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Abstract

Ethanol production in the United States, driven by federal renewable fuel policy, has
exploded over the past two decades and has prompted the construction of many ethanol
refineries throughout the US Corn Belt. These refineries have introduced a new inelastic
demand for corn in the areas where they were built, reducing basis for nearby farmers
and e↵ectively subsidizing local corn production. In this paper, I explore whether and
to what extent the construction of new ethanol refineries has actually increased local
corn acreage. I also explore some environmental e↵ects of this acreage increase. Using
a thirteen year panel of over two million field-level observations in Illinois, Indiana,
Iowa, and Nebraska, I estimate a net increase of nearly 300,000 acres of corn in 2014
relative to 2002 that can be attributed to the placements of new ethanol refineries.
This increase comprises approximately 0.75% of the total 2014 corn acreage within
my dataset. Furthermore, this e↵ect is separate from the general equilibrium e↵ect of
ethanol policy increasing aggregate demand for corn. Back-of-the-envelope calculations
suggest that over 21,000 tons of the nitrogen applied to fields in my sample in 2014 can
be attributed to refinery location e↵ects. Essentially all of these observed e↵ects occur
only in areas within 30 miles of an ethanol refinery, suggesting that refineries have
meaningful localized impacts on land use and environmental quality such as nitrate
runo↵. JEL codes: Q15, Q16, Q53
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1 Introduction

Since the early 2000s, US ethanol production has exploded in response to federal policies

incentivizing the production of renewable fuels. In 2005, Congress passed the Energy Policy

Act (EPAct) introducing a Renewable Fuel Standard (RFS) mandating that 2.78% of gasoline

sold in the US be from renewable sources. In 2007, Congress passed the Energy Independence

and Security Act (EISA) setting annual renewable fuel mandates for US production with an

ultimate goal of 36 billion gallons by 2022. Of these 36 billion gallons, 15 billion are to be

conventional biofuels – corn-based ethanol in particular.

The US ethanol industry has clearly responded to the Renewable Fuel Standards estab-

lished in the EPAct and EISA. Between 2002 and 2014, US ethanol production has increased

from just over 2 billion gallons per year to over 14 billion gallons per year (Figure 1a). In

order to produce such quantities of ethanol, the number of corn ethanol refineries in the US

has increased from 62 in 2002 to 204 in 2014 (Figure 1b).
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Figure 1: Growth of US Ethanol Production and Refineries, 2002-2014. Source: Renewable
Fuels Association.

The striking increase in US corn ethanol production has raised several important ques-

tions about its unintended consequences. One strand of research has explored how increased

demand for ethanol has a↵ected land use in the US corn belt as aggregate demand for corn
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increases (Fatal & Thurman, 2014; Miao, 2013; Feng & Babcock, 2010). Another strand of

research has been more concerned about the environmental externalities of changing agri-

cultural patterns, particularly focused on nitrate runo↵ and water pollution (Donner &

Kucharik, 2008; Thomas et al, 2009).

In this project, I explore both the land use change e↵ects and environmental e↵ects of

expanding ethanol production. In particular, I study the geospatial e↵ect of ethanol re-

fineries’ placement on nearby land use change and use my results to estimate environmental

consequences. I am specifically interested in how the location of ethanol refineries spatially

a↵ects agricultural land, and I do not attempt to identify the full general equilibrium e↵ect

of the 14 billion gallon US corn ethanol industry. Put another way, I study how the distribu-

tion of ethanol refineries di↵erentially a↵ects di↵erent agricultural areas net of the ethanol

industry’s aggregate e↵ect on corn prices.

I find that within a population of almost 114 million acres of agricultural land in Illinois,

Indiana, Iowa, and Nebraska, nearly 300,000 more acres of corn were grown in 2014 than in

2002 due merely to ethanol refinery location e↵ects. This represents approximately 21,000

tons of nitrogen applied as fertilizer. Almost all the 300,000 acres of increased corn acreage

exist within 30 miles of an ethanol refinery, suggesting that these refineries have strong local

e↵ects on land use change and nitrogen use.

There is clear economic intuition for why ethanol refineries would di↵erentially a↵ect

nearby and faraway agricultural land. When a corn-fed ethanol refinery is built, it repre-

sents a new terminal market for corn. Since refineries operate continuously, they have an

inelastic demand for this input. And since transportation costs are significant for grains, one

would expect an ethanol refinery to source its corn from the nearest producers. Thus, by

reducing transportation costs for nearby producers (reducing basis), ethanol refineries essen-

tially subsidize corn production for nearby farmers. On the margin, this subsidy incentivizes

farmers to grow more corn – or grow corn more often – than they otherwise would. As corn

production increases, so will nitrogen fertilizer use. Corn requires higher levels of nitrogen
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fertilizer than other Corn Belt crops, and particularly high levels of fertilizer when grown

successively corn-after-corn. Thus, economic intuition suggests ethanol refineries would have

a localized e↵ect increasing corn production and nitrogen fertilizer use. Consequently, these

refineries would also have an e↵ect on localized nitrate runo↵ due to the increased nitrogen

fertilizer use.

Researchers have previously addressed di↵erent components of the ethanol industry’s

e↵ects on land use change and nitrate runo↵. One line of research has explored whether the

hypothesized local corn subsidy provided by nearby ethanol refineries actually exists. In a

frequently cited paper, McNew & Gri�th (2005) find that corn prices at an ethanol refinery

are 12.5¢ higher than average, that the e↵ect is slightly stronger for “upstream” refineries

than for “downstream” refineries, and that price e↵ects can be detected up to 68 miles from

a refinery. However, Katchova (2009) and O’Brien (2009) both fail to find such a subsidy.

Gallagher et al. (2005) highlight that locally-owned and non-locally-owned refineries have

di↵erent e↵ects on corn prices: the authors find that corn prices are increased by proximity

to a non-locally-owned refinery, but not by proximity to a locally-owned refinery. Finally,

Lewis (2010) finds di↵erent results in di↵erent states: ethanol refineries in Michigan and

Kansas a↵ect local corn prices, but refineries in Iowa and Indiana do not.

Other authors have explored whether ethanol refineries have an e↵ect on land use. Fatal &

Thurman (2014) use county-level data to estimate the corn acreage e↵ect of ethanol refineries.

They find that a typical ethanol refinery increases corn acreage in its home county by over 500

acres and has e↵ects that can persist for up to 300 miles. Miao (2013) also uses county-level

data and finds a significant e↵ect of ethanol refineries on corn acreage, as well as a di↵erential

e↵ect between locally-owned and non-locally-owned refineries. Turnquist et al. (2008), in

contrast to more recent studies, fail to find any significant agricultural land conversion in

areas near Wisconsin ethanol refineries. Finally, Feng & Babcock (2010) explore the full

general equilibrium e↵ect of increased ethanol production and find an unambiguous increase

in corn acreage.
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Several researchers have focused on how ethanol production a↵ects water quality and

nitrate runo↵. Donner & Kucharik (2008) highlight how the aggregate impact of the EISA

will likely make achieving nitrate level goals in the Mississippi impossible. Thomas et al.

(2009) use hydrologic models to estimate the water quality impacts of corn production caused

by increased demand due to biofuel mandates. They find significant negative results.

While it is likely true that “refineries cause corn,” it is also likely true that “corn causes

refineries.” Ethanol refineries are not located at random, and several researchers have ex-

plored the topic of ethanol refinery placement. A series of papers have shown, unsurprisingly,

that ethanol refineries are more likely to locate near areas with large corn production, near

transportation infrastructure, and not near existing ethanol refineries (Sarmiento et al., 2012;

Haddad et al., 2010; Lambert et al., 2008). This finding is important because it highlights

that ethanol refinery placement cannot be treated and random in econometric analyses.

My project improves upon previous work by leveraging new sources of field-level land

use data and exploiting a finer-scaled panel of observations than previous authors. I exploit

both the Cropland Data Layer (CDL) and Common Land Unit (CLU) to create annual

observations of field-level land use. These agricultural micro-data allow for much more

nuanced econometric estimation than in previous studies. Other authors have exploited

similar micro-data in agricultural research to great e↵ect (Livingston et al., 2015; Hendricks

et al., 2014; Wright &Wimberly, 2013). I also highlight the locality e↵ect of ethanol refineries

rather than the general equilibrium e↵ect, focusing on small-scale heterogeneous e↵ects that

have not been well identified in previous work.

The remainder of this paper is divided into a theoretical framework (model), a summary

of my data, an overview of my econometric methods, a discussion of my results, and a

conclusion.
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2 Model

Consider a farmer maximizing expected profits from an agricultural field. I assume the

farmer is not forward-looking, and maximizes only the current year’s expected profits.1 The

farmer observes input prices, expected output prices, the locations of terminal markets for

possible crops, and the field’s planting history. Then, the farmer chooses to plant either corn

(C), soy (S), or another crop (O) to maximize:

E [⇧i] = max {E [⇧i(C)] ,E [⇧i(S)] ,E [⇧i(O)]}

= max
x2{C,S,O}

{E [(px � bi,x) fx (vx|xi,�1)� zx · vx]} (1)

where ⇧i are profits for field i, px is the output price for crop x, bi,x is the basis for crop x on

field i, fx is the production function for crop x, vx is a vector of inputs to produce crop x,

xi,�1 is the crop planted on field i in the previous period, and zx is a vector of input prices

for inputs vx. Basis bi,x is assumed to be a linear function of distance from field i to the

nearest terminal market for crop x, and input quantities vx are determined my maximizing

⇧i conditional on x and xi,�1.

Given the problem outlined above, a farmer’s optimal decision is deterministic. However,

for an econometrician who does not observe all relevant data and production functions, the

above problem gives rise to a probability that field i will be planted crop x given previous

planting decisions: Pi(x|xi,�1). Summing across di↵erent possible planting histories, this

gives rise to an unconditional probability that field i will be planted to crop x: Pi(x). In

this project, I am interested in how ethanol refineries a↵ect the probability a field will be

planted to corn: Pi(C).

1Of course, we expect farmers to be forward-looking and dynamically optimizing their cropping decisions.
Livingston et al. (2015) provide an excellent treatment of how these dynamics a↵ect farmers’ optimal choices.
These authors find relatively little di↵erence in the optimal behavior of a myopic farmer compared to that
of an infinitely-forward-looking farmer, suggesting my own model is an acceptable approximation of reality.
However, one could easily incorporate Livingston et al.’s (2015) dynamics into a more complicated version
of the model I present here.
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Now consider the introduction of a new corn-fed ethanol refinery. There are two interest-

ing cases. First, suppose the new refinery is closer to field i than any existing refineries, but

further away than field i’s current terminal market for corn. In this case, field i’s distance-

to-nearest-refinery changes, but its distance-to-nearest-corn-market remains unchanged and

its basis for corn, bi,C remains the same as before. In the second case, suppose the new

refinery is closer to field i than field i’s current terminal market for corn. In this case, field

i’s basis for corn, bi,C gets smaller while its bases for soy and other crops, bi,S andbi,O, remain

unchanged.2

Within the second case outlined above, the specific placement of the ethanol refinery

matters. Since I assume basis is linear in distance to terminal market, bi,C will increase

with distance to the new ethanol refinery as long as the refinery is closer to field i than the

next-nearest terminal market.

These assumptions give rise to two predictions about the e↵ect of corn-fed ethanol re-

fineries on the probability corn is planted on any field i. First, regardless of planting history,

if the new refinery is further away than the current terminal market for corn, there will be

no impact on field i’s probability of being planted to corn Pi(C). Second, regardless of plant-

ing history, if the new refinery is closer than the current terminal market for corn, the new

refinery will increase Pi(C) linearly in distance. Figure 2 gives a graphical representation of

these two predictions.

Unfortunately, in reality, I only observe a field’s distance to its nearest ethanol refinery.

I do not observe its distance to all nearest terminal markets for corn or any other crop. If I

were able to observe locations for all grain elevators or other terminal markets, I might be

able to more explicitly test for both predictions summarized in Figure 2. As it is, I can only

hope to observe an e↵ect that has the general shape outlined in Figure 2.

An important point to note is that the e↵ect of distance to the nearest ethanol refinery on

2This model makes the implicit assumption that a field’s nearest terminal market for any crop x is able to
absorb the product of all fields for whom it is the nearest terminal market. In the case of ethanol refineries,
this may not be true. Rather, refinery production capacities may impose additional constraints or relax
other constraints. I leave this issue to future work.
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Figure 2: Model prediction of the e↵ect of distance to nearest ethanol refinery on
probability a field is planted to corn.

the probability of planting corn is not strictly linear; it is piecewise-linear. This suggests that

running any regression with simply a linear “distance to nearest ethanol refinery” covariate on

the right-hand-side will obfuscate the true underlying relationship. A non-linear specification

is required.

3 Data

To conduct my analysis, I construct a balanced panel of annual crop choices for 2,145,848

agricultural fields in Illinois, Indiana, Iowa, and Nebraska over thirteen years from 2002

to 2014. In each year, I also calculate the distance from each field to the nearest ethanol

refinery. I rely on three data sources to create my panel: the Cropland Data Layer, Common

Land Unit, and ethanol refinery locations.
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3.1 Cropland Data Layer

The Cropland Data Layer (CDL) is a raster dataset of landcover in the United States col-

lected and maintained by the National Agricultural Statistics Service (NASS) of the USDA.

A satellite records the electro-magnetic wavelengths of light reflected from di↵erent points on

the earth’s surface and uses a ground-tested algorithm to assign each pixel a single land-cover

type for the year. Pixels measure 30 meters by 30 meters, except for years 2006-2009 when

pixels measured 56 meters by 56 meters.3 The CDL provides remarkably high-resolution land

cover data and is able to distinguish between many di↵erent types of vegetation. Figure 3

displays the CDL for Illinois, Indiana, Iowa, and Nebraska in 2014. Yellow pixels represent

corn, dark green pixels represent soy, and light green pixels represent other grassland-like

land covers. Red dots mark ethanol refineries operating in 2014.

Figure 3: 2014 Cropland Data Layer (CDL) with ethanol refinery locations. Sources:
NASS & Renewable Fuels Association.

The CDL identifies di↵erent crops with di↵erent accuracies. For major row crops, CDL

3Data collection for the CDL began in the late 1990s in only three states. By 2008, all 48 contiguous
states had been included in the CDL. Changes in CDL technical specifications – such as di↵erent pixel sizes
in di↵erent years – can be attributed to a growing data collection program with evolving hardware and
software resources.
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accuracy is usually between 85% and 95% (Boryan et al., 2011). For corn and soy, pixel

accuracy is particularly high. For example, according to the 2014 CDL metadata, accuracy

for both corn and soy in Iowa was over 97%. However, the CDL is considerably less accurate

at distinguishing between more similar land covers, such as between alfalfa, rangeland, and

grassland. This fact has complicated research that explores extensive land use change in the

Western Corn Belt (Wright & Wimberly, 2013), but is not a concern for research focused on

corn and soy.

One problem with using raw CDL data is that a 30 meter by 30 meter pixel is likely

not the appropriate unit of analysis. Rather, economists are more interested in observing

field-level crop choices. Additionally, while CDL data are quite accurate for primary row

crops, it is apparent that individual pixels are frequently mis-measured. For instance, upon

visual inspection of a CDL image, it is not uncommon to observe what is clearly a large

field of more than 100 pixels planted to soybeans, with one or two pixels somewhere in the

field reported as corn. If analysis is conducted at the pixel level rather than the field level,

such mis-measurements become a large concern. To address this concern, I exploit Common

Land Unit data to construct field-level crop cover observations.

3.2 Common Land Unit

According to the Farm Service Agency (FSA) of the USDA, a Common Land Unit (CLU)

is “an individual contiguous farming parcel, which is the smallest unit of land that has a

permanent, contiguous boundary, common land cover and land management, a common

owner, and/or a common producer association” (FSA, 2012). Practically, a CLU represents

a single agricultural field. Polygon shapefiles of CLUs are maintained by the FSA, but are

not currently publicly available.

I obtain CLU data for Illinois, Indiana, Iowa, and Nebraska from the website GeoCommu-

nity (http://www.geocomm.com). These data contain shapefiles from the mid 2000s, before

CLU data were removed from the public domain. In this research, I implicitly assume that
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individual CLUs do not change over time: a reasonable assumption given the FSA defini-

tion. In reality, the FSA does adjust individual CLU definitions on a case-by-case basis if

necessary, but I assume these adjustments to be negligible as in previous similar studies

(Hendricks et al., 2014).

Using the geospatial software ArcGIS, I overlay the CDL raster data with CLU polygons

as shown in Figure 4. Upon visual inspection, the fit is quite good: CLU boundaries line

up with crop changes in the CDL, roads appear clearly in both datasets, and geographical

features such as waterways and elevation changes are visible. One concern is that many

CLUs are quite small and appear to outline geographical features such as gullies, rather

than larger constituent fields. This is particularly pronounced in areas near urban sprawl.

Therefore, to maintain confidence that the fields I study are actually “fields” in the way we

think of them, I drop all CLUs from my dataset with areas of less than 10 acres. I also drop

CLUs with areas of greater than 10,000 acres, based on an assumption that these CLUs are

incorrect.4

To assign each CLU a single crop cover, I calculate the modal value of the raster pixels

contained within each CLU polygon. I then assign that modal value to the entire CLU.

This procedure enforces the assumption that each field (CLU) is planted to a single crop –

an assumption strongly supported by a visual examination of the data. To my knowledge,

this is the first instance of using modal statistics to interact the CDL and CLU datasets.

Previous research (Hendricks et al., 2014) has used an o↵-center centroid to sample a single

point of the underlying raster data. My procedure is preferable in that it reduces the chance

of idiosyncratic mis-measurement of the field’s true land cover.

Finally, for each CLU polygon, I construct a centroid for the field. This centroid is

constrained to exist within the boundaries of its parent CLU polygon. I then use these CLU

centroids to calculate distances from each field to its nearest ethanol refinery in each year.

4I drop 3,201,933 fields that have areas under 10 acres. The aggregate area dropped is 10,043,985 acres.
I drop 108 fields that have areas over 10,000 acres. The aggregate area dropped is 1,965,324 acres. The total
acreage dropped is less than 10% of the 125,987,632 acres in my initial dataset.
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Figure 4: Detail of Cropland Data Layer (CDL) and Common Land Unit (CLU) data:
Iowa, 2014. Yellow pixels represent corn, dark green pixels represent soy, light green pixels

represent grassland, and pink pixels represent alfalfa. Black lines are CLU borders.
Sources: NASS & FSA.

3.3 Ethanol Refineries

I obtain data on ethanol refinery location, capacity, and opening date from the Renewable

Fuels Association (RFA). The RFA has comprehensive data on ethanol refineries each year

starting in 2002.5 Using these data, I geo-code the locations of over 200 ethanol refineries in

the US. Since new ethanol refineries open each year, I create a separate dataset of operating

ethanol refineries for each year from 2002-2014. I only include refineries that can use corn as

an input and omit refineries that only accept cellulosic biomass or non-corn inputs. Figure

5 displays the geographic expansion of corn-fed ethanol refineries between 2002 and 2014.

5Data on ethanol refineries is unavailable for 2013. In my analysis, I assume all “new” ethanol refineries
in 2014 opened in 2014, even though some of them may have opened in 2013.
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2002 
2014 
Figure 5: Ethanol refinery locations in 2002 and 2014. Source: Renewable Fuels

Association.

Using ArcGIS, I calculate the distance from each CLU centroid to the nearest ethanol

refinery for each year from 2002 to 2014. As new ethanol refineries are constructed, this

distance will decrease for nearby fields. This change in distance-to-nearest-refinery is the

variation I will use to identify my econometric analysis. Figure 6 displays the change in

distribution of nearest-distances from 2002 to 2014. Distributions for years 2003-2013 are

omitted for clarity, but the distribution skews more and more to the left in each year.

In the current project, I do not incorporate ethanol refinery production capacity into

my analysis. Rather, I treat each refinery as identical. Thus, there is no analytic di↵erence

between a field 30 miles from a 10 million-gallons-per-year (mgy) refinery and a field 30 miles

from a 100 mgy refinery. I plan to exploit production capacity information in future work.
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Figure 6: Distributions of field-level distance-to-nearest-refinery in 2003 and 2014. Each
distribution represents 2,145,848 agricultural fields. Source: author’s calculations.

3.4 Summary Statistics

The final dataset I use for my analysis consists of a balanced panel of 2,145,853 agricultural

fields over 13 years. Table 1 presents summary statistics for the data. The average field is

53.12 acres in area, is 62.14 miles away from the nearest ethanol refinery in 2002, and 27.52

miles away from the nearest refinery in 2014.

In any particular year, an average of 32.85% of all fields are planted to corn representing

33.27% of all acreage. Similarly, 25.28% of fields are planted to soy representing 23.51% of

all acreage. Remaining fields and acreage are left to other crops.
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Table 1: Summary Statistics

VARIABLE Mean Median Standard Dev. Minimum Maximum Observations

Field area (acres) 53.12 30.15 123.60 10 9,934.94 2,145,853

Fields of corn 704,992 699,640 54,088 627,912 785,925 13
% of fields corn 32.85 32.60 2.52 29.26 36.63 13
Acreage of corn 37,915,466 38,217,232 2,819,787 33,887,520 41,720,688 13
% of acreage corn 33.27 33.53 2.47 29.73 36.60 13

Fields of soy 542,552 545,443 39,075 434,344 593,006 13
% of fields soy 25.28 25.42 1.82 20.24 27.63 13
Acreage of soy 26,792,631 27,205,006 1,809,211 21,987,108 29,220,192 13
% of acreage soy 23.51 23.87 1.59 19.29 25.64 13

Fields of other crops 898,309 901,122 58,856 816,503 981,631 13
% of fields other crops 41.86 41.99 2.74 38.05 45.75 13
Acreage of other crops 49,270,226 49,726,160 2,207,439 46,356,128 52,840,092 13
% of acreage other crops 43.23 43.63 1.94 40.67 46.36 13

Dist. to nearest refinery, 2002 62.14 48.95 44.05 0.01 211.84 2,145,853
Dist. to nearest refinery, 2003 61.60 47.96 44.19 0.01 211.84 2,145,853
Dist. to nearest refinery, 2004 61.58 47.96 44.19 0.01 211.84 2,145,853
Dist. to nearest refinery, 2005 49.38 41.66 30.99 0.01 157.32 2,145,853
Dist. to nearest refinery, 2006 48.55 40.89 31.40 0.01 157.32 2,145,853
Dist. to nearest refinery, 2007 46.77 38.44 31.19 0.01 157.32 2,145,853
Dist. to nearest refinery, 2008 34.15 28.36 22.86 0.01 131.05 2,145,853
Dist. to nearest refinery, 2009 30.07 25.57 19.54 0.01 128.41 2,145,853
Dist. to nearest refinery, 2010 29.44 24.81 19.48 0.01 128.41 2,145,853
Dist. to nearest refinery, 2011 28.91 24.59 18.87 0.01 126.30 2,145,853
Dist. to nearest refinery, 2012 27.52 23.75 17.07 0.01 126.30 2,145,853
Dist. to nearest refinery, 2013* 27.52 23.75 17.07 0.01 126.30 2,145,853
Dist. to nearest refinery, 2014** 27.52 23.75 17.07 0.01 126.30 2,145,853

Notes: Total number of fields: 2,145,853. Total acreage: 113,978,323 acres. Variables with 2,145,853 observations are
measured at the field level. Variables with 13 observations are measured at the year level. All distances measured in
miles. *The Renewable Fuels Association did not publish data on ethanol refineries in 2013, so there is no change in
distance in my data between 2012 and 2013. **Although the mean and median distances for 2014 appear identical to
those for 2013, this is only due to rounding. The values for 2014 are in fact smaller.

4 Econometric Methods

Using a balanced panel of 2,145,848 agricultural fields over 13 years, I estimate a linear

probability model (LPM) of the probability that an individual field is planted to corn. I

include as independent variables a field-level fixed e↵ect to capture time-invariant unobserved

characteristics of individual fields, state-by-year fixed e↵ects to capture input and output

prices, and distance-bin dummy variables measuring distance to the nearest ethanol refinery.

These distance-bin variables allow me to observe a non-linear relationship between a field’s

distance to its nearest ethanol refinery and the probability that field is planted to corn. The
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distance-bins are the covariates of interest. In particular, I estimate equation 2:

Pit(C) = �0 + �1bin10it + ...+ �21bin210it + �st + ↵i + "it (2)

where i indexes field, t indexes year, Pit(C) is the probability of field i growing corn in year

t, bin10, ..., bin210 are sequential distance bin dummies beginning at the 10 mile mark and

each representing a range of 10 miles (the omitted bin in 0-10 miles), �st is a state-by-year

fixed e↵ect, ↵i is a field-level fixed e↵ect, and "it is an error term. I cluster standard errors

at the field level to control for heteroskedasticity and correlation over time.

Equation 2 has several desirable qualities. First, and most importantly, an LPM allows

me to control for field-level fixed e↵ects by exploiting the within-transformation. This allows

me to ignore any characteristics of a field that do not change over time, such as soil quality,

average weather patterns, and field slope. Second, an LPM allows me to easily interpret the

coe�cients �1, ...�21 as marginal e↵ects. For instance, a field 25 miles away from its nearest

ethanol plant is 100⇥ �2 percent more likely to grow corn than a field 0-10 miles away from

its nearest ethanol plant, ceteris paribus.

Linear probability models have drawbacks as well. LPMs can result in coe�cients that

will predict outcomes outside the [0,1] interval, as opposed to discrete-choice models such

as logit or probit. The reason I use an LPM rather than a discrete-choice model is that

fixed-e↵ects are di�cult to impossible to incorporate in such a framework. Additionally,

with large sample sizes, LPMs often perform quite similarly to discrete choice models.

In addition to equation 2, I estimate similar equations conditioning on a field’s land use

during the previous year. In particular, I estimate Pit (C|C�1) (the probability of growing

corn given that corn was grown last year), Pit (C|S�1) (the probability of growing corn

given that soy was grown last year), and Pit (C|O�1) (the probability of growing corn given

something other than corn or soy was grown last year). These specifications allow me to

explore how ethanol refineries a↵ect specific crop rotation dynamics rather than merely an
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aggregate e↵ect.

It is important to note that one cannot interpret the coe�cients from equation 2, (�1, ..., �21)

as purely causal. This is because ethanol refinery placement is non-random: refineries locate

in particular places due to the presence of corn supply, access to transportation infrastruc-

ture, and distance from other ethanol refineries, among other factors (Sarmiento et al., 2012;

Haddad et al., 2010; Lambert et al., 2008). Instead, one should interpret the coe�cients

as the di↵erential e↵ect of distance to the nearest ethanol plant conditional on some unob-

served characteristics driving ethanol refinery placement. In this context, these coe�cients

have meaningful and valid interpretations for constructing regional counterfactuals about

corn acreage changes.

5 Results

I estimate equation 2 using the reghdfe command in stata. This command optimizes

the estimation of high-dimensional fixed e↵ects models and runs considerably faster than

xtreg. However, the reghdfe command subsumes the constant term �0 which must be

reconstructed after the regression has been estimated. Thus, the constants reported in Table

2 do not include standard errors.

Table 2 presents my results for four di↵erent econometric specifications. In all cases,

the dependent variable is the probability of a field being planted to corn. In specification

(1), this probability in unconditional. In specifications (2), (3), and (4), the probability is

conditional upon corn, soy, or neither (respectively) being grown on the field in the previous

year.
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Table 2: Probability of a field being planted to corn

(1) (2) (3) (4)
VARIABLES Pit (C) Pit (C|C�1) Pit (C|S�1) Pit (C|O�1)

Constant (recovered) 0.3346 0.3249 0.7679 0.0825

Distance bin: 10-20 miles -0.0004 -0.0047*** 0.0026** 0.0004
(0.0006) (0.0011) (0.0011) (0.0008)

Distance bin: 20-30 miles -0.0001 -0.0149*** 0.0103*** 0.0062***
(0.0006) (0.0011) (0.0012) (0.0008)

Distance bin: 30-40 miles -0.0077*** -0.0266*** 0.0098*** 0.0001
(0.0006) (0.0012) (0.0012) (0.0008)

Distance bin: 40-50 miles -0.0088*** -0.0316*** 0.0154*** -0.0021***
(0.0006) (0.0013) (0.0013) (0.0008)

Distance bin: 50-60 miles -0.0080*** -0.0171*** 0.0125*** -0.0057***
(0.0006) (0.0014) (0.0014) (0.0008)

Distance bin: 60-70 miles -0.0048*** -0.0166*** 0.0138*** -0.0013
(0.0007) (0.0015) (0.0016) (0.0008)

Distance bin: 70-80 miles -0.0062*** -0.0166*** 0.0060*** -0.0035***
(0.0007) (0.0016) (0.0017) (0.0008)

Distance bin: 80-90 miles -0.0074*** -0.0145*** 0.0060*** -0.0067***
(0.0007) (0.0017) (0.0018) (0.0009)

Distance bin: 90-100 miles -0.0049*** 0.0003 -0.0010 -0.0046***
(0.0008) (0.0018) (0.0020) (0.0009)

Distance bin: 100-110 miles -0.0098*** 0.0160*** -0.031*** -0.0121***
(0.0008) (0.0019) (0.0022) (0.0010)

Distance bin: 110-120 miles -0.0144*** 0.0339*** -0.0415*** -0.0295***
(0.0009) (0.0021) (0.0024) (0.0012)

Distance bin: 120-130 miles -0.0084*** 0.0211*** -0.0254*** -0.0244***
(0.0010) (0.0022) (0.0026) (0.0013)

Distance bin: 130-140 miles -0.0058*** 0.0089*** -0.0454*** -0.0150***
(0.0011) (0.0026) (0.0030) (0.0013)

Distance bin: 140-150 miles -0.0112*** 0.0045 -0.0804*** -0.0193***
(0.0012) (0.0033) (0.0036) (0.0015)

Distance bin: 150-160 miles -0.0113*** 0.0141*** -0.1125*** -0.0031*
(0.0014) (0.0040) (0.0044) (0.0016)

Distance bin: 160-170 miles -0.0108*** 0.0246*** -0.0999*** -0.0081***
(0.0015) (0.0046) (0.0049) (0.0015)

Distance bin: 170-180 miles -0.0077*** 0.0198*** -0.1071*** -0.0129***
(0.0015) (0.0050) (0.0052) (0.0016)

Distance bin: 180-190 miles 0.0046*** 0.0273*** -0.1079*** -0.0089***
(0.0016) (0.0053) (0.0060) (0.0017)

Distance bin: 190-200 miles 0.0051** 0.0368*** -0.0837*** -0.0192***
(0.0020) (0.0092) (0.0073) (0.0021)

Distance bin: 200-210 miles 0.0206*** 0.0388** -0.0630*** -0.0167***
(0.0027) (0.0155) (0.0144) (0.0028)

Distance bin: 210-220 miles 0.0193 0.0412 -0.3913*** -0.0090
(0.0104) (0.0896) (0.0690) (0.0090)

Field FE YES YES YES YES
State-by-Year FE YES YES YES YES
Observations 25,750,236 8,424,413 6,477,454 10,848,369
Number of fields 2,145,853 1,549,958 1,451,343 1,414,126
R-squared 0.3324 0.4834 0.5052 0.5021

Notes: In each specification, the dependent variable is the probability of a field being
planted to corn. In specification (1), the probability is unconditional. In specifications
(2), (3), and (4), the probability is conditional upon corn, soy, or neither (respectively)
being grown on the field in the previous year. Distance bins are dummy variables for 10-
mile ranges of distance to the nearest ethanol refinery. The omitted bin is 0-10 miles, so
the constant term represents the probability of a field 0-10 miles from the nearest ethanol
plant being planted to corn. Coe�cients on the distance bins are interpreted as marginal
e↵ects relative to the constant term. Standard errors clustered at the field level are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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The unconditional probability of a field 0-10 miles from its nearest ethanol refinery being

planted to corn is 33.46%. This is only slightly higher than the 32.49% probability of being

planted to corn after being planted to corn last year. However, the same probability after

being planted to soy is more than twice as large at 76.79%. Corn is relatively unlikely to be

grown after crops other than corn or soy, with a probability of only 8.25%.

It is easiest to interpret the coe�cients on each of the distance bins by plotting them on a

graph. Figures 7, 8, 9, and 10 correspond to specifications (1), (2), (3), and (4), respectively.

In each case, vertical distance on the graph measures changes in the probability that a field

is planted to corn relative to fields 0-10 miles from their nearest ethanol refineries. Also,

recall that by 2014, the mean distance to a field’s nearest ethanol plant is 27.52 miles, the

median distance is 23.75 miles, and the maximum distance is 126.30 miles. I highlight these

facts to focus readers’ attention on the areas of the following graphs most relevant to the

underlying population of fields.
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Figure 7: Unconditional probability of growing corn: specification (1).
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Consider Figure 7. The first result to note is an overall shape between the 20 and 100 mile

markers that looks remarkably similar to the shape of the piecewise-linear curve in Figure

2. If we rely heavily on our theoretical framework, Figure 7 may suggest the average field

is approximately 30-40 miles away from its nearest non-ethanol-refinery terminal market for

corn. Unlike my model’s prediction, however, Figure 7 displays no statistically significant

e↵ects of distance in the 10 and 20 mile bins. Broadly, specification (1) suggests that fields

0-10 miles from their nearest ethanol refineries are approximately 1% more likely to grow

corn in any given year than fields 40-170 miles away from their nearest refinery.
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Figure 8: Probability of growing corn conditional on growing corn in the prior year:
specification (2).

Figure 8 presents results conditioning on corn being planted in the previous year (spec-

ification (2)). Note that the scale of the vertical axis in Figure 8 is larger than in Figure

7. In this case, we see a stronger and more pronounced e↵ect of distance to nearest ethanol

refinery on the probability of planting corn in the region 10-40 miles away from a refin-

ery. Here we more clearly see the sloped portion of the curve predicted in Figure 2. The
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interpretation of this regression is that as ethanol refineries are constructed, they strongly

incentivize nearby fields to grow corn-after-corn relative to fields further away. This behavior

particularly exacerbates any negative externalities of nitrogen fertilizer use.
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Figure 9: Probability of growing corn conditional on growing soy in the prior year:
specification (3).

Figure 9 presents results conditioning on soy being planted in the previous year. This

figure displays a puzzling relationship: within the range of 10-70 miles, fields close to ethanol

refineries are less likely to grow corn-after-soy than are fields further away. This result is

contrary to the prediction developed in Figure 2, and has no obvious explanation.
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Figure 10: Probability of growing corn conditional on growing something other than corn
or soy in the prior year: specification (4).

Figure 10 presents results conditioning on something other than corn or soy being planted

in the previous year. While this relationship is much more volatile than those in Figures 8

and 9, there remains a strong downward trend between 20 and 110 miles from the nearest

ethanol refinery.

Taken together, and relying primarily on the unconditional results shown in Figure 7, I

conclude that the distance to a field’s nearest ethanol plant does a↵ect that field’s probability

of being planted to corn in a non-linear way. If anything, results from Figure 8 suggest that

farmers are realizing this e↵ect in a way that maximizes strain on crop rotations and that

exacerbates the negative externalities associated with nitrogen fertilizer use.

Next, I use the results from specification (1) to determine how the entry of ethanol

refineries between 2002 and 2014 a↵ected corn acreage in my population of fields. For each

of the 2,145,853 fields in my dataset, I use their distance to the nearest ethanol refinery

in 2002 and the relevant coe�cient from specification (1) to approximate the unconditional
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probability of that field being planted to corn in 2002. I then repeat this process using each

field’s distance to nearest ethanol refinery in 2014. Subtracting the former probability from

the latter, I construct the change in unconditional probability between 2002 and 2014 of each

field growing corn in any particular year. Note that this change in probability is entirely

attributable to the distance-to-nearest-refinery e↵ect, and does not depend on level-shifts in

corn demand between 2002 and 2014. I then multiply each field’s change in probability by

its acreage and sum across all fields to find the total net change in acreage between 2002 and

2014. I find a total increase of 298,718 acres in my population of 113,978,323 acres. Figure

11 presents this change in acreage divided into distance-bins of 10 miles each.

- Total net change: +298,718 acres

- In 2014, 0.76% of all corn acres in my sample
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Figure 11: E↵ect of distance to nearest ethanol refinery on corn acreage. Derived from
coe�cients estimated in specification (1).

The net increase in corn acreage of 298,718 that I find is only 0.26% of the 113,978,323

acres in my population, but it is 0.76% of all corn acreage in my population in 2014. This is

a significant number given that it can be attributed to only the distance-to-nearest-refinery

e↵ect. In other words, the e↵ect of new ethanol refineries since 2002 on lowering transporta-
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tion costs (and not the general-equilibrium e↵ect of ethanol increasing aggregate demand

for corn) can explain almost 300,000 acres of the corn grown in a subset of the fields across

Illinois, Indiana, Iowa, and Nebraska.

Figure 11 highlights that the entirety of this acreage e↵ect is captured by fields less

than 30 miles from the nearest ethanol refinery. This result matches incredibly well with

the predictions outlined in Figure 2. It also demonstrates that any spatial externalities

associated with increased corn cultivation due to ethanol refinery location occur entirely

within 30 miles of ethanol refineries. This suggests highly localized e↵ects.

What do the acreage increases highlighted in Figure 11 mean for nitrogen application? A

2007 Iowa State University Extension publication suggests that optimal nitrogen application

for corn-after-soy is 125 lb N/acre, and optimal application for corn-after-corn is 175 lb

N/acre (Sawyer, 2007). Taking a middle value of 140 lb N/acre, (recall that most corn is

grown after soy), the 298,718 acres of increased corn acreage estimated in Figure 11 represent

41,820,520 lbs, or almost 21,000 tons of extra nitrogen.

These 21,000 tons of additional nitrogen that are attributable to the distance e↵ect of

ethanol refinery placement are essentially all applied to areas within 30 miles of an ethanol

refinery. While this number is relatively small relative to the total application of nitrogen

in the US Corn Belt, there is cause for concern about localized geographic e↵ects. Nitrate

runo↵ into local water sources is harmful to water ecosystems, animals, and humans, and

has been a growing problem in the US Corn Belt (Donner & Kucharik, 2008; Mueller &

Helsel, 1996). Local water quality data from the USGS could be used in future research to

look for an e↵ect of ethanol refineries on nitrate levels directly.

6 Conclusion

In this paper, I have demonstrated that ethanol refineries exert a statistically significant e↵ect

on the land use of surrounding fields. Increases in corn acreage and nitrogen application occur
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within 30 miles of ethanol refineries, suggesting a highly localized e↵ect. These findings are

consistent with a model of ethanol refineries lowering corn basis for nearby farmers. Within

a sample of almost 114 million acres, I find nearly 300,000 acres of the corn grown in 2014

can be attributed to ethanol placement e↵ects accumulated over the years between 2002 and

2014.

This project makes several important contributions to the existing literature and improves

upon previous research. Most importantly, I leverage field-level observations of land use to

create a thirteen year panel of over two million observations. This allows me to estimate a

highly nonlinear relationship between distance to a field’s nearest ethanol refinery and that

field’s probability of growing corn. My panel also allows me to include field-level fixed e↵ects

that control for time-invariant characteristics of each field such as soil type.

In three econometric specifications that condition on the previous year’s land use, I find

interesting patterns. Ethanol refineries seem to strongly incentivize nearby fields to grow

corn-after-corn, while the e↵ect appears opposite for corn-after-soy. The result for corn-

after-soy is puzzling and has not been explained by theory. Future work may attempt to

better understand this result. Nonetheless, the net e↵ect of these two individual e↵ects is

that farmers appear to be growing more corn near ethanol refineries in the way the most

stresses crop rotations and most exacerbates the use of nitrate-producing fertilizer.

There is considerable room for further work on these questions. First, the results of this

project must be carefully interpreted as the locations of ethanol refineries are not themselves

random. Second, this analysis treats all refineries as identical. In reality, di↵erent refineries

have di↵erent production capacities and may have heterogeneous e↵ects on surrounding land.

Third, there is room to explore a wider range of econometric specifications beyond the linear

probability model estimated in this paper. Finally, future work should explore data from the

US Geological Survey to test whether water nitrate levels directly reflect the e↵ect derived

in the current project.

While the findings of this paper appear relatively small in the context of the entire US
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Corn Belt, they are strongly statistically significant and demonstrate a real and important

localized e↵ect of ethanol refinery placement. My results are useful for anyone interested in

a fuller understanding of the spatial forces driving land use change and nitrogen application

in agriculture.
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