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Abstract
Unobserved heterogeneity is popularly modelled using the mixed logit model,

so called because it is a mixture of standard conditional logit models. Although the
mixed logit model can, in theory, approximate any random utility model with an
appropriate mixing distribution, there is little guidance on how to select such a distri-
bution. This study contributes to suggestions on distribution selection by describing
the heterogeneity features which can be captured by established parametric mixing
distributions and more recently introduced nonparametric mixing distributions, both
of a discrete and continuous nature. We provide empirical illustrations of each feature
in turn using simple mixing distributions which focus on the feature at hand.

1 Introduction

Heterogeneity in behaviour is widely acknowledged to be a fundamental aspect of dis-
crete choice modelling (Hess et al., 2005; Desarbo et al., 1997; Allenby and Rossi, 1998),
arising from differences in individual tastes, attitudes and perceptions, decision strate-
gies, and other factors. Consequently, heterogeneity can affect many different parts of the
choice model specification, including, for example, the taste parameters (taste variation),
values of the attributes (perceptual variation), functional form (structural variation), and
the error term (scale variation). The consequences of ignoring heterogeneity are similar
to the consequences of other forms of misspecification: biased estimates and misleading
policy implications (Desarbo et al., 1997).

Perhaps the most popular way of taking heterogeneity into account is the mixed logit
model, which is defined by a choice probability expressed as a mixture of standard logit
probabilities (Train, 2009):

pij =
∫

Lij(β) f (β; θ)dβ (1)
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where pij is the probability that individual i will choose alternative j from a choice set,
f (β; θ) is the density of the parameters β, θ are hyperparameters which parameterize the
density of β1, and Lij is the standard choice probability for the conditional logit model

Lij(β) =
exp(β′xij)

∑k exp(β′xik)
. (2)

assuming a linear-in-parameters specification for the systematic utility. Inspection of
Equation 1 reveals the origin of the name ‘mixed logit’: the mixed logit model is a mixture
model where the components are conditional logit models and the mixing distribution is
given by f (β). Hence, the mixed logit model is also known as the ‘mixed multinomial
logit model’ and the ‘logit kernel model’.

To the author’s knowledge, there is no one study which comprehensively covers all
the mixing distributions now available, old and new, parametric and nonparametric, con-
tinuous and discrete. Most of the relatively recent mixing distributions have seen limited
use in empirical applications, possibly because many practitioners are not yet aware of
them. On the other hand, those practitioners facing the full gamut of available mixing
distributions may find specification an overwhelming task. In order to raise awareness
of new mixing distributions and guide selection of mixing distributions, this study will
describe mixing distributions in terms of the features of heterogeneity which they model.
Although some studies have focused on one feature or another, this study is unique in its
emphasis on features relevant to the research goal at hand and the coverage of multiple
features. This study encourages practitioners to consider the nature of the heterogeneity
which may be present, and choose the appropriate mixing distributions based on data,
theory or policy relevance. For example, the data may reveal evidence of skew in the
preference distribution, which can bias the mean from a policy standpoint. Another ex-
ample comes from theory, which usually suggests that cost coefficients should be nega-
tively signed, implying a distribution which is at least bounded on one side. Finally, if
the policy question is about identifying different behavioural segments of customers (as
in market segmentation, a fundamental concept in marketing), a preference distribution
with multiple modes is indicated.

Wedel et al. (1999) points out that selecting an appropriate mixing distribution is es-
pecially difficult because specifying the form of parameter heterogeneity is largely an em-
pirical issue. Yet his call for research into the ‘theoretical underpinning of heterogeneity,
with the purpose of identifying variables that need to be included in models and to as-
sist researchers in the appropriate model specification’ has not been answered in more

1For the rest of the text, we will use the term ‘hyperparameter’ to differentiate between parameters which
enter the standard logit probability (parameter) and parameters which parameterize the mixing distribution
(hyperparameter).
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than 10 years. However, he also suggests that ‘empirical generalizations could help form
theoretical foundations for the description of heterogeneity’.

Thus, the main contribution of the study is to comprehensively describe common and
alternative mixing distributions, including raising awareness of the more recently intro-
duced alternative mixing distributions, and with particular emphasis on the set of het-
erogeneity features which each mixing distribution captures. A secondary contribution
of this study is an empirical search for each feature explored in this study using a case
study in health economics, thus adding to the body of work which can form the empirical
generalizations Wedel et al. (1999) call for.

2 Parametric mixing distributions

The multivariate normal distribution is probably the most widely used mixing distribu-
tion for MXLs. Its appeal can probably be attributed, in part, to the same reason which
makes the normal distribution so common in more general usage: the central limit theo-
rem. When the distributional form is unknown, researchers can at least appeal to the CLT
to justify their usage of the normal distribution. Besides this general rationale, the normal
distribution also provides advantages specific to the mixed logit model. Identifying the
normal mixing distribution only requires two hyperparameters per random coefficient,
and the interpretation of the hyperparameters is intuitive since they directly correspond
to mean and standard deviation. Finally, estimating a mixed logit model with a normal
mixing distribution is relatively fast and stable, and estimation routines are widely avail-
able in discrete choice modelling software packages.

On the other hand, the normal mixing distribution also suffers from a number of draw-
backs, including assumptions of unbounded support, unimodality, symmetry and, fre-
quently, mutual independence among random parameters.

2.1 Unbounded support

The long tails of the normal distribution imply very positive and very negative values for
taste parameters, which may be behaviourally implausible. For taste parameters which
researchers have a priori sign expectations (e.g., cost coefficient), support on both sides of
zero will often imply implausibly large proportions of the distribution with the ‘wrong’
sign. Counterintuitive signs, particularly on cost coefficients, are a major driver of re-
search into alternative mixing distributions (Hess et al., 2005; Train and Sonnier, 2005;
Hess et al., 2006; Train, 2008; Rigby et al., 2009; Bastin et al., 2010; Campbell et al., 2010;
Cirillo and Hetrakul, 2010; Hess, 2010; Chalak et al., 2012; Bastani and Weeks, 2013; Keane
and Wasi, 2013). Finally, if the cost coefficient is specified as random with support which
spans zero, WTP estimates will have infinite moments (Daly et al., 2012). Hensher and
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Greene (2003) and Hess et al. (2005, 2006) recommend bounded mixing distributions,
emphasizing that the bounds should be estimated from the data. Once the mixing dis-
tribution is bounded, behaviourally implausible extreme values for taste parameters are
eliminated, and coefficients with sign expectations are forced to be consistent with theory.

Many parametric alternatives offer bounded support, including the uniform, triangu-
lar, log-normal, censored or truncated normal, and the Johnson SB. The uniform and
triangular have bounds which are estimated from the data, although they are frequently
thought too simplistic for realism. The log-normal, censored normal and truncated nor-
mal, which all have bounds at 0, are primarily employed when sign expectations are to be
met. On the other hand, their heavy tails (on the unbounded side of their support) may
bias mean estimates and their bounds are theoretically dictated rather than estimated from
data. The Johnson SB is an interesting case because it is parameterized by four parameters,
two of which represent bounds. The analyst may choose either to fix those parameters or
to freely estimate them from the data. Due to the greater number of hyperparameters
associated with the Johnson SB compared to the other bounded distributions, empirical
identification could be problematic, hence encouraging the use of fixed bounds.

2.2 Unimodal

The normal distribution is limited to a single mode, but economic theory rarely provides
guidance on how many modes a mixing distribution should have. On the other hand,
a central concept in marketing theory is market segmentation, the view that a heteroge-
neous market is composed of smaller homogeneous sub-markets (Wedel and Kamakura,
2000). The policy implication of multiple modes under a marketing context can easily be
seen. Consider, for example, Campbell and Doherty (2013), which studied the demand for
value-added services to chicken which improve food safety and quality (e.g., food testing
standards, traceability standards, animal health/welfare standards). They found that the
demand for value-added services came from a niche market segment; while this segment
was willing to pay a price premium for the services, other consumers were not willing to
pay any price premium. A preference distribution failing to account for the multimodal
nature of this preference distribution would have led to a misleading marginal WTP and
revenue predictions. In particular, the niche market segment would have been charged a
lesser price premium than they would actually be willing to pay, and the other consumers
would not be willing to pay the price premium at all. Another way to think of the seg-
mentation problem is that if one person wants a red balloon, and the other a blue balloon,
a purple balloon satisfies no one. Under a multimodal distribution, the mode estimated
under a unimodal distribution is unlikely to be located on any of the true modes.

However, accommodating multiple modes is not always necessary, even if they do
exist. Suppose only population-level summary statistics, such as the population mean,
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are called for in a given application. Then a more restrictive mixing distribution with only
one mode would still yield approximately the same measures as a more flexible mixing
distribution which allows multiple modes.

Among the parametric distributions, only the Johnson SB distribution permits more
than one mode. All the other parametric distributions are unimodal like the normal, ex-
cept for the uniform, which technically has no mode since all values in the support range
are equally likely.

2.3 Symmetrical

The normal distribution is symmetric by definition, but economic theory is usually silent
on whether a mixing distribution should be symmetric or asymmetric. Balcombe et al.
(2011) motivates the consideration of skew with an example attribute, ‘genetic modifi-
cation’, which could be associated with extreme disutility by some individuals but, at
the same time, unlikely to be matched by extreme positive utility by other individuals.
The authors then go on to develop a new mixing distribution which is a transforma-
tion of the normal distribution, but unlike previous transformations, can accommodate
positive, negative or zero skew. In their empirical study of attitudes to bovine breeding
technologies, they found significant evidence of skew, even after accounting for one po-
tential source of skew, attribute non-attendance2. Thus, to arrive at an accurate picture of
the taste heterogeneity, a flexible mixing distribution which makes no assumption on the
presence or direction of skew may be necessary.

Both the triangular and Johnson SB distributions can accommodate positive, negative
or zero skew. Often, however, the asymmetrical variant of the Johnson SB is used while
the symmetrical variant of the triangular distribution is used (Hess et al., 2006; Fosgerau
and Hess, 2009; Hess, 2010). The log-, censored and truncated normal distributions are
asymmetric by construction, and their direction of skew is also fixed. The log-normal
is positively skewed by definition, and the censored and truncated normals are skewed
depending on which part of the distribution is censored or truncated.

2.4 Mutually independent random parameters

The conventional multivariate normal mixing distribution can theoretically accommodate
a full correlation matrix between random parameters, but in practice, many applications
assume mutual independence for tractability (Train and Sonnier, 2005; Hynes et al., 2008;

2Attribute non-attendance is the behaviour of ignoring some attributes when performing a choice task.
This behaviour is econometrically equivalent to a zero utility for the ignored attributes. If the true distribution
of marginal utility for the attribute is symmetric, then the presence of attribute non-attendance would skew
the distribution, since it confounds the true distribution with a point mass at zero.

5



Hess, 2014). Those applications which do permit full correlation have found the pres-
ence of significant correlation, better model fit, substantively different taste parameter
estimates and important policy implications (Train and Sonnier, 2005; Hynes et al., 2008;
Mabit et al., 2008; Rigby et al., 2009). Furthermore, correlation between random parame-
ters is a consequence of scale heterogeneity (Hess and Rose, 2012). To see why, consider
again the standard logit probability expression (Equation 2), except this time with the
omitted scale parameter α present:

Lij(β) =
exp(αβ′xij)

∑k exp(αβ′xik)
. (3)

If scale heterogeneity is present, then α is individual-specific (i.e., αi). Since the scale pa-
rameter and the taste parameter are confounded and not separately identified (i.e., only
αβ is identified), scale heterogeneity will scale all taste parameters simultaneously and
equally across individuals. Thus, if taste heterogeneity is absent but scale heterogeneity is
present, the random parameters will display perfect correlation. If scale heterogeneity is
present but correlation is not permitted, the scale heterogeneity will manifest elsewhere,
such as in the standard errors of the parameter estimates. Consequently, correlation be-
tween random parameters accommodates scale heterogeneity. As with taste heterogene-
ity, there is rarely an a priori reason not to suspect the presence of scale heterogeneity.

The parametric mixing distributions can all, in theory, be estimated with full correla-
tion. When using a parametric mixing distribution, each random parameter is assigned
its own distribution, which is tantamount to specifying the marginal distributions of the
mixing distribution. Then, correlation between the marginal distributions can be induced
using a decomposition of the variance-covariance matrix. However, correlation only cap-
tures linear relationships; if there are higher order relationships between the taste param-
eters, inducing correlation is not enough.

The alternative parametric distributions described above have been explored and com-
pared against the multivariate normal in a number of studies (e.g. Hensher and Greene,
2003; Hess et al., 2005; Train and Sonnier, 2005; Hess et al., 2006; Fosgerau and Hess, 2009;
Rigby et al., 2009; Cirillo and Hetrakul, 2010; Chalak et al., 2012), and in general, the
bounded, more flexible distributions are preferred for their ability to avoid behaviourally
implausible taste parameters and to capture complex features of the parameter distribu-
tion such as asymmetry. However, the most flexible distributions are the nonparametric
distributions3.

3The term ‘nonparametric’ is used loosely here and elsewhere in the paper to mean any distribution which
is not strictly parametric, thus encompassing semiparametric and seminonparametric approaches as well as
fully nonparametric techniques.
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3 Nonparametric distributions

To organize this section, we categorize the nonparametric mixing distributions into dis-
crete and continuous. All the discrete nonparametric mixing distributions are related to
the latent class logit model, while the continuous nonparametric mixing distributions are
all examples of sieve estimators. While the latter may be more parsimonious and less
sensitive to tuning parameters (such as analyst-imposed bounds on the support of the
distribution), the former can be more flexible in some cases, particularly with respect to
dependence between random parameters.

3.1 Discrete nonparametric distributions

The latent class logit model is a well-established example of a nonparametric mixing dis-
tribution which has found favour in multiple disciplines because it is intuitive and easy
to interpret. The latent class logit model is an example of a finite mixture model, in which
the mixing distribution is discrete and there are a finite number of support points. Thus,
the number of support points limits the richness of preference heterogeneity which can
be described by the latent class logit model. The more support points in the distribution,
the higher the resolution, so to speak, of the distribution, thus more clearly revealing po-
tential heterogeneity features such as symmetry and modality. In practice, the number
of support points which can be estimated is relatively small since the number of hyper-
parameters grows linearly with the number of support points specified, and estimation
issues are usually encountered when there are too many hyperparameters. As a result,
variants of the finite mixture theme have been introduced in order to increase the number
of support points which can be estimated. We first describe the original latent class logit
model and then describe the variants which have recently been introduced.

3.1.1 Latent class logit model

The latent class logit model can be described behaviourally as follows: suppose there are
S latent segments in the population. Within the segments, preferences are homogeneous,
but across segments, preferences may be heterogeneous. Econometrically, the latent class
logit model can be described as a mixed logit model with a finite mixing distribution. The
class membership probabilities and class-specific preference parameters are the probabil-
ity masses and mass point locations, respectively, of a probability mass function (pmf)
describing the distribution of a discrete random variable. This contrast is the reason the
latent class logit model is seen as the discrete analog of the typical random parameters
logit model, which is specified with a continuous, parametric distribution.

The flexibility of the latent class logit model grows with the number of classes. Since
the number of hyperparameters grows linearly with the number of classes, classes are
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typically limited to less than a dozen. If the analyst specifies too many classes, then the
estimation will frequently fail to converge or experience other problems. Consequently,
variants on the latent class logit model which are more parsimoniously parameterized,
such as the mass point MXL and the fixed point MXL, have been introduced.

3.1.2 Mass point mixed logit model

The mass point MXL is essentially a reparameterization of the latent class logit model.
It was first introduced in Dong and Koppelman (2003) and later compared against other
mixing distributions in simulation studies and empirical applications (Hess et al., 2007;
Campbell et al., 2010; Dong and Koppelman, 2014). In this model, the number of support
points is parameter-specific. The distinction between the mass point MXL and the latent
class logit model is subtle, and lies entirely in how many support points can be specified
with a given number of hyperparameters. In the latent class logit model, the analyst spec-
ifies the number of segments S, and each segment corresponds to a joint support point.
Thus, there are as many joint support points as there are segments. In the mixed point
MXL, the analyst specifies the number of marginal support points for each parameter, and
so the number of joint support points is equal to the product of the number of support
points for each parameter. Consequently, the same number of joint support points can be
specified using a different number of hyperparameters.

3.1.3 Fixed point mixed logit model

In the latent class logit model and mass point MXL, both the locations of and the probabil-
ity masses at each support point are freely estimated. In this next model, the locations of
the support points are fixed, and only the probability mass at each point is estimated. Ac-
cordingly, we term this model the fixed point MXL. The fixed point MXL was first intro-
duced by Bajari et al. (2007), and compared against other mixing distributions in simula-
tion studies and empirical applications by Train (2008) and Bastani and Weeks (2013). The
chief benefit of the fixed point MXL compared to the other discrete mixing distributions is
the ability to estimate many more joint mass points. Whereas latent class logit models and
mass point MXL often fail to converge or yield degenerate solutions4 when the number of
support points is only a handful, the fixed point MXL is fast and stable even when estimat-
ing probability masses for hundreds of thousands support points (Train, 2008). However,
the results are sensitive to the analyst’s specification of the support point locations, and
in particular the range of the parameter space. In response to this weakness, Bastani and
Weeks (2013) developed some heuristics to address range selection.

4Solutions in which probability masses are close to zero for some segments or some segment locations are
very close together.
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All these variants on the latent class logit model have similar properties. They all have
bounded support, since the number of support points is specified by the analyst and there-
fore finite. They can accommodate multiple modes, asymmetry and arbitrary dependence
between random parameters because the joint distribution is directly estimated.

3.2 Continuous nonparametric distributions

The mass point MXL, fixed point MXL and fixed mass MXL arose in response to the lim-
ited heterogeneity which traditional latent class logit models could capture. At the same
time, a separate branch of the literature reacted to the same problem in a different way, by
using continuous nonparametric mixing distributions rather than discrete ones.

3.2.1 Mixture of distributions mixed logit model

The most obvious approach for increasing the heterogeneity captured by the latent class
logit model is to extend it so that each segment has random rather than fixed taste pa-
rameters. This model has been called by different names, including random parameters
latent class logit model and latent class mixed multinomial logit model, which recognize
its origins with the latent class logit model (Bujosa et al., 2010; Campbell and Doherty,
2013; Greene and Hensher, 2013). However, the formulation is equivalent to specifying
the mixing distribution as a mixture of distributions itself (Dong and Koppelman, 2003;
Train, 2008; Fosgerau and Hess, 2009; Campbell et al., 2010, 2014; Fosgerau, 2014). Setting
the base distribution to be normal, G(·) = Φ(·), is particularly appealing because any con-
tinuous distribution can be approximated arbitrarily well by a finite mixture of normals.
A further advantage of using a mixture of distributions is the ability to accommodate
point masses, since the distribution within any given segment may become degenerate.
Thus, the mixture of distributions can represent both discrete and continuous types of het-
erogeneity. The complexity of this model increases with the number of mixtures included,
and most applications use only two or three components.

In fact, the mixture of distributions model is an example of a sieve estimator, defined
as an estimator which approximates unknown functions with a series of basis functions.
In the case of the mixture of distributions MXL, the basis functions are the base distri-
bution of the mixture, such as the normal in a mixture of normals. The quality of the
approximation depends on the basis functions and the number of terms in the series. If
the basis function is a good approximation to the unknown function, then only a small
number of terms should be necessary (Fosgerau, 2014). The method of sieves has been
a popular approach for developing nonparametric MXL mixing distributions, and below
we describe other sieve estimators which have also been proposed.
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3.2.2 Other sieve estimators

Fosgerau and Bierlaire (2007) introduced a sieve estimator with Legendre polynomials
as the basis function. The series of Legendre polynomials seminonparametrically approx-
imate the derivative of a transformation function, rather than the mixing distribution di-
rectly.

Bastin et al. (2010) introduced a different sieve estimator with B-splines as the basis
functions. In this approach, the spline function approximates the inverse cdf of a random
coefficient, hence the domain is [0, 1]. The knot locations are fixed on [0, 1] by the analyst
and the coefficients on the basis functions are estimated. The spline function is guaran-
teed to be nondecreasing (and hence a proper inverse cdf) if the coefficients on the basis
functions are also nondecreasing, a property which is achieved during estimation through
constrained optimization.

3.3 Discrete or continuous?

Historically, the debate between continuous and discrete representations of heterogeneity
has centred around the MXL with a parametric mixing distribution and the latent class
logit model. The argument against the continuous representation is that it is paramet-
ric and therefore subject to misspecification, whereas the argument against the discrete
approach is that it is too restrictive because it assumes homogeneity within each seg-
ment. Given the advanced mixing distributions which have been discussed in the pre-
vious two sections, these arguments are clearly outdated. The sieve estimators with dis-
tributions, Legendre polynomials and B-splines represent heterogeneity in a continuous
manner while avoiding strict parametric assumptions. The fixed point MXL estimated
on a fine grid of support points is a discrete representation which can capture far more
detailed heterogeneity than any analytical distribution can display. What remains at the
heart is the question: what is the true nature of heterogeneity, continuous or discrete?

This question is, practically speaking, unanswerable. At the same time, there are other,
more relevant questions we could ask to determine whether to choose a continuous or
discrete representation of heterogeneity. In reflecting on this debate, Wedel and Kamakura
(2000, p 329) have the following to say:

In applying models to segmentation, one should recognize that every model
is at best a workable approximation of reality. One cannot claim that seg-
ments really exist or that the distributional form of unobserved heterogeneity
is known.

The more relevant question we should ask ourselves is: which is the more useful repre-
sentation, continuous or discrete? Wedel and Kamakura (2000) suggest that continuous
representations are suitable for individual level forecasting, while discrete representations
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are particularly useful for understanding the structure of heterogeneity in the population.
Segmentation is a core concept in marketing, not because it is necessarily more true than
a continuous representation of heterogeneity, but because it has proven to be useful over
and over again: it is accessible, compelling and actionable to managers and other end
users of information resulting from marketing studies. On the other hand, when applied
economists wish to generate population-level welfare estimates to be used in policymak-
ing techniques such as cost-benefit analysis, segments are unnecessary, confusing and can
lead to bias due to oversimplification from reducing a continuous distribution to a discrete
distribution with a finite number of support points. If, however, policymakers are inter-
ested in the composition of ‘winners’ and ‘losers’ of a policy change, then segments once
again become useful. To choose a continuous or a discrete representation, analysts should
identify which levels of aggregation are appropriate for their context, research question
and audience.

Continuous and discrete representations of heterogeneity can be complementary, each
enriching the insight which can be gained from the other. In one example, Hynes et al.
(2008) investigated preference heterogeneity among kayakers for whitewater sites in Ire-
land by estimating both a conventional MXL and a latent class logit model. With the
conventional MXL, they established the presence of heterogeneity in the sample. With the
latent class logit model, they were able to match the latent classes revealed by the model
to specializations within the kayaking sport, with intuitive taste parameter estimates. For
managers of the whitewater sites, this type of information is useful because it allows them
to identify the mix of kayakers patronizing different sites and tailor responses to their pref-
erences. In another example, Arunotayanun and Polak (2011) investigated mode choice
heterogeneity among freight shippers. They used conventional MXL to establish the pres-
ence of heterogeneity even after the sample was split by commodity, the standard practice
in this context, revealing the inadequacy of this segmentation scheme. They used the la-
tent class logit model to identify alternative segments which were behaviourally driven
instead, and systematically related them to shipper and shipment characteristics, leading
to a new segmentation scheme. These examples illustrate how continuous and discrete
mixing distributions can both be used to identify behaviourally and policy relevant het-
erogeneity.

For completeness, we bring to the reader’s attention a nonparametric approach devel-
oped by Rouwendal et al. (2010) which does not rely on a statistical model and is not fully
identified, but rather seeks to identify individual-specific valuations for attribute levels
within a given dataset5.

5Rouwendal et al. (2010) introduces a method of locating individual-specific valuations of attributes by
viewing each choice as revealing an inequality in valuations between attribute levels. For concreteness, we
illustrate the core concept using a very simple example. Suppose that two bundles differ only in one attribute.
If a respondent chooses bundle A over B, then he must have a higher valuation for the attribute level in
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4 Parametric or nonparametric?

In Table 1, we summarise the key properties of each mixing distribution which have been
discussed above. If flexibility and capturing as many features of heterogeneity as possible
were the main goals of the analyst, then the nonparametric mixing distributions such as
the fixed point and mixture of distributions MXL would be appropriate. However, more
flexibility is not always better. Flexible mixing distributions may be overly complex, suf-
fering from weak identification, overfitting and difficulty of interpretation. If the structure
of the heterogeneity is simple, a simple mixing distribution would be more parsimonious,
efficient, robust and interpretable (Keane and Wasi, 2013).

However, knowing whether heterogeneity is complex or simple prior to choosing a
mixing distribution is difficult. Flexible mixing distributions can play a role here, by act-
ing as a preliminary tool diagnosing which features of heterogeneity are present (Fosgerau
and Hess, 2009)6. For example, if multiple modes are identified, then the Johnson SB or
nonparametric mixing distributions may be indicated. If a point mass at zero is identi-
fied, but the rest of the distribution appears smooth, then a censored normal or a latent
class with fixed and random segments may be indicated. Campbell and Doherty (2013)
implemented the latter approach to investigate WTP for value-added services to chicken.
They hypothesized that some consumers would be indifferent to the value-added ser-
vices, while others would have non-zero preferences. They accommodated these types by
assigning each to a latent class: in one class, WTP was fixed to 0 for the former type of
consumer, and in the other, WTP was allowed to be random. This approach allowed them
to identify market niches, estimate demand responses to price premiums in those niches,

bundle A than bundle B, thus revealing an inequality. Over the sequence of multiple choices, the space
spanned by the inequalities shrinks, and ideally, is exactly identified. In an empirical application of the
method, valuations were identified exactly in a few cases, and in most cases only bounds (which may be very
wide) were identified. Furthermore, many respondents chose inconsistently, so that the space satisfying all
inequalities was empty. Unlike the previously described approaches, this method avoids approximation and
attempts to discover the specific valuations of each respondent in the dataset. It is not a statistical model
which extends the valuations beyond the dataset at hand, and for most empirical cases the valuations will
not be fully identified.

6Flexible mixing distributions are not the only such preliminary tool. Hensher and Greene (2003) propose
an entirely different approach to ‘reveal’ the empirical distribution of heterogeneity. In this approach, a series
of ‘leave-one-out’ MNL models are estimated, with each individual in the dataset ‘left out’ a different MNL
model. The difference between the parameter estimate under a leave-one-out MNL model and under the
pooled MNL model represents the individual’s contribution to the mean parameter estimate. Considering
all the differences from all of the leave-one-out MNL models presents a picture of individual heterogeneity.
As a different approach, Hess (2010) suggests using conditional distributions (i.e., respondent-specific coeffi-
cient distributions, conditional on the respondents’ responses) to form a picture of the empirical distribution.
However, he cautions against simply using the means of the conditional distributions, since doing so fails to
take into account the heterogeneity around those means, within each conditional distribution. Conceptually,
this approach is similar to checking one’s prior with the estimated posterior in a Bayesian analysis.
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and describe demographics of those niches which could aid in marketing efforts.
Using ten datasets, Keane and Wasi (2013) compared some of the mixing distribu-

tions described in this study, including the latent class logit model and the mixture of
distributions approach. Although the emphasis of their study was on finding models
of best fit, they found that the mixture of distributions model was superior to simpler
mixing distributions in its ability to accommodate complex heterogeneity, in which small
subpopulations of individuals have strong preferences for attributes to which most other
individuals are indifferent. However, the mixture of distributions model accommodated
these individuals by placing them into the tails of the component distributions. The latent
class logit model, on the other hand, distinguished these individuals and placed them into
their own segments. Even though the latent class logit model consistently scored among
the lowest in terms of log-likelihood, it provided insight into the structure of heterogene-
ity hidden by other mixing distributions. Thus, more flexible distributions do not always
provide more insight.

Practical considerations may also affect the choice of mixing distribution. In particular,
mixing distributions vary in how easy they are to estimate, due to differences in empirical
identifiability and available estimation strategies.

4.1 Estimation issues

Generally speaking, the more parameters a mixing distribution has, the more difficult it
may be to empirically identify. For example, the Johnson SB is a transformed normal with
four parameters: two represent the mean and variance of the underlying normal and the
other two represent the lower and upper bound of the distribution. Train and Sonnier
(2005) suggests that the bounds are difficult to identify because the difference between
them is closely related to the variance of the underlying normal. Consequently, Rigby
et al. (2009) imposed bounds instead of allowing them to be freely estimated, Chalak
et al. (2012) conducted a repetitive search for the bounds, and Cirillo and Hetrakul (2010)
could not always achieve convergence during model estimation. The Johnson SB is not
the only parametric mixing distribution to suffer from estimation issues: the log-normal
distribution occasionally does so as well (Hensher and Greene, 2003; Hess et al., 2006).

The nonparametric mixing distributions also vary in terms of empirical identification,
but the degree to which they suffer does not seem to be closely related to the number of
parameters involved. The latent class logit model, which is relatively parsimonious com-
pared to, say, the fixed point MXL, often cannot be estimated beyond a handful of latent
classes, as mentioned earlier. The mixture of distributions approach suffers from the same
problem (e.g. Fosgerau and Hess, 2009), and few applications have attempted estimating
more than two components in this model. The sieve estimators with Legendre polynomi-
als and B-splines, on the other hand, have not presented analysts with any convergence
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problems. Similarly, the virtue and motivating reason to consider the fixed point MXL is
its ability to remain fast and stable even under a huge number of points to estimate (Train,
2008).

Another factor affecting ease of estimation is what strategies are available for each
mixing distribution. All of the continuous mixing distributions, parametric and nonpara-
metric, are estimated by maximum simulated likelihood estimation (MSLE). The discrete
mixing distributions, on the other hand, do not require simulation and can be estimated
directly via maximum likelihood. Avoiding simulation is desirable because simulation in-
creases computation time, introduces simulation bias, and requires a ‘sufficient’ number
of draws in order to produce stable estimates. Unfortunately, determining this number is
primarily an empirical matter (Hensher and Greene, 2003).

Train (2008) suggested using the expectation-maximization (EM) algorithm to avoid
numerical problems which may be encountered during maximum likelihood estimation
of models with a large number of parameters (i.e., as typically found in nonparametric
mixing distributions). He developed and illustrated the EM algorithm for several non-
parametric mixing distributions, including the latent class logit model, the mixture of dis-
tributions (normals) MXL and the fixed point MXL. However, in a comparison of MSLE,
the EM algorithm, and one other estimation strategy, Cherchi and Guevara (2012) found
that as long as sample sizes were sufficient, MSLE outperformed the EM algorithm with
respect to estimation time and estimation error. At the same time, as expected, MSLE
suffered from weak empirical identification with insufficient sample sizes, while the EM
algorithm was more robust to this issue. Other applications of the EM algorithm in the
literature are limited, although Bastani and Weeks (2013) used it to estimate a fixed point
MXL and latent class logit model, and Pacifico (2013) used it to estimate a latent class logit
model. Neither study reported problems with using the EM algorithm.

5 Empirical illustration

In this section we seek empirical evidence for the properties discussed above using a selec-
tion of simple and advanced mixing distributions. We use as our baseline the multivariate
normal distribution with mutual independence, which could be considered the most fre-
quently used, ‘default’ MXL mixing distribution. We then compare this baseline model
against a set of MXL with alternative mixing distributions. Each alternative distribution
is chosen with an eye towards a particular property identified as a potentially relevant
feature of heterogeneity while still maintaining as much simplicity as possible so as to
focus the comparison on the target property.

Previous empirical studies of mixing distributions have been dominated by the trans-
portation, environmental and marketing domains, but this empirical illustration uses a
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choice experiment in health economics. The health domain is particularly interesting in
this context because many of the heterogeneity features described previously are differ-
ently applicable to health preferences. For example, in transportation economics, signed
cost coefficients have been a prime driver in considering bounded supports, but in health
economics, cost/reward attributes may have counterintuitive signs because consumers
may load them with other meanings beyond the purely financial. Thus bounded sup-
ports, or at least supports which have bounds not estimated from data, may be less desir-
able in a health context. Another example is multimodality: in the environmental context,
benefit measures are important tools for policymaking, and in those cases, it is the benefit
across large populations which are relevant. However, policymaking can often be more
customized in the health context, due to the ability of individual programs, hospitals, and
care providers to tailor their care to the particular subpopulation (which may not be rep-
resentative of the general population) which utilizes their services, or which they hope
to target with their services. Thus multimodality can be an actionable policy goal in the
health context, allowing customization and targeting of desired subpopulations.

This study uses a choice experiment on the design of financial incentives for a weight
loss program to illustrate common and alternative mixing distributions. The financial in-
centives were described using five attributes: reward amount, program location, payment
form, reward condition and payment frequency. There were 1,296 respondents, each of
which were presented with four choice tasks. A total of 96 choice sets were constructed
according to the D-efficiency criterion.

5.1 Baseline distribution

The baseline model uses a normal mixing distribution with mutually independent ran-
dom parameters. We specify the systematic utility to be a simple linear form, with at-
tributes as the only terms. We specify the coefficients on reward amount and program
locations to be random while the coefficients on the other attributes are left fixed. We
limit the number of random parameters in order to facilitate clarity in comparison across
the alternative distributions. We chose reward amount and program location to have
random coefficients because previous work has indicated that are the two most impor-
tant attributes, and focus group discussions have suggested heterogeneous preferences
for their levels.

Table 2 displays the coefficient estimates for the baseline distribution. Note that all
variables are effect-coded, except for reward amount, which is continuous. We can see that
there is significant preference heterogeneity for reward amount and all program locations
except for the community center.
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Baseline model

Fixed parameters
ASC −0.16 (0.10)
Mag.0 0.09 (0.11)
Form: gym / cash −0.14 (0.05)∗∗

Form: medical / cash −0.19 (0.05)∗∗∗

Form: debit / cash 0.14 (0.05)∗∗

Condition: weight / attendance 0.08 (0.05)
Condition: compliance / attendance −0.05 (0.05)
Condition: attendance and compliance / attendance −0.12 (0.05)∗

Frequency: weekly / once 0.15 (0.05)∗∗

Frequency: monthly / once 0.00 (0.05)
Frequency: quarterly / once 0.05 (0.05)

Random parameter means
log(amount + 1) 0.35 (0.04)∗∗∗

Location: workplace / clinic −0.22 (0.05)∗∗∗

Location: community center / clinic 0.18 (0.04)∗∗∗

Location: church / clinic −0.21 (0.05)∗∗∗

Random parameter standard deviations
s.log(amount + 1) 0.57 (0.03)∗∗∗

s.Location: workplace / clinic 0.60 (0.10)∗∗∗

s.Location: community center / clinic 0.24 (0.18)
s.Location: church / clinic −0.65 (0.10)∗∗∗

Log-likelihood −4454.83
N 4994.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Coefficient estimates for baseline model, normal mixing distribution with mutu-
ally independent random parameters.
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5.2 Bounded alternative

Since we have a positive sign expectation on reward amount and no such expectations for
the location levels, we expect boundedness to be a more acute need for the reward amount
coefficient than the location coefficients. The bounded alternative distribution we use is
the uniform mixing distribution. Like the normal mixing distribution, it is also described
by two parameters, the minimum a and maximum b of the support. Alternatively, the
uniform mixing distribution can also be parameterized by the center c and spread s of
the support. This alternative distribution is widely available in discrete choice modelling
software.

Table 3 displays the coefficient estimates for both the baseline model and the uniform
mixing distribution. We can see that across all random coefficients, the normal and uni-
form mixing distributions are quite similar to each other in terms of location and spread.
Additionally, they all display both negative and positive preferences. Some readers may
find a noticeable proportion of reward amount preferences in the negative domain un-
usual. However, focus groups held during the development of the survey instrument
indicated that some respondents felt offended at the presence of a financial incentive in a
weight loss program. Moreover, financial incentives in weight loss programs have raised
some degree of ethical controversy in both the popular press and academic literature, and
there are several other examples of transactions for which monetization is culturally dis-
tasteful (Roth, 2007; Halpern et al., 2009; Schmidt, 2011; Lunze and Paasche-Orlow, 2013).

For this particular application, the estimated uniform and normal mixing distributions
were very similar across most aspects we considered, although the standard deviation of
the estimated uniform mixing distribution was smaller, a natural result of the uniform’s
bounded nature. These results suggest that unless policy questions are concerned with
the extreme values of the distributions, policy interpretations in this case are likely to be
quite similar whichever distribution is used.

5.3 Correlated alternative

Correlation between random parameters can provide important policy insights on which
attributes and attribute levels work in synergy and which work in opposition to each
other. Unanticipated correlation may produce unintended policy consequences, and so
identifying the sign and significance of correlations between random parameters has pol-
icy relevance. The correlated alternative distribution we use is the correlated normal
mixing distribution. In the baseline model, the random parameters are assumed to be
mutually independent, but in the correlated normal mixing distribution, the random pa-
rameters are permitted to have an arbitrary variance-covariance matrix. In practice, the
variance-covariance matrix is estimated by estimating the terms of the Cholesky factor in
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Baseline Uniform

Fixed parameters
ASC −0.16 (0.10) −0.19 (0.10)
Mag.0 0.09 (0.11) 0.06 (0.10)
Form: gym / cash −0.14 (0.05)∗∗ −0.14 (0.05)∗∗

Form: medical / cash −0.19 (0.05)∗∗∗ −0.19 (0.05)∗∗∗

Form: debit / cash 0.14 (0.05)∗∗ 0.14 (0.05)∗∗

Condition: weight / attendance 0.08 (0.05) 0.08 (0.05)
Condition: compliance / attendance −0.05 (0.05) −0.05 (0.05)
Condition: attendance & compliance / attendance −0.12 (0.05)∗ −0.12 (0.05)∗

Frequency: weekly / once 0.15 (0.05)∗∗ 0.15 (0.05)∗∗

Frequency: monthly / once 0.00 (0.05) −0.00 (0.05)
Frequency: quarterly / once 0.05 (0.05) 0.05 (0.05)

Random parameter means/centers
log(amount + 1) 0.35 (0.04)∗∗∗ 0.34 (0.04)∗∗∗

Location: workplace / clinic −0.22 (0.05)∗∗∗ −0.21 (0.05)∗∗∗

Location: community center / clinic 0.18 (0.04)∗∗∗ 0.18 (0.04)∗∗∗

Location: church / clinic −0.21 (0.05)∗∗∗ −0.22 (0.05)∗∗∗

Random parameter standard deviations/spreads
s.log(amount + 1) 0.57 (0.03)∗∗∗ 0.88 (0.04)∗∗∗

s.Location: workplace / clinic 0.60 (0.10)∗∗∗ −0.97 (0.17)∗∗∗

s.Location: community center / clinic 0.24 (0.18) 0.48 (0.28)
s.Location: church / clinic −0.65 (0.10)∗∗∗ 1.14 (0.15)∗∗∗

Log-likelihood −4454.83 −4469.75
N 4994.00 4994.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Coefficient estimates for baseline model and uniform mixing distribution.
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a Cholesky decomposition of the variance-covariance matrix (Croissant, 2013). Like the
bounded alternative distribution, the correlated alternative distribution was also readily
available in software packages.

Of most interest are the estimated covariance hyperparameters7(Table 4). These in-
dicate that there is no significant correlation in preferences between reward amount and
location. However, there are significant negative correlations between location levels.
In this case, preferences for different attributes are uncorrelated, but preferences for at-
tributes within the same level are negatively correlated. In other words, an individual
who prefers one location tends not to prefer the other locations. This result is intuitive, al-
though we might expect some complementary location preferences if more location levels
were available in the experiment. However, the location levels presented in the current
application appear to be different enough to elicit preferences which view location levels
more as substitutes.

Using a mixing distribution which permits correlation, we uncovered significant cor-
relation between random coefficients for levels with the same attribute, as well as evi-
dence of bias in the estimated standard deviation for those random coefficients affected
by correlation. However, correlation only captures linear dependence. Nonlinear depen-
dence may be present, but in practice, dependent random variables are generated using
the Cholesky decomposition of a covariance matrix. Possible approaches to assessing the
presence of higher order relations between random coefficients is using copulas to de-
scribe the dependence relation between parametric random coefficients, using a mixture
of distributions, or using a nonparametric discrete mixture distribution which directly
estimates the joint distribution and hence the dependence structure.

5.4 Discrete, nonparametric alternative

A discrete, nonparametric mixing distribution can help in identifying minority prefer-
ences which may otherwise become ‘lost’ in the tails of continuous mixing distributions.
To ensure a broad reach of the incentivized weight loss program, it may be necessary
to consider satisfying the wants of small minorities, in addition to designing incentives
which attract the majority of the target population. The discrete, nonparametric alterna-
tive distribution we use is the latent class logit model (LCL). We have already discussed
how the LCL can be seen as the discrete analog to the commonly encountered mixed
logit, with a continuous, parametric mixing distribution. Estimating the class-specific co-
efficients and the class membership probabilities is essentially estimating the location and
mass of mass points in a pmf.

7The covariance matrix hyperparameters were computed from the estimated Cholesky factor (as Σ =
C′C), and the standard errors and Z-tests for significance of the hyperparameters were approximated using
the delta method.
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Baseline Correlated

Fixed parameters
ASC −0.16 (0.10) −0.22 (0.11)
Mag.0 0.09 (0.11) 0.09 (0.11)
Form: gym / cash −0.14 (0.05)∗∗ −0.15 (0.05)∗∗

Form: medical / cash −0.19 (0.05)∗∗∗ −0.20 (0.05)∗∗∗

Form: debit / cash 0.14 (0.05)∗∗ 0.16 (0.05)∗∗

Condition: weight / attendance 0.08 (0.05) 0.10 (0.05)
Condition: compliance / attendance −0.05 (0.05) −0.06 (0.05)
Condition: attendance & compliance / attendance −0.12 (0.05)∗ −0.12 (0.05)∗

Frequency: weekly / once 0.15 (0.05)∗∗ 0.13 (0.06)∗

Frequency: monthly / once 0.00 (0.05) 0.01 (0.05)
Frequency: quarterly / once 0.05 (0.05) 0.04 (0.05)

Random parameter means
log(amount + 1) 0.35 (0.04)∗∗∗ 0.38 (0.04)∗∗∗

Location: workplace / clinic −0.22 (0.05)∗∗∗ −0.25 (0.06)∗∗∗

Location: community center / clinic 0.18 (0.04)∗∗∗ 0.18 (0.05)∗∗∗

Location: church / clinic −0.21 (0.05)∗∗∗ −0.24 (0.05)∗∗∗

Random parameter standard deviations
s.log(amount + 1) 0.57 (0.03)∗∗∗

s.Location: workplace / clinic 0.60 (0.10)∗∗∗

s.Location: community center / clinic 0.24 (0.18)
s.Location: church / clinic −0.65 (0.10)∗∗∗

Random parameter covariance matrix terms
amount.amount 0.36 (0.04)∗∗∗

amount.workplace 0.01 (0.05)
amount.community −0.02 (0.05)
amount.church 0.05 (0.05)
workplace.workplace 0.89 (0.25)∗∗∗

workplace.community −0.35 (0.12)∗∗

workplace.church −0.23 (0.12)∗

community.community 0.49 (0.16)∗∗

community.church −0.25 (0.13)
church.church 0.88 (0.21)∗∗∗

Log-likelihood −4454.83 −4435.63
N 4994.00 4994.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Coefficient estimates for baseline model and correlated normal mixing distribu-
tion. 21



Rather than estimating the membership probabilities directly, we estimate the param-
eters θc, which are used in a multinomial membership model as follows

πc =
exp(θc)

∑k exp(θk)

where πc are the class membership probabilities. Estimating θc rather than the mem-
bership probabilities directly affords a computational advantage, because θc are uncon-
strained whereas the class membership probabilities must be proper probabilities.

One of the most important aspects of the LCL specification is the number of latent
classes. This parameter is not estimated but rather user-specified. For many applica-
tions of the LCL, there is no theoretical guidance on the number of latent classes. Since
there are also no statistical tests available to select the number of classes, the practitioner
instead uses a combination of goodness-of-fit measures and individual discretion. Ta-
ble 5 presents goodness-of-fit measures for the LCL estimated under one to six classes.
The measures include the well-known information criteria AIC and BIC, as well as Mc-
Fadden’s pseudo R-squared, adjusted for degrees of freedom, and entropy (Morey et al.,
2006). The entropy statistic is bounded between 0 and 1, and a value closer to 1 indicates
that the model successfully differentiates individuals into latent classes. Note that a one-
class LCL is equivalent to a standard conditional logit model, and that the ‘infinite’-class
LCL refers to the baseline model.

Number of classes AIC BIC ρ̄2 Entropy

1 10260.52 10337.77 0.05
2 9052.70 9155.70 0.16 0.16
3 8947.54 9076.29 0.17 0.22
4 8887.46 9041.96 0.18 0.13
5 8845.68 9025.93 0.18 0.14
6 8873.50 9079.50 0.18 0.14
∞ 8947.67 9045.51 0.17

Table 5: Goodness-of-fit measures for the LCL under different numbers of classes.

According to three of the four goodness-of-fit measures, the LCL with five latent
classes has the best fit, even compared to the baseline model. Usually LCL models do not
fit as well as a continuous mixture, so this result can be seen as evidence for the appropri-
ateness of a discrete mixing distribution. On the basis of these goodness-of-fit measures
and the plausibility of five classes, we select the five-class LCL for further comparison to
the baseline model.

Reassuringly, the modes under the estimated LCL pmf and the estimated baseline pdf

22



log(amount + 1) workplace community center church

●●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

discrete
continuous

−1 0 1 2 −6 −3 0 3 0 1 2 3 4 5−15 −10 −5 0
Coefficient value

pd
f/p

m
f v

al
ue

class

●

●

●

●

●

1

2

3

4

5

Figure 1: Discrete mixing distribution pmf and continuous mixing distribution pdf for
each random parameter. The mass points are grouped by colours, representing the classes
to which they belong. The colours and numbers associated with the classes are arbitrary.

are very similar for each random parameter (Figure 1). However, the LCL pmf often re-
veals preference masses in the tails of the normal mixing distribution, thus biasing the
mean and standard deviations of the LCL pmf with respect to the normal mixing dis-
tribution. Revealing these masses in the tails has both advantages and disadvantages.
On the one hand, preferences not readily observable in the normal mixing distribution
were revealed. On the other hand, these masses bias summary statistics like means and
standard deviations. Thus, which mixing distribution is more appropriate depends on
the policy motivation; if ‘minority’ preferences are policy relevant, then the LCL may be
more suitable. However, if the policy questions are primarily concerned with ‘average’
preferences across the whole population, then the normal mixing distribution may be a
better, less biased choice.

6 Conclusion

In this study, we have described an extensive list of options for the choice of mixing dis-
tribution in a mixed logit model. Our descriptions focused on the theoretical ability of
the distributions to describe heterogeneity features such as boundedness, multimodality,
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asymmetry and dependence between random parameters, as well as discussing practi-
cal considerations such as estimation issues and the importance of the policy context in
determining relevant heterogeneity features.

Each mixing distribution differs in its theoretical properties, practical considerations
and policy context. The commonly proposed parametric mixing distributions typically
have relatively inflexible theoretical properties, but can be easier to estimate and inter-
pret. In many policy contexts, the additional flexibility in theoretical properties is unnec-
essary, because the policy relevant questions are at a high level, and the detailed features
of the preference heterogeneity present do not affect the policy implications and may only
complicate matters.

However, when the policy context calls for detailed consideration of the preference
heterogeneity features, nonparametric mixing distributions which are more flexible than
the parametric mixing distributions may be appropriate. When market segments are pol-
icy relevant, the latent class logit model can yield rich insights into minority preferences
which would be glossed over in less flexible distributions, especially with respect to ar-
bitrarily complex dependence structures. At the same time, population-wide conclusions
based on the latent class logit model may give too much weight to the minority prefer-
ences. Moreover, in practice, the complexity of the latent class logit model is strongly
limited by estimation issues which arise when too many latent classes are specified. This
limitation has given rise to a number of variations on the latent class logit model, which
also estimate a pmf for the mixing distribution. However, the way in which they pa-
rameterize the support points is different, and so fewer hyperparameters are necessary
to estimate the same number of support points. One weakness common to all the dis-
crete nonparametric mixing distributions is the large extent to which results depend on
analyst-specified tuning parameters, such as number and range of support points.

The continuous nonparametric mixing distributions are more forgiving, with results
fairly robust to tuning parameters such as number and choice of basis function. These
mixing distributions are all sieve estimators, which approximate unknown functions with
a series of basis functions. They can also be more parsimonious than the discrete nonpara-
metric mixing distributions in terms of numbers of estimated hyperparameters, while still
maintaining a high degree of flexibility. Their chief weakness is their inability, at present,
to accommodate dependence between random coefficients. The discrete nonparametric
mixing distributions, in contrast, directly estimate the joint mixing distribution, and de-
pendence between random coefficients is revealed as a by-product.

In our empirical comparison of the baseline mixing distribution, a multivariate nor-
mal with mutually independent random parameters, and alternative distributions which
relax the theoretical properties of the baseline distribution, we found the biggest differ-
ences were in dependence structure. When we compared the baseline distribution with a
correlated normal mixing distribution, we found significant correlation between different
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levels within the same attribute. Furthermore, when we compared the baseline distri-
bution with the latent class logit model, we found evidence of dependence relationships
which were more complex than the pairwise, linear relationships modelled by the corre-
lated normal. The market segments identified by the latent class logit model suggested
different designs to attract different segments.

In contrast, our empirical comparison of the baseline distribution with a bounded al-
ternative, the uniform distribution, did not reveal substantial differences in policy im-
plication. Although technically there were significant differences in standard deviation
between the baseline and uniform distributions, these differences did not have much ef-
fect on the policy implications. The amount of the normal density found outside of the
uniform density was modest, and evenly distributed between the upper and lower tails.
This even distribution can be attributed to the symmetrical nature of both distributions
and the similarity in their locations. Consequently, considering only a specific portion of
the distribution, such as the negative preferences, again showed very small differences
between the baseline and alternative distributions. Thus, unless the extreme values of the
distribution (e.g., top or bottom 1%) are policy relevant, there is little difference in policy
implications between unbounded and bounded distributions.

When analysts have a choice of which heterogeneity features to model, it makes sense
to start with a more flexible mixing distribution and then simplify as features are seen
to be absent. Although we discussed this role flexible mixing distributions could play in
section 4, doing so is not yet common practice. Future work could focus on this role, estab-
lishing which of the flexible distributions are most appropriate for aiding the specification
search.

The importance of dependence structure, particularly moving beyond correlation into
higher-order relationships, suggests that approaches for capturing these relationships
is an important future direction for theoretical study. Given the large amount of data
needed to estimate the joint pmf directly in nonparametric discrete mixing distributions,
approaches which are elegant and parsimonious could be complementary to the existing
techniques for detecting complex dependence structure. However, given the limitations
of the copula approach and the difficulty with estimating highly multidimensional non-
parametric surfaces, this direction appears to be quite challenging.
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