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Preliminary and Incomplete 

 

Abstract 

 

 

This paper analyzes the multivariate stochastic volatilities with a common factor which is affecting 

both the volatilities of crude oil and agricultural commodity prices in both biofuel and non-biofuel 

use. We develop a stochastic volatility model which has a latent common volatility with two 

asymptotic regimes and a smooth transition between them. In contrast with conventional volatility 

models, stochastic volatilities in this study are generated by a logistic transformation of the latent 

factors, which consists of two components: the common volatility factor and the idiosyncratic 

component. In this study, we analyze the stochastic volatility model with a common factor for oil, 

corn and wheat from August 8, 2005 to October 10, 2014 using a Markov-Chain-Monte-Carlo 

(MCMC) method and estimate the stochastic volatilities and also extract the common factor. Our 

results suggest that the volatility of oil and grain markets are very persistent since the common factor 

generating the stochastic volatilities of oil and commodity markets is highly persistent. In addition, 

the volatilities of oil prices are more affected by a common factor while the volatilities of corn are 

more determined by the idiosyncratic component.   
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1. Introduction 

Commodity and oil prices have shown a common factor of stochastic volatilities since the middle of 

2000s. Both higher crude oil prices and regulations on carbon dioxide emissions have turned biofuels 

as an alternative to fossil fuels. As the demand and prices for corn and soybean increased in 2007 due 

to increased demand for biofuels, grain prices (e.g., wheat) for food and fuel uses have also increased. 

Since an increasing percentage of corn and soybean production is being used for alternative energy 

sources, both the mean and variance of other commodity prices have also increased because of the 

conversion of planted acreages of non-energy grain to biofuel production. Several studies have 

empirically investigated the relationship between the price of crude oil and the global grain prices for 

corn, wheat, etc. However, most studies have focused on the interrelationship and transmission of 

conditional mean of price levels and less attention has been paid to the examination of the volatility 

linkage among energy and agricultural markets. Recent studies by Wu, Guan and Myers (2011), Du, 

Yu and Hayes (2011) and Harri and Darren (2009) have found significant volatility linkage between 

crude oil and grain prices. However, these studies did not analyze the common factor of energy and 

agricultural commodity volatilities. In particular, shocks in either oil or biofuel market may spill over 

into the other commodity markets, especially after the ethanol mandates in the US and EU in the mid-

2000s. Therefore, the higher volatility in the energy or grain market may have contributed to the 

increase in volatility of the other market.        

The purpose of this study, therefore, is to analyze the multivariate stochastic volatilities with a 

common factor which is affecting both the volatilities of crude oil and agricultural commodity prices 

in both biofuel and non-biofuel use. Recently, stochastic volatility (SV) models have drawn much 

more attention than ARCH and GARCH-type processes, which have been commonly used to model 

volatility in many economic and financial time series data. SV models are more acceptable and 

interesting after the global financial crisis in 2008 because volatility is not entirely predictable and 

can be driven by a shock not perfectly correlated with the past values of the underlying process. The 

main characteristic of the SV models is that the volatility is modelled as an unobserved latent variable. 

Compared with the GARCH modes, SV models have more attractive properties which were often 

observed in high-frequency series of asset returns (see, for example, Jacquier et al. (1994), Danielsson 

(1994), Carnero et al.(2003), Malmsten and Terasvirta (2010) and Terasvirta and Zhao (2011)). More 

importantly, SV models have a wide range of applications, including option and other derivative 

pricing because they provide greater flexibility in describing stylized facts about returns and 

volatilities (Shephard, 2005). However, their empirical applications have been very limited mainly 

because volatility in SV models is latent and relatively difficult to estimate. Therefore, there are 

theoretical as well as empirical reasons to study multivariate SV models.  

In our study, we developed a trivariate SV model which has a latent common volatility with two 

asymptotic regimes and a smooth transition between them, as suggested by Kim et al. (2010). In 

contrast with conventional volatility models, stochastic volatilities in this study are generated by a 

logistic transformation of the latent factors, which consists of two components: the common volatility 

factor and the idiosyncratic component. The common volatility factor affects all the stochastic 

volatilities for oil and agricultural commodity prices and captures the common trend behaviors of the 

volatilities, while the idiosyncratic component characterizes the underlying process. The common 

factor could be either a macroeconomic fundamental or global uncertainty in commodity and energy 

markets. Therefore, this study will analyze the linkage between the common factor and economic 

fundamentals in commodity and energy markets. This is the main contribution of this study in contrast 

with the conventional stochastic volatility model. In particular, the common factor is assumed to be 

AR(1) process whereas the idiosyncratic factor is set to be i.i.d.  

In addition, the actual volatilities in this study are generated by the parametric logistic function. The 



logistic function has several desirable properties to be used in the volatility model. It may be 

interpreted as representing the volatility levels in two asymptotic regimes, i.e., the low and high 

volatility regimes, with smooth transition with them. Our model is different from the usual regime 

switching model, which presumes an exogenous and abrupt change in switching regimes. Moreover, 

there are two transition parameters in the logistic function characterizing the transition between two 

regimes, i.e., the location and speed of the transition. The transition speed is allowed to be faster and 

the actual volatilities are generated by one of the two asymptotic regimes. We also allow for cross-

dependency in the returns of corn and wheat. 

To extract the common factor and estimate unknown parameters in our model, we use the Bayesian 

approach by implementing a Markov-Chain-Monte-Carlo (MCMC) method (see, for example Chib 

et al. (2002, 2006), Jacquier et al. (1994, 2004) and Kim et al. (1998)). For our MCMC procedure, 

we use the Gibbs sampler and the Metropolis-Hasting (MH) algorithm within the Gibbs sampler. The 

procedure allows us to effectively deal with the multi-dimensionality of our latent factors and 

parameters and the difficulties in sampling from the complicated target distributions.  

In this study, we analyze the stochastic volatility model with a common factor for oil, corn and wheat 

from August 8, 2005 to October 10, 2014 by using the MCMC method and estimate the stochastic 

volatilities and also extract the common factor. Our results suggest that the low and high levels of 

stochastic volatilities for oil are 0.79% and 8.4% in a day while the low and high volatilities of the 

corn are 0.48% and 7.72%, respectively. In the wheat case, the low volatility level is 0.64% while the 

high volatility level is 5.41% in a day. Therefore, oil is more volatile than grains. The volatility 

generating process of oil is closer to the common factor in terms of the value of the loading parameter, 

which indicates that the volatility generating processes of oil, corn and wheat are scaled-down 

compared with the magnitude of the common factor, which is higher than other cases. Regarding the 

volatility of the idiosyncratic component, the variance of the idiosyncratic part for oil is higher than 

that of others. This implies that oil volatility is more affected by the common macroeconomic 

uncertainty factor while corn volatility is more explained by the idiosyncratic component. Based on 

the estimated common volatility factor, the high volatility periods in the common factor are well 

matched to the recession period from December 2007 to June 2009, as recorded by the National 

Bureau of Economic Research (NBER), and the financial crisis of 2007- 2008. 

To the best of our knowledge, our study is the first to empirically examine the common factor in the 

volatilities of energy and agricultural commodity markets, especially oil, corn and wheat markets. We 

found that the main factors of common volatility extracted from oil, corn and wheat are related to the 

macroeconomic and financial uncertainties in the energy and grain market.   

 

2. Preliminary Analysis 

2.1 Data  

Figure1 shows the log differences of oil, corn and wheat prices from January 2, 1986 to October 10, 

2014. The movement of commodity returns, such as corn and wheat were independent of oil returns 

before the August 8, 2005 imposition of the first ethanol mandate. As can be seen from Figure 1, their 

movements look similar after August 8, 2005. Figure 2 clearly shows this phenomenon. Figure 2 

indicates the absolute values of log differences for oil, corn and wheat. It is likely that they move 

together after the first ethanol mandate. Therefore, the impact of the ethanol mandates on oil and 

commodity markets may not be trivial. Recently, the dynamic interaction between grain and oil prices 

has been a subject under extensive study. In this vein, oil, corn and wheat daily prices from August 8, 

2005 to October 10, 2014 are used in this paper.  



 

 

 

 

Figure 1 Returns for oil, corn and wheat 

 

 

 



 

Figure 2 Absolute values of returns 

 

Before we estimate our SV model, we need to empirically demonstrate that returns for oil and the 

commodity prices have a dominating common factor, and for this, we estimate a univariate stochastic 

volatility model for each of the returns. We then conduct a principal component (PC) analysis in order 

to check whether there is a leading common factor among the latent factors generating the stochastic 

volatilities for each of the returns. First, we introduce and estimate the univariate SV model for oil, 

corn and wheat returns and extract the latent factor, and then do the PC analysis for three latent 

volatility factors. 

 

2.2  Principal Component Analysis 

We consider the following stochastic volatility model introduced by Kim, Lee, and Park, (2008).  

𝑦𝑡 = √𝑓𝑡(𝑥𝑡)𝜀𝑡 ,    𝜀𝑡 ~𝑖𝑖𝑑(0,1)      (1) 

𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝑒𝑡 ,        𝑒𝑡~𝑖𝑖𝑑(0,1)         (2) 

where 𝑦𝑡 is observable and demeaned return process and 𝑥𝑡 is scalar latent volatility factor and 

|α| ≤ 1. The volatility function is given by the parametric logistic function5. The latent factor (𝑥𝑡) 

and unknown parameters in the model can be estimated by the density-based Kalman filter, or by the 

Bayesian method using Gibbs sampling method. Figure 3 shows the extracted latent factors xt for 

oil, corn and wheat. As can be seen from the picture, latent factors generating stochastic volatilities 

for oil, corn and wheat returns, have the common trend. Therefore in order to check whether there 

exists a dominating common factor among latent factors, we do the PC analysis with extracted latent 

factors and find the leading factor. The right picture of the bottom panel shows the leading factor with 

three estimated latent factors for oil, corn and wheat returns. Results indicate that the leading factor 

can explain around 75% of the variation of three latent factors generating the stochastic volatility for 

each of the returns. Hence, we have strong evidence that there exists a dominating common factor in 

the conditional variances of oil, corn and wheat return processes and this evidence supports our 

stochastic volatility mode with a common factor for oil and commodity returns, which is introduced 

in the next section.  

                                                
5 More about the volatility function in next section 



 

 

Figure 3 Estimated latent factors with a leading factor 

 

3. Stochastic Volatility Model with a Common Factor 

3.1 Model  

In our study, we consider the multivariate SV model which has a latent common volatility with two 

asymptotic regimes and a smooth transition between them, as suggested by Kim et al. (2010). Let yt
𝑗
 

the zero mean return process  𝑓𝑜𝑟 𝑗 = 𝑜𝑖𝑙, 𝑐𝑜𝑟𝑛 𝑎𝑛𝑑 𝑤ℎ𝑒𝑎𝑡 𝑜𝑟 𝑗 = 1,2,3. 

The multivariate SV model with a common factor is specified as   

 

𝑦𝑡
𝑗
= √𝑓𝑡

𝑗
(𝑥𝑡

𝑗
)𝜀𝑡

𝑗
, 𝜀𝑡 = ( 𝜀𝑡

1, 𝜀𝑡
2, 𝜀𝑡

3)′~𝑖𝑖𝑑(0, Σ) 

where Σ = (
1 0 0
0 1 𝜌
0 𝜌 1

) 

𝑥𝑡
𝑗

= 𝜆𝑗 𝑤𝑡 + 𝑒𝑡
𝑗
 



𝑤ℎ𝑒𝑟𝑒   𝑒𝑡
𝑗
~𝑖𝑖𝑑(0, 𝜎𝑗

2)   for j=1,..,N. 

𝑤𝑡 = 𝛼 𝑤𝑡−1  + 𝑢𝑡   𝑤ℎ𝑒𝑟𝑒   𝑢𝑡~𝑖𝑖𝑑(0,1)  

 

While Σ describes the dependence in returns by the constant correlation coefficient (ρ), 𝜀𝑡
𝑗
, 𝑒𝑡

𝑗
 and 

𝑢𝑡  are independent. We only allow the dependence in returns between corn and wheat. Du, Yu, and 

Hayes (2011) estimated the correlation coefficient between oil and corn market and the correlation 

coefficient between oil and wheat with different periods. Interestingly, they found a significant 

correlation coefficient between corn and wheat market regardless of the sample period used. We also 

found a significant correlation between corn and wheat returns but insignificant correlation between 

oil/corn and oil/wheat. Hence, to simplify the model, we only allow the dependence in returns 

between corn and wheat  

 

In addition, in our model we do not impose the leverage effect indicating the negative correlation 

between the return and the volatility. It is well known that volatility in equity markets is asymmetric. 

For instance, negative returns are associated with higher volatility than positive returns and a number 

of empirical studies for stock markets have found strong evidence of leverage effects. In many studies, 

however, in the oil or commodity markets, such as Schwartz and Trolle (2009), Larsson and Nossman 

(2011) and Vo (2009), the estimate of the correlation coefficient is negative but insignificant. It is 

often claimed that commodities exhibit an “inverse leverage effect” implying that increasing prices 

are associated with increasing volatility. The “inverse leverage effect” would be associated with a 

positive estimate of the correlation coefficient between the return and the volatility. Geman and Shih 

(2009) and Larsson and Nossman (2011) find the “inverse leverage effect” in crude oil prices. None 

of them however support any strong conclusions regarding the sign of this correlation. Therefore, we 

do not consider the leverage effect and so we specify a zero correlation between  εt and et  , the errors 

of the mean and variance equation in our model.   

 

We assume that the latent factor (xt
𝑗
 𝑓𝑜𝑟 𝑗 = 𝑜𝑖𝑙, 𝑐𝑜𝑟𝑛 𝑎𝑛𝑑 𝑤ℎ𝑒𝑎𝑡), which generates the stochastic 

volatilities of oil, corn and wheat, have two components, a common volatility factor (wt ) and 

idiosyncratic components (et
𝑗
). This assumption for our model is simple but very clear and well 

demonstrated by our preliminary analysis. The common volatility factor affects all the stochastic 

volatilities for oil and agricultural commodity prices and captures the common trend behaviors of the 

volatilities for oil and commodity returns, while the idiosyncratic component characterizes the 

underlying process specific information. The common factor could be either a macroeconomic 

fundamental or global uncertainty in commodity and energy markets. Therefore, this will analyze the 

linkage between the common factor and economic fundamentals in commodity and energy markets. 

This is the main contribution of this study in contrast with the conventional stochastic volatility model. 

In particular, the common factor is assumed to be AR(1) process whereas the idiosyncratic factor is 

set to be i.i.d. When AR(1) coefficient of the common factor, α ≈ 1 is obtained, the return process 

can be considered to have persistence so that it can generate highly autocorrelated volatility or 

volatility clustering, which is the well-known stylized fact about returns; meaning that high volatility 

is followed by another high volatility, or the other way around. 

 

The actual volatilities in this study are generated by the parametric logistic function, which is given 



by 

𝑓(𝑥𝑡
𝑗
)  = 𝜇𝑗  

𝛽𝑗

1 + 𝑒𝑥𝑝(−(𝑥𝑡
𝑗

− 𝜅𝑗 ))
   

where μj > 0, βj > 0 , and κj > 0 

According to Park (2002), the stochastic volatility with logistic function can capture the volatility 

clustering and fat-tail features6. The logistic function has several desirable properties to be used in 

the volatility model. It may be interpreted as representing the volatility levels in two asymptotic 

regimes, i.e., the low and high volatility regimes, with smooth transition with them. Namely, the 

parameters μ  and μ + β dictate the asymptotic low and asymptotic high volatility regimes, 

respectively and the parameter κ specifies the transition between two regimes, i.e., the reflection 

point of the transition. This model is different from the usual regime switching model, which 

presumes an exogenous and abrupt change in the switching regimes. 

 

To estimate the time-varying conditional mean component of the returns process for oil, corn and 

wheat, we use the local linear estimation. Therefore, the estimated 𝑦𝑡
𝑗
 can be obtained by subtracting 

the estimated moving conditional mean component by using nonparametric method from log 

difference sequences of oil, corn and wheat prices. When doing nonparametric method, we search 

bandwidth such that 𝑦𝑡
𝑗
 can be a martingale difference sequence, which means the autocorrelation 

of 𝑦𝑡
𝑗
 can be close to zero.  

 

3.2 Bayesian Algorithm 

In the paper, we use the Bayesian approach to estimate our model. 

Let T and N be the sample size and the number of individual units respectively, and define the 

observed samples, Y = (𝑦1 , … . . , 𝑦𝑇 ) with  𝑦𝑡 = (𝑦𝑡
1, 𝑦𝑡

2, 𝑦𝑡
3)′ and the latent factors, L = (X, W) 

with X = (𝑥1  , … , 𝑥𝑇 ) , 𝑥𝑡 = (𝑥𝑡
1, 𝑥𝑡

2, 𝑥𝑡
3)  and  W = (𝑤1  , … , 𝑤𝑇 ) . And we define θj =

(𝜇𝑗 , 𝛽𝑗 , 𝜅𝑗  )  for j=1,2,3. Moreover, we denote unknown parameters as Ψ = (θ, α, λ, σ2, ρ) 

with  θ = (θ1, θ2, θ3 ),  λ = (λ1, λ2, λ3) , and σ = (σ1
2, 𝜎2

2, 𝜎3
2) .  We let Dt = (diag √𝑓1(𝑥𝑡

1) ,

√𝑓2(𝑥𝑡
2) , √𝑓3(𝑥𝑡

3)  ). 

 

Now, we may easily deduce that the joint posterior density of the latent factors and unknown 

parameters is given by 

 

𝑝(𝐿, 𝛹|𝑌) ∝ 𝑃(𝐿, 𝑌 |𝛹 )𝑝(𝛹) 

∝ (∏ 𝑝(𝑦𝑡|𝑥𝑡, 𝛹)𝑇
𝑡=1 𝑝(𝑥𝑡

1|𝑤𝑡, 𝛹) 𝑝(𝑥𝑡
2|𝑤𝑡, 𝛹) 𝑝(𝑥𝑡

3|𝑤𝑡, 𝛹) 𝑝(𝑤𝑡|𝑤𝑡−1, 𝛹)) p(𝛹) 

                                                
6 Park (2002) shows that the model with asymptotically homogeneous functions of an integrated process has several 

nice statistical properties. First, the sample autocorrelations of the squared processes have the same random limit for all 

lags i.e. strong persistence. Secondly, the sample kurtosis has supports truncated on the left by the kurtosis of the 

innovations i.e., leptokurtosis. Since the logistic function belongs to the class of asymptotically homogeneous function, 

this model can capture the volatility clustering and fat-tail features of financial and economic time series. 



where  

𝑝(𝑦𝑡|𝑥𝑡, 𝛹) =
1

(√2𝜋) 
𝑑𝑒𝑡(𝐷𝑡Σ𝐷𝑡)

1
2 exp (−

(𝑦𝑡
′ (𝐷𝑡𝛴𝐷𝑡)−1 𝑦𝑡)

2
)     

𝑝(𝑥𝑡 
𝑗

|𝑤𝑡, 𝛹) =
1

√2𝜋𝜎𝑗
2

 𝑒𝑥𝑝 (−
(𝑥𝑡

𝑗
− 𝜆𝑗𝑤𝑡)2

2𝜎𝑗
2  ) 

𝑝(𝑤𝑡|𝑤𝑡−1, 𝛹) =  
1

√2𝜋
 𝑒𝑥𝑝 (−

(𝑤𝑡 − 𝛼𝑤𝑡−1)2

2
 ) 

Priors are assumed to be independent and we employ the convenient conjugate and proper priors for 

parameters. 

𝑝(𝛼) ~𝐵𝑒𝑡𝑎 

𝑝(𝜇)~𝐺𝑎𝑚𝑚𝑎 

𝑝(𝛽)~𝐺𝑎𝑚𝑚𝑎 

𝑝(𝜅)~𝑁𝑜𝑟𝑚𝑎𝑙 

𝑝(𝜆)~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 

𝑝(𝜎2 )~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 

𝑝(𝜌)~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 

 

Following the usual Bayesian procedure, we will implement a MCMC method to sample 𝑝(𝐿, 𝛹) 

from the joint posterior density 𝑝(𝐿, 𝛹|𝑌). For our MCMC procedure, we use the Gibbs sampler and 

the Metropolis-Hastings (MH) algorithm within the Gibbs sampler.  

 

Now we derive the conditional posteriors for latent factors and unknown parameters to implement 

the Gibbs sampler and MH algorithm. First, the conditional posterior distribution for the common 

latent factor wt is given by 

𝑝(𝑤𝑡|𝑋, 𝑊−𝑡, 𝛹)  ∝  ∏ 𝑝(𝑥𝑡
𝑗
|𝑊,

𝑗=1

𝛹)𝑝(𝑤𝑡+1|𝑤𝑡)𝑝(𝑤𝑡|𝑤𝑡−1)   

    ∝  ∼ 𝑁(𝐵𝐴−1, 𝐴−1) 

𝑤ℎ𝑒𝑟𝑒 𝐴 = ∑
𝜆𝑗

2

𝜎𝑗
2 + 𝛼2 + 1,    𝐵 = 𝛼(𝑤𝑡+1 + 𝑤𝑡−1) + ∑

𝜆𝑗𝑥𝑡
𝑗

𝜎𝑗
2

𝑗

  

𝑗

  

where W−t denotes W with wt deleted.  

 The conditional posterior for xt
j
 is also derived and it is given by 

𝑝(𝑥𝑡 
𝑗

|𝑋−𝑡, 𝑊𝑡, 𝛹) ∝  𝑝(𝑦𝑡|𝑥𝑡, 𝛹)𝑝(𝑥𝑡 
𝑗

| 𝑤𝑡, 𝛹) 



∝ 𝑑𝑒𝑡(𝐷𝑡Σ𝐷𝑡)
1
2 exp (−

(𝑦𝑡
′ (𝐷𝑡𝛴𝐷𝑡)−1 𝑦𝑡)

2
) 

1

√2𝜋𝜎𝑗
2

 𝑒𝑥𝑝 (−
(𝑥𝑡

𝑗
− 𝜆𝑗𝑤𝑡)2

2𝜎𝑗
2  )  

The conditional posterior for parameters, α , λj 𝑎𝑛𝑑 𝜎𝑗
2 are also given by 

𝑝(𝛼|𝑋, 𝑊, 𝛹−𝛼) ∝  ∏ 𝑝(𝑤𝑡|𝑤𝑡−1)𝑝(𝛼)

𝑡

 

  𝐿𝑒𝑡 𝛼 = 2𝛼∗ − 1     𝑤ℎ𝑒𝑟𝑒  𝑝(𝛼∗ )  ∼  𝐵(𝛼1̅̅ ̅ , 𝛼2̅̅ ̅ )   

𝑇ℎ𝑒𝑛, 𝑝(𝛼)  ∝ (
1 + 𝛼

2
 )

 𝛼1̅̅ ̅̅ −1

 (
1 − 𝛼

2
 )

 𝛼2̅̅ ̅̅ −1

 

∝ ∼ 𝑁(𝐷𝐶−1, 𝐶−1 ) 𝑝(𝛼)       𝑤ℎ𝑒𝑟𝑒 𝐶 = ∑ 𝑤𝑡−1
2

𝑡

  ,   𝐷 = ∑ 𝑤𝑡𝑤𝑡−1

𝑡

  

 

𝑝 (𝜆𝑗|𝑋, 𝑊, 𝛹−𝜆𝑗
) ∝ ∏  𝑝(𝑥𝑡 

𝑗
| 𝑤𝑡, 𝛹)𝑝(𝜆𝑗)

𝑡

  

= ∏
1

√2𝜋𝜎𝑗
2

 𝑒𝑥𝑝 (−
(𝑥𝑡

𝑗
− 𝜆𝑗𝑤𝑡)2

2𝜎𝑗
2  ) 𝑝(𝜆𝑗)  

𝑡

     𝑤ℎ𝑒𝑟𝑒  𝑝(𝜆𝑗)  ∼ 𝑁( 𝜆�̅� , 𝜆𝑗
2̅̅̅ )I[0<  λj]  

∝   ∼  N (KL−1, L−1) I[0<  λj]  

𝑤ℎ𝑒𝑟𝑒 𝐿 =
∑ 𝑤𝑡

2
𝑡

𝜎𝑗
2 +

1

𝜆𝑗
2̅̅̅

    , 𝐾 =    
∑ 𝑤𝑡 𝑥𝑡

𝑗
𝑡

𝜎𝑗
2 +

𝜆�̅�

𝜆𝑗
2̅̅̅

              

 

𝑝 (𝜎𝑗
2|𝑋, 𝑊, 𝛹−𝜎𝑗

2) ∝ ∏  𝑝(𝑥𝑡 
𝑗

| 𝑤𝑡, 𝛹)𝑝(𝜆𝑗)

𝑡

 

= ∏
1

√2𝜋𝜎𝑗
2

 𝑒𝑥𝑝 (−
(𝑥𝑡

𝑗
− 𝜆𝑗𝑤𝑡)2

2𝜎𝑗
2  )

𝑡

 𝑝(𝜎𝑗
2)     𝑤ℎ𝑒𝑟𝑒   𝑝(𝜎𝑗

2)  ∼ 𝐼𝐺( 𝜈𝑗1̅̅ ̅̅  , 𝜈𝑗2̅̅ ̅̅  ) 

∝ ∼ 𝐼𝐺 (
𝑛

2
+ 𝜈𝑗1̅̅ ̅̅ , 𝑊 + 𝜈𝑗2̅̅ ̅̅  )   𝑤ℎ𝑒𝑟𝑒 𝑊 = 1/2 ∑(𝑥𝑡

𝑗
− 𝜆𝑗𝑤𝑡)2

𝑡

 

 

Finally, we derive the conditional posterior distribution of (θ, ρ). The conditional posterior 

distribution of θj = (μj, βj , 𝜅𝑗) for j=1,2,3 is 

𝑝 (𝜃𝑗|𝑋, 𝑊, 𝛹−𝜃𝑗
) ∝  ∏ 𝑝(𝑦𝑡|𝑥𝑡 , 𝛹)

𝑡

𝑝(𝜃𝑗)  



= ∏
1

√2𝜋
𝑑𝑒𝑡(𝐷𝑡Σ𝐷𝑡)

1
2 exp (−

(𝑦𝑡
′ (𝐷𝑡𝛴𝐷𝑡)−1 𝑦𝑡)

2
)

𝑡

𝑝(𝜃𝑗) 

𝑤ℎ𝑒𝑟𝑒  𝑝(𝜇𝑗) ∼ 𝐺(𝜇𝑗1̅̅ ̅̅ , 𝜇𝑗2̅̅ ̅̅  ), 𝑝(𝛽𝑗)  ∼ 𝐺(𝛽𝑗1
̅̅ ̅̅ , 𝛽𝑗2

̅̅ ̅̅  ), 𝑎𝑛𝑑 𝑝(𝜅𝑗) ∼ 𝑁(𝜅𝑗1̅̅ ̅̅ , 𝜅𝑗2̅̅ ̅̅ )  

 

The conditional posterior distribution of ρ is given by 

𝑝(𝜌|𝑋, 𝑊, 𝛹−𝜌) ∝  ∏ 𝑝(𝑦𝑡|𝑥𝑡, 𝛹)

𝑡

𝑝(𝜌)  

𝑤ℎ𝑒𝑟𝑒  𝑝(𝜌) ∼ 𝑁(𝜌1̅̅ ̅, 𝜌2̅̅ ̅ )𝐼{−1<𝜌<1}, 

We apply the Metropolis-Hastings (MH) algorithm to draw sample from the conditional posterior 

distribution of (α, θ, ρ) and xt. In the case of sampling from the conditional posterior of (θ, ρ), we 

use their prior distributions as the proposal densities when applying the MH algorithm. For the latent 

factors xt , we use the transition equation of our model as the proposal density of xt . For the 

candidate-generating density of α,  N(DC−1, 𝐶−1 ) is used in this paper. 

 

4. Estimation Results  

In this paper, oil, corn and wheat daily prices from August 8, 2005 to October 10, 2014 are used as 

mentioned before. We draw 200,000 samples for each parameter and latent variable using the Gibbs 

sampler and the MH algorithm, and discard the first 20,000 samples, which are considered as samples 

in the burn-in period. Table 1, 2 and 3 give the estimation results for oil, corn and wheat returns, 

respectively. The last column in Tables (1, 2, and 3) dictates the convergence diagnostics (CD) by 

Geweke (1992). As shown in Geweke (1992), CD converges to the standard normal distribution as 

the number of samples goes to infinity, if the sequence of Gibbs samples for a parameter is stationary. 

The last column in three tables (1, 2, and 3) dictates the convergence diagnostics (CD) by Geweke 

(1992). As shown in Geweke (1992), CD converges to the standard normal distribution as the number 

of samples goes to infinity, if the sequence of Gibbs samples for a parameter is stationary. Our results 

indicate relatively high convergence diagnostics, except for some of the parameter.  

 

The AR coefficient of the common global factor is 0.986, which is persistent. It is well known that 

the return process has persistence so that it can generate highly autocorrelated volatility or volatility 

clustering.   

 

Table 1 Estimation Results for Oil 

 parameter 
Posterior 

mean 

Posterior 

Std 
5% 95% CD 

oil 
𝜇 0.000062 0.000018 0.000026 0.000099 0.1020 

 
𝛽 0.0070 0.0015 0.0040 0.0100 -2.7234 



 
𝜅 3.4388 0.3275 2.7968 4.0807 -4.2082 

 
𝜆 0.1890 0.0314 0.1274 0.2506 0.2644 

 
𝜎 0.7847 0.1109 0.5674 1.0021 -0.6839 

Common factor 𝛼 
0.9866 0.0049 0.9769 0.9962 -0.2094 

 

Table 2 Estimation Results for Corn 

 parameter 
Posterior 

mean 
Std 5% 95% CD 

corn 𝜇 0.000023 0.000011 0.000001 0.000045 -0.6767 

 𝛽 0.0059 0.0014 0.0033 0.0086 6.8366 

 𝜅 3.0082 0.3420 2.3379 3.6785 2.5232 

 𝜆 0.1176 0.0200 0.0784 0.1569 -0.6611 

 𝜎 0.7217 0.0581 0.6079 0.8356 -0.7624 

corn & 

wheat 
𝜌 0.6629 0.0121 0.6393 0.6866 -0.4598 

 

Table 3 Estimation Results for Wheat 

 parameter 
Posterior 

mean 
Std 5% 95% CD 

wheat 𝜇 0.000041 0.000020 0.000002 0.000079 1.0720 

 𝛽 0.0029 0.0011 0.0008 0.0050 -4.8949 

 𝜅 1.9154 0.4390 1.0549 2.7759 -7.5918 

 𝜆 0.1544 0.0346 0.0865 0.2223 2.8557 

 𝜎 0.5750 0.0877 0.4031 0.7469 1.8102 

 

The value of λj
 indicates that the volatility generating processes, xt

𝑗
 𝑓𝑜𝑟 𝑖 = 1,2,3 are scaled down 

compared with the magnitude of the macro global uncertainty wt. The loading parameters, λ for oil, 

corn and wheat are 0.19, 0.12 and 0.15, respectively. This means that the stochastic volatilities of oil 

prices are more affected by the common factor than the other cases, while the stochastic volatilities 

of corm returns are more determined by the idiosyncratic component.  

 

From the results of our analysis, the low level and high level of stochastic volatilities for oil are  

√μ =0.79% and √μ + β =8.4% in a day while the low and high volatilities of the corn are 0.48% 



and 7.72%, respectively. In the wheat case, the low volatility level is 0.64% while the high volatility 

level is 5.41% in a day. Therefore, oil is more volatile than grains. 

Table 4  

 
low asymptotic regime 

√𝜇 

high asymptotic regime 

√𝜇 + 𝛽 

oil 0.0079 0.0840 

corn 0.0048 0.0772 

wheat 0.0064 0.0541 

 

We also extract the latent common uncertainty process, wt, and the volatility generating processes 

for the oil, corn and wheat growth rates, xt. Figure 4 illustrates the extracted wt and xt for energy 

and the commodity prices. The dotted line displays xt and the thick line displays wt in Figure 4. 

As aforementioned, according to the values of λoil , λcorn and λwheat  , the volatility generating 

process xt for oil is closer to the common macro volatility generating process, wt than others. Based 

on the estimated common volatility factor, the high volatility periods in the common factor are well 

matched to the recession period from December 2007 to June 2009, as recorded by the National 

Bureau of Economic Research (NBER), and the financial crisis of 2007- 2008. 

 

 

Figure 4 Common and volatility factors 



 

Figures 5 plots the estimated volatility and the realized volatility for oil, corn and wheat, respectively. 

The dotted line and thick line display the absolute value of growth rates and the estimated volatilities, 

respectively. As can be seen from Figure 5, the estimated volatilities explain the realized volatilities 

quite well, particularly in light of their trend behaviors. 

 

 

 

Figure 5 Realized and Estimated Volatility 

 

We test whether the residual in the return equation, which is standardized by the corresponding 

volatility, is normal by using the Kolmogorov-Smirnov test. To test the normality for the residuals, 

the estimated residuals are obtained as 

𝜀�̂�
𝑗

=
𝑦𝑡

𝑗

√𝑓𝑡
�̂�
(𝑥𝑡

�̂�
)

  ~𝑁(0,1) 

The estimated residuals therefore should be approximately 𝑁(0,1). Table 5 presents the test results. 

According to Table 5, the residuals for oil, corn and wheat returns have means close to zero and 

standard deviations close to one. Moreover, skewness and kurtosis are approximately close to zero 



and 3, respectively, showing that the distributions of the estimated residuals are symmetric and do 

not have thick tails. As a result of the Kolmogorov-Smirnov test, the null hypothesis of normality 

cannot be rejected at the 5% level of significance for all cases. Therefore, our SV model with a 

common factor fits the data well. 

  

Table 5 Diagnostic test on standardized residuals in the return equations in the SV model 

 Oil Corn Wheat 

Mean 0.0151 -0.0023 -0.0090 

Standard deviation 0.9884 0.9127 0.9667 

Skewness -0.0010 -0.0604 0.0327 

Kurtosis 2.5648 2.9439 2.7702 

Kolmogorov-Smirnov 

(p-value) 

0.0256 

(0.0857) 

0.0261 0.0758 

(0.0758) 

0.0221  

(0.1913) 

 

 

5. Conclusions 

This paper analyzes the multivariate stochastic volatilities with a common factor which is affecting 

both the volatilities of crude oil and agricultural commodity prices in both biofuel and non-biofuel 

use. We developed a stochastic volatility model which has a latent common volatility with two 

asymptotic regimes and a smooth transition between them. In contrast with conventional volatility 

models, stochastic volatilities in this study are generated using a logistic transformation of the latent 

factors, which consists of two components: the common volatility factor and the idiosyncratic 

component.  

In this study, we analyze the stochastic volatility model with a common factor for oil, corn and wheat 

from August 8, 2005 to October 10, 2014 using a MCMC method and estimate the stochastic 

volatilities and also extract the common factor. Our results indicate that the low level and high level 

of stochastic volatilities for oil are 0.79% and 8.4% in a day while the low and high volatilities of 

corn are 0.48% and 7.72%, respectively. In the wheat case, the low volatility level is 0.64% while the 

high volatility level is 5.41% in a day. Therefore, oil is more volatile than grains. The volatility 

generating process of oil is closer to the common factor in terms of the value of the loading parameter, 

which indicates that the volatility generating processes of oil, corn and wheat are scaled-down 

compared with the magnitude of the common factor, which is higher than other cases. Regarding the 

volatility of the idiosyncratic component, the variance of the idiosyncratic part for oil is higher than 

that of others. This implies that oil volatility is more affected by the common macroeconomic 

uncertainty factor while corn volatility is more explained by the idiosyncratic component. Based on 

the estimated common volatility factor, the high volatility periods in the common factor are well 

matched to the recession period from December 2007 to June 2009, as recorded by the National 

Bureau of Economic Research (NBER), and the financial crisis of 2007- 2008. 

To the best of our knowledge, our study is the first to empirically examine the common factor in the 

volatilities of energy and agricultural commodity markets, especially oil, corn and wheat markets. We 

found that the main factors of common volatility extracted from oil, corn and wheat are related to the 

macroeconomic and financial uncertainties in the energy and grain market.   

 



References 

 

Chib, S., Nardari, F., Shephard, N., 2002, Markov chain Monte Carlo methods for 

stochastic volatility models. Journal of Econometrics 116, 225–257. 

 

Chib, S., Nardari, F., Shephard, N., 2006, Analysis of high dimensional multivariate 

stochastic volatility models. Journal of Econometrics 134, 341–371. 

 

Carnero, A., Pen˜ a, D. and Ruiz, E, 2003, Persistence and curtosis in autoregressive 

stochastic volatility models (manuscript, Universidad Carlos III de Madrid). 

Danielsson, J. 1994, Stochastic volatility in asset prices estimation with simulated maximum 

likelihood, Journal of Econometrics, 54. 

 

Du, X., C. L. Yu, and D. J. Hayes. Speculation and Volatility Spillover in the Crude Oil and 

Agricultural Commodity Markets: A Bayesian Analysis. Energy Economics 33(2011):497–503. 

 

Geman, H., Shih, Y.F., 2009. Modeling commodity prices under the CEV model. Journal 

of Alternative Investments 11 (3), 65–84. 

 

Harri, A. and H. Darren. 2009, Mean and Variance Dynamics between Agricultural Commodity 

Prices and Crude Oil Prices and Implications for Hedging. In The Economics of Alternative Energy 

Sources and Globalization: The Road Ahead Meeting, Orlando, FL. 

Jacquier, E., Polson, N., Rossi, P., 1994. Bayesian analysis of stochastic volatility models 

(with discussion). Journal of Business and Economic Statistics 12, 371–389. 

 

Jacquier, E., Polson, N., Rossi, P., 2004. Bayesian analysis of stochastic volatility models 

with fat-tails and correlated errors. Journal of Econometrics 122, 185–212. 

 

 
Kim, H., H. Lee, and J. Park, (2008), “A General Approach to Extract Stochastic Volatilities 

with an Empirical Analysis of Volatility Premium,” Working Paper. 

 

Kim, S., Shephard, N., Chib, S., 1998. Stochastic volatility: likelihood inference and 

comparison with ARCH models. Review of Economic Studies 65, 361–393. 

 

Kim, H., H., Lee, J.Y., Park and Yeo, 2010, Macroeconomic uncertainty and asset prices: a 

stochastic volatility model, working paper 

 

Larsson, K. and M. Nossman, 2011, Jumps and stochastic volatility in oil prices: Time series 

evidence, Energy Economics 33, 504–514 

 

Malmsten, H. and Tera  ̈svirta, T. 2010, Stylized facts of financial time series and three popular 

models of volatility, European Journal of Pure and Applied Mathematics, 3, 413–47. 

 

Schwartz, E.S., Trolle, A., 2009. Unspanned stochastic volatility and the pricing of 

commodity derivatives. Review of Financial Studies 22, 4423–4461. 



 

Shephard, N., 2005. Stochastic Volatility: Selected Reading. Oxford University Press, New York. 

 

Terasvirta, Timo and Zhao, Zhenfang, 2011, Stylized facts of return series, robust estimates and 

three popular models of volatility, Applied Financial Economics, 21. 

 

Vo, M.T., 2009. Regime-switching stochastic volatility: evidence from the crude oil 

market. Energy Economics 31, 779–788 

 

Wu, F., Z. Guan, and R. J. Myers. 2011, Volatility Spillover Effects and Cross Hedging in Corn and 

Crude Oil Futures. Journal of Futures Markets 31:1052–1075. 

 

 

 

 

 
 

 
 

 

 


