected neighbors is sufficiently 

low, or the risk of being infected is not too high, in the sense that biosecurity is effectively able 

to reduce spread risk. 

 We can use Fig. 3 to compare the two-choice model and the single-choice model for z. 

The SNE of the two-choice model is the intersection of the isoclines, and it is unique at point E0 

where the equilibrium outcome is when b=B=B* and z=Z=Z*. The ambiguity of slope of the 

0=Z  isocline means multiple SNE occur when biosecurity is fixed at certain levels, as in the 

single-choice model for z. Indeed, the single-choice model for z can be represented by fixing 

biosecurity at the SNE level, B*, at which point there are three associated SNE for Z: E0, E1, and 

E2.  These points correspond to the SNE depicted in Fig. 2, with the same stability properties.  

With multiple SNE, the choice of equilibria will be driven by producers’ expectations 

about the average import decision. The zero import protection outcome, E2, could be the 
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equilibrium if each producer expects the others to put low effort (< E1) into import protection, 

and E0 arises otherwise. 

Now consider what happens if B adjusts.  In Fig.3, we can see that points E1 and E2 

cannot be SNE because B*
 is not the optimal biosecurity level for producers given the values of Z 

at these points.  Specifically, the negatively sloped 0=B  isocline implies that the optimal 

biosecurity choice will exceed B* for any Z<Z*. Hence, 0>B  in this region. An increase in 

biosecurity enhances the marginal productivity of individual import protection that would induce 

producers to raise the import protection effort, 0>Z . As a result, the adjustment process will 

move the system towards the equilibrium point E0. When producers are more flexible in terms of 

having more choices to management risks, the SNE outcome becomes more stable in this case. 

The third type of single-choice model involves a single-choice that protects a herd from 

disease risks through both import and spread pathways, as in Reeling and Horan (2015). 

Specifically, they effectively assume x=b=z and X=B=Z. A SNE is the solution to the associated 

FOC evaluated at the symmetric decisions: 0),(),( =+ XXXX zb ππ . An SNE in this setting is 

unique and stable when the following condition holds for all interior SNE (where the signs of the 

partials follow from our assumptions above) 

(10c)  0),(),(),(),(
)(

*

)(

*

)(

*

(?)

*

<
∂

π∂
+

∂
π∂

+
∂

π∂
+

∂
π∂

−+− ),)+*),)+*),)+*),)+*

B
ZB

B
ZB

Z
ZB

Z
ZB bzbz . 

Note that the uniqueness condition depends on strategic relationships along each risk pathway 

(importation, zZπ , and spread, bBπ ) and also across pathways ),( zBbZ ππ . Recalling that x=b=z 

and X=B=Z in the single-choice model, we can effectively rewrite condition (10c) as 

(13)  
 

0)()()()(
(?))(

<
∂
π∂

+
∂
π∂

=
∂

π+π∂
+

∂
π+π∂

+
∂

π+π∂
+

∂
π+π∂

−

XxBZbz
xxbzbzbzbz . 
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Note that 0<∂∂ xxπ  in a single-choice setting if we assume concavity of the expected profit 

function. Condition (13) suggests that the SNE is unique when x and X are strategic substitutes (

0/ <∂π∂ Xx ) or weak strategic complements ( 0/ >∂π∂ Xx  but relatively small), which is the 

same conclusion stated in Reeling and Horan (2015). 

Condition (10c) can be compared with condition (6a).  The first LHS terms of (10c) and 

(6a) are identical.  Upon comparing the remaining three LHS terms in condition (10c) with the 

indirect effect of condition (6a), we find that condition (6a) is less stringent than (10c) – meaning 

the two-choice model is more likely to have a unique (and stable) SNE – when the following 

condition holds: 
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Note that the second line above stems from the fact that the numerator (denominator) of A is the 

same as the third (negative of the second) LHS terms in the first line.   

The relation A > 1 is satisfied when 0)()( >+++ bBzBbbzb ππππ  or, using the notation of 

condition (13), when  

(14) 
Bb

xx

∂
π∂

<
∂
π∂

− . 

Condition (14) indicates that a unique SNE is more likely to arise under the two-choice model 
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than the single choice model when Bx ∂π∂ /  is relatively large.  This means the two-choice 

model SNE is more likely unique when a producer’s choices are either a sufficiently strong 

strategic complement or a sufficiently weak strategic substitute with others’ biosecurity.  The 

intuition is that there is less reliance on strategic substitutability between choices in the two-

choice model because producers have more flexibility to substitute among inputs to manage 

risks.  This increased management ability makes a unique outcome more likely.  In contrast, 

under the single-choice model, producers have less ability to manage towards a unique outcome 

and therefore rely much more on the nature of strategic relations to ensure uniqueness.  

 

Case 2: Two choices with market effects 

We now capture market effects by applying assuming an increase in aggregate imports from the 

safe region will raise the relative import price )0( >′W . Note that zZπ  is the only second 

derivative term represented in G that is different with market effects: wRpzZWzZ ′−−=p >′ 0|  with 

market effects, whereas RpzZWzZ −=p =′ 0|  without market effects, so that 00 || >′=′ π>π WzZWzZ , 

other things equal.  

The uniqueness condition (6a) under market effects becomes 

(15)  
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Notice that the first two terms after the equality sign in (15) are the same as the two LHS terms 

in condition (6a). The final term in condition (15), which arises due to the market effects, is 

negative since 0>′W . This implies that the uniqueness condition with market effects is less 

stringent than the one without market effects. Intuitively, market effects essentially reduce the 
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degree of complementarity between z and Z because, as more producers purchase risky animals, 

the price of risky imports increases and this market effect helps to limit the amount of risky 

imports. 

Fig. 4 illustrates the SNE generated from the same numerical example used to draw Fig. 

3, except Fig. 4 includes the market effects. According to Fig. 3, the uniqueness of the SNE 

requires the 0=B  isocline to lie above the upward sloping portion of the 0=Z  isocline.  For 

instance, multiple SNE could arise if the 0=B  isocline were to shift downward and intersect the 

0=Z  isocline in two places. In contrast, the 0=Z  isocline is unambiguously positively sloped 

in Fig. 4. This means that the market effects now eliminate the chance of multiplicity of SNE. 

Put differently, the uniqueness of SNE is not sensitive to the location of 0=B  isocline in Fig. 4. 

 

Case 3: Two choices, market effects, and policies 

We now investigate how the uniqueness and stability of the SNE are impacted by the policies 

described above: (i) a biosecurity subsidy (sb), (ii) a tax on risky imports (t[1–z]), and (iii) an 

indemnity payment (v). Recall that, by Theorems 1 and 2, the uniqueness and stability of SNEs is 

determined by the properties of G and J evaluated at the SNEs.  None of the policy variables 

indicated above affect G or J for given values of B and Z.  However, the policies do affect the 

incentives to invest in B and Z and hence the location of any SNEs.  This means the values of G 

or J at the SNEs are affected, and so uniqueness and stability could change due to policy 

interventions.   

We motivate potential policy effects on SNE numerically by considering a case where 

multiple SNE arise even in the presence of two choices and market effects. Hence, our first 

numerical example, in which a unique and stable outcome arose with two choices and market 
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effects, no longer applies and must be modified. Please see Appendix B for a detailed description 

of the new numerical model. Numerical results are presented in Table 3.  

Fig. 5 illustrates the SNE of the two-choice model with market effects and no 

government policies, for comparison to the case with policies. There are three SNE in Fig. 5, 

represented by points E3 (a stable focus or node depending on the speed of adjustment of B and 

Z, δB and δZ, from (7)), E4 (a saddle point), and E5 (a stable node). This outcome reflects 

Theorem 2’s implication that there must be an unstable SNE when there are multiple SNE. 

Moreover, the basins of attraction for the stable SNE are separated by the saddle path associated 

with the unstable SNE E4.10 Any initial point from the RHS (LHS) basin will converge to E3 (E5). 

Note that we can Pareto rank the SNE where point E3 Pareto dominates E4 and E5 (see Table 3).  

It is clear in Fig. 5 that an upward shift in the 0=B  isocline and/or a downward shift in 

the 0=Z  isocline will move the unstable SNE, E4, to the left. As a result, the basin of attraction 

for the (stable) Pareto dominated SNE, E5, is reduced whereas the basin of attraction for the 

Pareto dominant SNE, E3, is increased. In other words, it becomes less likely for the system to 

equilibrate at E5, and more likely for the system to equilibrate at E3. A sufficient shift in the 

isoclines can eliminate the possibility of being at the Pareto dominated SNE. 

Given the knowledge of how shifts in the isoclines can affect the SNE, we now examine 

how government policies affect the isoclines.  Specifically, we use the implicit function theorem 

to derive comparative static results for the isoclines: 

(16) 0
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10 The shape of the saddle path depends on speed of adjustment coefficients specified in (7). 
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First consider the impact of a biosecurity subsidy.  The comparative statics results in (16) 

indicate that an increase in the biosecurity subsidy shifts the 0=B  isocline upward, while the 

0=Z  isocline remains unchanged. As illustrated in Fig. 6, a sufficient subsidy results in a 

unique and stable SNE (point E6) involving more biosecurity and more safe imports.11 The 

intuition behind this result is that the subsidy increases producer’s incentives to invest in 

biosecurity (shifting the 0=B  isocline upward), so that producers no longer expect others to 

choose a low level of biosecurity.  Moreover, the resulting increase in B causes Z to increase 

because z and B are complements. Hence, the biosecurity subsidy encourages producers to move 

away from a Pareto dominated SNE such as E5 in Fig. 5, to the unique SNE E6. Moreover, Table 

3 indicates that E6 increases social welfare relative to the Pareto dominant SNE from the pre-

subsidy case (E3 in Fig. 5) due to the reduction in risk under the subsidy. 

Now consider the impact of a tax on risky imports, t.  The comparative statics results in 

(17) indicate an increase in t shifts the 0=Z  isocline downward, while the 0=B  isocline 

remains unchanged. As illustrated in Fig. 7, a sufficient import tax results in a unique and stable 

SNE (point E7) involving completely safe imports (Z = 1) but zero biosecurity. Intuitively, the 

tax reduces the incentives for risky imports. As Z is increased to one, the exposure to spread risks 

vanishes and so biosecurity becomes unnecessary. Table 3 indicates that the SNE E7 increases 

social welfare relative to the Pareto dominant SNE from the pre-tax case (E3 in Fig. 5) due to the 

elimination of risk under the tax. 
                                                 
11 We represent the post-policy isoclines by a dashed line and label with a prime. 
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Finally, consider the impact of an indemnity payment.  The comparative statics results in 

(18) indicate an increase in the indemnity payment v shifts the 0=B  isocline downward, but it 

shifts the 0=Z  isocline upward. As illustrated in Fig. 8, an indemnity payment results in a 

unique and stable SNE (point E8) involving zero safe imports and low biosecurity. Producers 

receive larger (smaller) expected profits at point E8 , as compared to the pre-indemnity high-risk 

SNE E5 (low-risk SNE E3) in Fig. 5, due to the payment; however, social welfare is lower 

compared to E3 or even E5 (see Table 3). The indemnity payment leads to a suboptimal outcome 

because the payment reduces the potential losses from being infected (the potential benefits from 

being healthy); hence, it reduces incentives to invest in import protection and/or biosecurity to 

prevent these losses. Similar results have been shown in prior works (Gramig et al 2009, and 

Reeling and Horan 2015). 

 

5. Conclusion 

One of the main challenges in livestock production is to manage disease risks. Producers can 

implement preventive measures to reduce the likelihood of becoming infected; however, such 

efforts exhibit positive spillover effects that generate strategic behaviors. In this setting, prior 

work has shown that multiple equilibria could arise, particularly when one’s risk management 

choices and neighbors’ choices are strategic complements. We expand on prior work to examine 

how the availability of multiple risk management choices, as well as the role of market price 

responses, may affect the uniqueness and stability of strategic outcomes. 

We find that modeling multiple choices is important because the presence of these 

choices can significantly alter the predicted strategic interactions and outcomes; for instance, we 

can identify conditions under which having multiple choices is more likely to yield unique and 
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stable Nash equilibria.  This knowledge is particularly useful when constructing simulation 

models for policy purposes.  Moreover, modeling multiple choices is important when 

considering policy design.  This is because we can use policies to target the different choices to 

more efficiently manage infection risks as well as to better manage the different strategic 

interactions, thereby reducing the risk of coordination failure and improving social welfare. 

Similarly, our results show the importance of considering the role of market price responses, 

which can also facilitate risk management to promote stability and uniqueness.  

A caveat to our model is that we assume producers know the probability of importing 

infected animals of each source. In practice, however, producers might have partial knowledge 

about the import risks they face. Therefore, improving market information about animal health 

risks, e.g. via an animal tracking system, would further enhance the efficiency of markets as a 

vehicle to managing disease risks. 
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Appendix A 

We claim that the uniqueness condition under the univalence approach is a special case of the 

index theorem approach, which means we can focus our attention on the index theorem 

approach. The following is a proof of this assertion. 

The univalence approach states that if G is negative quasi-definite matrix, then the 

solution to (5) is unique where G is negative quasi-definite if and only if TGG + is negative 

definite. Note that this condition has to hold for all b=B and z=Z. As 

 







=

2221

1211

GG
GG

G , so 



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


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+
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222112

211211

2
2
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TGG + is negative definite if and only if 

 0,0 2211 << GG , and 

 22114 GG  >  2
2112 )( GG +  

 22114 GG  >  2
212112

2
12 2 GGGG ++  

 )(4 21122211 GGGG −  >  2
212112

2
12 2 GGGG +−  

 21122211 GGGG −  >  0)
2

( 22112 >
−GG

  

Recall the uniqueness condition implied by the index theorem approach states that if 0>−G  

whenever 0),,,( =∇ ZBZBπ , then the SNE is unique. 021122211 >−=− GGGGG . Therefore, the 

sufficient condition implied by the univalence approach is stricter than the one implied by index 

theorem. 
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Appendix B 

We demonstrate our findings in section 4 with two numerical examples. The first numerical 

example illustrates the importance of multiple choices and market effects.  The second numerical 

example illustrates government policy impacts when multiple SNEs arise prior to government 

intervention. We use the same functional forms for both examples; the only difference is with the 

parameter values. The relevant functional forms are specified as: 

(B1)  
z

zzp
m

m
m

m

κ+
θκ+−θ−θ

=κθθ
1

))1((),,;( , 

(B2) 
))1((1

),,;,(
Bb

Bbp
c

c
c

µ−+µκ+
λ

=µκλ , 

(B3) 2),( bbC b=b , 

(B4) 12111211
1 ),;( ω+ω=ωω ZZω , and 

(B5)  22212221
2 ),;( ω+ω=ωω ZZω . 

The probability functions pm(.) and pc(.) were specified to be decreasing in the choices, with 

diminishing returns, and to ensure the probabilities are bounded between 0 and 1. Specifically, 

pm(.) can be parameterized with three parameters: θ  (θ ) is the probability of infection when the 

producer only imports from risky (low-risk) region, and κm represents the effectiveness of z 

where the higher κm implies the higher effectiveness of z.12 In contrast to pm(.), we let pc(.) 

approach to 0 as either b or B goes to infinity. However, we specify the biosecurity cost function 

to ensure the optimal biosecurity does not exceed 1. We use three parameters to represent 

important features of pc(.): (i) λ is the probability of being infection when there is no use of 

biosecurity actions, (ii) κc represents the effectiveness of biosecurity, where a larger κc implies 

                                                 
12 When 0=θ , it implies that the low risk region has absolutely no infection risk. 
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greater effectiveness of b, and (iii) μ represents the relative influence of b and B on controlling 

pc(.) where 0 ≤ μ ≤ 1  and the larger is μ, the greater the weight put on b. The cost of biosecurity 

takes a quadratic form as shown in equation (B3) and the inverse supply functions for both 

regions are assumed to be linear as in (B4) and (B5). The parameters of example 1 and 2 are 

specified as follows 

 θ  θ  κm κc λ μ β ω11 ω12 ω21 ω22 R N 
Ex.1 0.2 0 0.70 1 0.13 0.5 0.150 0.05 0.11 0.01 0.02 1 50 
Ex.2 0.2 0 0.45 1 0.13 0.5 0.125 0.01 0.14 0.01 0.01 1 50 
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Figures 

  

 
 Figure 1: The single-choice model Figure 2: The single-choice model 
 when x=b, X=B, and z=Z=Z0 when x=z, X=Z, and b=B=B0 
 

  
 Figure 3: The two-choice model Figure 4: The two-choice model 
 without market effects with market effects 
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 Figure 5: The two-choice model Figure 6: The two-choice model 
 without government policies with biosecurity subsidy 

  

  
 Figure 7: The two-choice model Figure 8: The two-choice model 
 with import tax with indemnity 
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Tables 

Table 1: Table of second derivatives of the total probabilistic function of infection 

nmp  Specification Sign Remarka,b 

bbp  

( )[ ]2

2

)()1(1
)1()1(

c
b

Mc
bb

Mc

NMcMm

ppNppp
ppppN
−−−

−− −
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)1)(1(1 −Ω−+< b
McMc pppNp  
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( )[ ]c
B

c
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NMcMm

pppNppp
ppppN

)1(1
)1()1( 2

−−−

−− −

 ? 
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)1)(1(1 −Ω−+< B
McMc pppNp  

bZp  [ ]McNMcc
b

M
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m pNppppppN −−− − 1)1()1( 2  
? 

0>bZp  if and only if 
1<Mc pNp  

zBp  1)1( −−− NMcc
B

m
z

M ppppNp  –  

zZp  1)1( −−− NMcM
Z

m
z

c ppppNp  –  
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bpbpb cc
b

εε=Ω / , 
bpbpB cc

B
εε=Ω /  . c

b
c
bbp pbbpc

b
/)/( ∂∂=ε is the elasticity of c

bp  with respect to b 

(with similar interpretations for the other elasticities).  
 
b NpcpM  represents the expected number of effective contacts with infected neighbors. Note that 
b will be technical substitute (complement) to Z when NpcpM < 1 (> 1). A similar argument 
applies to the technical relationship between b and B; however, it also depends on BΩ . 
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Table 2: Table of second derivatives of the expected profit function 
 

nmπ  Specification Sign Remarka 

bbπ  CpvR bb ′′−−− )(  
– 

Assume 0<bbπ  due to concavity of profit 
function. Note that if 0<bbp , then 0<bbπ  

bzπ  bzpvR )( −−  +  

zzπ  zzpvR )( −−  –  

bBπ  bBpvR )( −−  – Following Hennesy (2007), we assume 0<bBπ . 

bZπ  bZpvR )( −−  ? 0<bZπ  if and only if 0>bZp  

zBπ  zBpvR )( −−  +  

zZπ  WpvR zZ ′−−− )(  + with W′ = 0 
? with W′ > 0 

0>zZπ  if and only if zZpvRW )( −−<′  

 
a Note that when NpcpM  is large, it could create a non-convexities issue since pbb <0. In this 
paper, we assume convexity; however, this assumption is not too restrictive because multiple 
SNE are still possible. 
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Table 3: Outcomes of second numerical example with and without government policies 
 
 Without government policies With government policies 

E3 E4 E5 E6 
(s =.05) 

E7 
(t = .0075) 

E8 
(v = .025) 

B* 0.331 0.417 0.418 0.358 0.0 0.402 
Z* 0.580 0.205 0.0 0.822 1.0 0.0 
Prob of infection 0.327 0.564 0.683 0.140 0.0 0.686 
Expected profit 0.569 0.371 0.275 0.738 0.858 0.308 
Expected 
government cost (+)/ 
revenue (-) 

0.0 0.0 0.0 .018 0.0 0.034 

Social welfarea 0.569 0.371 0.275 0.720 0.858 0.274 
aSocial welfare is expected producer’s profit less expected government cost. 
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