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Abstract:

The paper demonstrates that random coefficient models can be estimated by maximum
likelihood if they are specified as generalized least squares models.  The paper uses maximum
likelihood estimation on a random-coefficient, meat-demand system.  Statistical tests show that
price elasticities are random, but expenditure elasticities are not.  The statistical tests allow one
to count the number of factors that cause randomness without requiring one to know what they
are.  There appear to be only two factors that make the price elasticities random.
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Maximum Likelihood Estimation of a Random Coefficient Meat Demand System

By

William F. Hahn

This paper an extension to a model first presented in 1994 in which I estimated a random

coefficient demand model for beef, pork, chicken, and turkey. The basic approach in the first

paper was different from the most common approach that was developed by Swamy and Tinsley

(1980).  I treated random coefficients as a special case of heteroskedasticity. I used a three-step

procedure to estimate my original random-coefficient demand system.  However, I was able to

show that my approach and the Swamy-Tinsley approach gave the same estimates of the mean

parameter values given the same covariance matrix of random coefficients.  The weakness of

both the Swamy-Tinsley and the heteroskedasticity approaches is neither provides an efficient

method of estimating the covariance matrix of random coefficients.  The method that I present

here can simultaneously estimate both mean parameter values and the covariance matrix of the

random coefficients, if the covariance matrix meets some restrictions.  This simultaneous

estimation will provide efficient estimates of the mean-parameter vector and parameter-

covariance matrix.

The first part of the paper is a justification for why consumer demand models might have

random coefficients.  There has been a great deal of work on meat demand; much of it has

focused on testing whether meat demand has changed over time or not.  My basic model assumes

that demand may be fundamentally unstable because it may depend on unobserved factors

consumers’ environment with random components.  These random components may cause price

and income elasticities to vary randomly.  One of the interesting things that the procedure can do

is to count the number of environmental factors causing changes in demand elasticities or, at the
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very least, provide a lower bound on this number.  While the procedure is not directly helpful for

identifying what these factors might be, knowing that there are a limited number of factors is

helpful for future research.

The use of full information, maximum likelihood (FIML) estimation makes it possible to

test hypotheses about the random coefficient covariance matrix. Comparing the classic, linear

model with the random-coefficient model is another test involving the covariance matrix. The

classic linear model can be seen as a special case of the random-coefficient model.  While the

random-coefficient model has random slopes and intercept, the classic linear model only has

random intercepts. The FIML procedure allows one to compare and test the classic and random-

coefficient models by restricting the covariance matrix of the coefficients. To count the factors

that cause random shifts in demand elasticities I test the rank2 of the coefficient covariance

matrix.

Reconciling Taste “Stability” and Random Econometric Equations

The U.S. demand for meat has been a very popular topic for investigation by economists.  Much

of the research has focused on whether or not U.S. consumers’ underlying tastes for meat have

been stable.  Alston and Chalfant (1991) surveyed many of the econometric studies that

attempted to measure/test the extent of changes in consumer tastes/demand for meat.  They

criticized this literature for being unable to distinguish between taste-shifts and misspecification

bias.  They noted that their earlier work (Chalfant and Alston, 1988) using non-parametric tests

showed stable tastes.

                                               
2 Assuming that only the intercepts are random or that some of the slopes are not random also reduces the rank of
the covariance matrix by eliminating blocks of terms.  The rank tests reduce the rank of the covariance matrix
without eliminating large blocks of terms.
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In my previous random-coefficient demand paper, I noted that there was a fundamental

conflict between the non-parametric approach’s and the econometric approach’s definitions of

stable tastes. The non-parametric approach assumes that if prices, expenditures, and tastes do not

change, then consumer’s purchases will not change either. Econometric specifications always

have one or more error terms.  Error terms change from one time period to the next, implying

changes in consumer purchases even if prices and expenditures do not change.  All econometric

specifications implicitly have unstable tastes. Econometric tests of taste stability are really tests

of parameter stability.

One way of merging the stable tastes of non-parametric tests with the unstable

specification inherent in econometric specifications is to build randomness directly into our

models of consumer tastes.3  Suppose that consumer tastes were influenced by environmental

factors, such as weather, that have substantial random components.  One can model this in a

utility-theoretic framework by making consumer utility depend on the environmental factors as

well as the goods they consume.

Let Qt and Pt be vectors of the goods and prices, and that xt stands for the consumer’s

expenditures, all indexed over time.  I will assume that the consumer’s utility function is

separable over time, so that the theoretical maximization problem is the same in all periods, t.  In

order to allow for changing tastes, I make the utility function depend on an additional vector of

other factors by Zt. The utility function is U(Qt,Zt).  The consumers’ optimal demand will be

given by Q(Pt,x t,Zt).

The use of additional variables in the utility function or in a demand system is not

unprecedented; the use of time trends as a measure of taste shifts is one that comes immediately

                                               
3 Another way to build randomness into the model is to assume that tastes are truly stable and to include
measurement errors between the observed and actual data.
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to mind. Other “Z” variables that have been used in the meat-demand literature include measures

of advertising and health information. This type of formulation allows the introduction of taste

and demand shifts into a formal model.  There is a fixed utility function, but the quantity

demanded can change over time even if prices and expenditures do not because of changes in the

Z variables.

One of the differences between my approach and others is that I assume that many or all

of the elements in Z are not observed.  I am, however, going to assume that the Z variables

follow a stable, stationary stochastic process. Let Zµ be the mean value of the Z vector. I can use

a first order approximation to the demand function, Q(Pt,x t,Zt), to write the quantity demanded in

time t as:

(1) [ ]µµ ZZ
Z
QZxPQQ tttt −

∂
∂+≈ ),,(

Equation (1) shows how an unstable Z allows one to start with a “fixed” utility function and get

random demands. Part of (1) is Q(Pt,x t,Zµ).  Because Zµ does not change over time, this part of

the demand function is stable.  The fact that Zµ does not change over time also allows me to

ignore it when specifying the stable part of my model.

The second part of (1) is unstable.  It is a function of the difference between the actual

value of Zt and its mean value.  This second part serves as the random error term for the demand

equations. The specification of the random component is (1) is more complex than usual.  It is

the quantities’ Z-derivative matrix times the deviation of the Z from their mean values. Equation

(1) can be written in a more conventional format by replacing the complex error function with a

single random error as in (1a), below.

(1a) tttt eZxPQQ +≈ ),,( µ
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So far my model explains how random, unobserved factors can produce econometric

equations with random error terms.  Why would this also produce random coefficients or

elasticities of demand?  One way of incorporating Z variables into a demand system is to make

the demand system’s parameters a function of the Z.  Part of the randomness of the Z variables

may translate into randomness of the coefficients.

One of the peculiar features of my first random-coefficient paper was the fact that I had

trouble getting my second-stage estimate of the model’s random coefficient covariance matrix to

have full rank. If the covariance matrix has less than full rank then this has interesting

implications about the Zt vector.  If there are as many Zt as there are coefficients, then the

covariance matrix of random coefficients will have a full rank.  If there are fewer factors than

coefficients, then the covariance matrix will not have full rank.  Testing the rank of the random

coefficient matrix allows one to put bounds on the number of factors causing shifts in price and

income effects.  In other words, it may be possible to count how many Zt are missing from the

“true” model.

Comparing the Heteroskedastic and Swamy-Tinsley Approaches to Random Coefficients

The random coefficient meat demand model will be estimated using a relatively simple

specification for the random coefficients.  The discussion that follows is generic to the problem

of random-coefficient models, not only to demand models.

Assumed that the coefficients are independently and identically distributed over time4.

Swamy and Tinsley would specify this type of random coefficient model using the following

notation:

(2) ttt XY Β=

                                               
4 Swamy and Tinsley allow the random coefficients to have complex time-series properties in their article.
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In (2) Yt, Xt, and Β t, are the vector of endogenous variables, the vector of exogenous variables,

and the vector of random coefficients.  It is assumed that the Β t are independently and identically

distributed over time with mean Β  and covariance matrix Σ .  Swamy and Tinsley’s estimation

procedure estimates Β t and Β  by minimizing:

(3) ( ) ( )∑ −Σ− −

t
tt BBBB 1'

subject to:

(4) ttt XY Β=

The terms in (3) and (4) with over-bars are the estimated parameters.

Swamy and Tinsley demonstrated that their procedure provided efficient estimates of the

mean parameter vector, Β  given the true covariance matrix, Σ .  The problem with their approach

is that it requires the true Σ  matrix or, at the least, a good estimate.  The estimates of Β t are less

efficient.  In particular, they noted that the estimated Β t vector is much more tightly distributed

around the mean than the true Β t.  This “tightness” of the Β t estimates prevents one from being

able to start with an arbitrary covariance matrix, estimate the Β t, then use that estimate to get a

consistent estimate of Σ .

Since this kind of sequential estimation will not produce a consistent estimate of Σ , what

about simultaneously estimating all the model’s parameters?  Swamy and Tinsley used the

following likelihood function, (5), to demonstrate that FIML estimates would not exist either:

(5)  ( ) ( ) ( ))det(log' 2
1

2
1 Σ−Β−ΒΣΒ−Β− ∑ − T

t
tt

Equation (5) would be maximized subject to (4).  The Σ  with an over-bar in (5) is the estimated

value of Σ .  The problem with maximizing (5) is that its value becomes indefinitely large when
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the estimate of Σ  becomes singular.  It is very easy to make this estimate singular.  The classic

linear model with only random intercepts has a singular Σ .  The more restricted model, the

classic linear model, can have a larger likelihood than the more general model.

The heteroskedastic formulation takes the Swamy-Tinsley model and specifies it as if it

were the classic, linear model:

(6) ttt eXY +Β=

where et is defined as:

(7) ( )Β−Β= ttt Xe

The covariance matrix of et will be denoted by σ t and is defined by:

(8) ttt XX Σ= 'σ

My approach in the first paper was to estimate the mean parameter vector in the first stage.  In

the second stage I got an estimate of Σ  by correcting these errors for heteroskedasticity.  The

third stage used the estimated Σ  to generate an estimate of σ t That I used in a generalized least

squares, GLS, procedure.

The GLS problem can be converted to a FIML by maximizing the following likelihood

function:

(9) ( ) ( ) ( )[ ]∑ +Β−Β−− −

t
ttttt XYXY )det(log' 1

2
1 σσ

subject to:

(10) ttt XX Σ= 'σ

The FIML problem defined in (9) and (10) does not fully solve the problem of the singular

covariance matrix.  The likelihood function defined in (9) still exists if the estimate of Σ  is

singular.  Only the estimate of σ t has to have full rank.  On the other, it is still possible to make
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the likelihood defined in (9) infinitely large by making the estimate of σ t singular.  To do this,

select any period, t, in the sample.  Calculate a mean parameter vector that perfectly predicts the

value of Y in that period.  Then set up the coefficient covariance matrix so that:

(11) tXΣ=0

The estimated covariance matrix in (11) is singular, which need not generally be a problem,

except that in this case it make the σ t estimate singular also.  This makes the likelihood in (9)

infinitely large by making the determinant of the estimate of σ t zero.

One way to avoid this problem is to make the random coefficients’ covariance matrix

block diagonal.  The intercepts will be in their own block, and the slopes in theirs.  As long as

the intercept’s block has full rank, the estimated σ t will also have full rank because the “X”

matrix always includes intercept.

It is still possible to impose singularity of the estimate of σ t by making the covariance

block for the intercepts singular as well. This also could lead to an indefinitely large value for (9)

likelihood for one or more periods.  However, the conditions for the validity of FIML only

require a local optimum in the neighborhood of the true parameter values.  For all the models, I

estimated the covariance matrix converged to a local optimum with a full-rank intercept block.

The CBS Meat Demand Model

The meat demand system is specified using Keller and Van Driel’s (1985) CBS model.  “CBS”

stands for the Central Bureau of Statistics in the Netherlands, where Keller and Van Driel

worked.  The CBS model is a differential model of consumer demand.  Keller and Van Driel

showed how the CBS is similar to the Rotterdam model and the differential version of the

Almost Ideal Demand System, (AIDS).  (In their 1989 article, Barten and Bettendorf show the
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inverse versions of the Rotterdam, CBS, and differential AIDS model.)  The CBS model starts

with a set of partial differential equations that take the form:

(12) 





∂−∂+∂=








∂−∂⋅ ∑∑∑

j
jjjjji

j
jjii LnpwLnxbLnpcLnqwLnqw ,

where:

(13) 
x
qp

w ii
i =

In (12) and (13) above, qi is the quantity of good “i,” pj is the price of good “j,” and x the total

expenditure.  The terms ∂lnqj, ∂lnpj, and ∂lnx are the derivatives of the logarithms of the

quantity, price, and expenditures, and the ci,j and bi are coefficients.  The wi are budget shares.

In order to be consistent with utility maximization, the coefficients have to meet the

following restrictions:

(14) ∑∑∑ ===
i

i
j

ji
i

ji bcc ,0,,

(15) jicc ijji ,,,, ∀=

Further, the matrix formed by the ci,j has to be negative, semi-definite. This negative, semi-

definite restriction implies among other things that the compensated demands slope downward.

It is not usually imposed in estimation of the CBS and related systems.

The system specified by equations (12-15) is a set of partial differential equations.  It is

not directly useful for estimating a model, as we observe prices and quantities, not derivatives.

Differential demand systems are estimated using the assumption that the differential system is

well approximated by a difference system. Usually, these models are specified using first

differences.
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The Empirical Model

Monthly data on the prices and per-capita consumption of beef, pork, chicken, and turkey were

calculated and released by the USDA’s Economic Research Service until the end of 1996.  The

model is based on the assumption that meat demand is separable from other goods.  This is a

common assumption in meat demand analysis, and research by Moschini, Mora, and Green

(1994) suggests that this assumption is valid.

The data included observations for all months in the years 1979-1996 inclusive. There is

considerable seasonal variation in the meat demand, particularly for turkey.  I decided to handle

this seasonal variation by using the year-to-year changes in prices, quantities, and expenditures

rather than first differences. I took the difference between January 1980’s and January 1979’s

values, etc. rather than between January 1980’s and December 1979’s.  The heteroskedastic

formulation of my meat-demand CBS model can be written:

(16) 

ti
j tj
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In (16) the term ai is an intercept.  The intercept terms in differential demand systems are

interpreted as a taste-change parameter.  It represents the general drift in demand over time.

Because of the way that the endogenous variables are structured, they sum to 0.  In order to be

consistent with the budget constraint, the four intercept terms must also sum to 0. The si,t are a

weighted average of the wi,t and wi,t-12, as in (16) below:

(17) ( ) 12,,, 1 −−+= tittitti wws θθ

In (17), θ t is weighting parameter whose value changes over time.
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As noted above, differential demand systems are estimated based on the assumption that

the difference equations are a good approximation to the differential system.  However, what is

true for the differential equation is only approximately true for the difference equation.  The

weighted-average budget share improves the difference approximation by making it meet the

same conditions as the differential equation.  The following equation is used in setting up the

CBS, Rotterdam, and differential AIDS models:

(18) i
i

ii
i

i qwpwx lnlnln ∂+∂=∂ ∑∑

Equation (18) is derived from the budget constraint.  Equation (18) holds for the budget

constraint’s derivatives, but is only approximately true for budget constraint differences.  The

value of the weighting factor, θ t, is calculated so the difference-equation version of (18) holds as

a strict equality in each period.  The values of θ t range between 48-52% and average 50%.

I assumed that all the theoretical restrictions held for both the mean and time-varying

parameter values.  There are 4 ai parameters, four bi, and 16 ci,j terms.  The equality constraints

allow me to use elimination and substitution to reduce these 24 coefficients to 12: 3 ai, 3 bi and 6

ci,j.  Keller and Van Driel specified the endogenous variables so that they sum to 0, and are

automatically consistent with the budget constraint.  The full covariance matrix of error terms

has a rank of 3 instead of 4.  This type of system is estimated by dropping an equation; I dropped

turkey.  FIML estimates are independent of the equation dropped.

Tests, Results, and Estimates

I used a stepwise procedure in the estimation and testing of the model.  The first allowed the bi

and ci,j to be random and checked to see if allowing them to be random improved the likelihood

stastitic. The most general model that I estimated had a block-diagonal covariance matrix with

three blocks: one block for the intercepts, the ai, one for the expenditure terms, the bi, and one for
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the ci,j.  The two additional blocks of the random-coefficient covariance matrix added 27

independent coefficients to the model.  I compared the random coefficient model to one with

only random intercepts using a likelihood ratio test.

Allowing for random slopes increased the value of the likelihood by 22.7.  Assuming

twice the difference in the likelihood is distributed as a chi-square with 27 degrees of freedom,

this increase in the likelihood is significant at the 1.5% level.

Covariance matrices have to be positive, semi-definite; that is, they have sign constraints.

Because the covariance matrix has sign constraints, there is a non-zero probability that the

unconstrained and constrained models have the same likelihood. If the null hypothesis is true,

very low values of the test statistic will be seen much more often than they would be if the test

were truly distributed as a chi-square. It is likely that the true level of significance is even higher

than the calculated level of 1.5%.

Statistical theory implies that negative variances or covariance-matrices that are not

positive, definite are impossible.  Mathematical optimization routines do not “know” statistical

theory and can attempt to use these “impossible” values, which then generally causes the

program to crash.  To prevent this problem, I imposed the sign constraints by specifying the

covariance matrix as the product of its Cholesky decomposition and its transpose.  In the first

phase, I restricted the lower bound of certain elements of the decomposition of the covariance

matrix so that the covariance matrix would have full rank.  The covariance block for the bi had

very small elements, and the restricted elements were all at their lower bounds.  Eliminating the

bi covariance block in actually led to a trivial (0.0001) increase in the likelihood, because forcing

this part of the covariance matrix to be positive actually decreased the likelihood slightly.  For

subsequent analysis, I accept the hypothesis that the bi coefficients are not random.  Recall that
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the bi coefficients multiply the expenditure terms and, hence, determine the expenditure

elasticities.  I can attribute all the increase in the likelihood statistic to the randomness of the ci,j

coefficients.  These terms determine price elasticities.

In the second phase, I tested the rank of the ci,j block.  This block has a maximum rank of

6.  Because I used the Cholesky decomposition to specify the ci,j block’s covariance matrix, I

could test the rank of the block by dropping its columns.  The first column has 6 elements, the

second 5, and so on.  I could drop the last three columns without affecting the measured value of

the likelihood at all.  The third column, with 3 free terms, only added 0.9 to the likelihood.

Dropping the last 2 columns decreased the likelihood by a statistically significant amount.

Again, the “true” test distribution is likely to be skewed toward zero compared to the chi-square

distribution, so the “true” significance level is higher than the calculated one.

The tests on the covariance matrix suggest that only the price-elasticity terms have

random coefficients, and further that there are only two causes of randomness in price

elasticities.  These causes would be the unknown “Zt” variables defined earlier in this paper.

Presumably, if we could uncover what these two factors were, we could improve our analysis of

meat demand.

All the estimated bi were small. It might be the case that the bi covariance-block is 0

because the expenditure terms in the CBS model are irrelevant5.  In addition, the ai introduce an

element of drift in the demand equations.  If these intercepts’ mean terms are all 0, then tastes,

corrected for environmental factors, are stable over the estimation period.  The last phases of the

estimation tested the intercept and expenditure terms.  The test statistic for the intercepts was 99,

while that for the expenditure terms was 3.  Both of these tests have 3 degrees of freedom.  The

                                               
5 The smaller a bi, the less meat i’s budget share changes with meat expenditures.  If all the bi are 0, then all the meat
expenditure elasticities are 1.
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expenditure terms are not statistically significant, but the intercepts are at all conventional levels.

These tests suggest that the all the meat-expenditure elasticities are 1 and that there is

unexplained drift in the consumer tastes for meat.

I dropped the bi, the expenditure terms, from the final model because they were not

significant.  Table 1 shows the mean parameter estimates and the elasticities associated with the

mean parameters and the mean budget shares.  Because all the bi are 0, the expenditure

elasticities are all 1.  The ai and cij were estimated with the equality constraints of utility theory

imposed.  The mean cij estimates are negative semi-definite.  Table 2 shows the estimated

covariance matrix.  The covariance terms are rather small, so I multiplied their estimates by

10,000 to make them easier to read.

Implications and Directions for Further Research

Knowing more about the consumer demand for meat should improve our analysis of livestock

and meat markets.  What do the results of this study add to our knowledge of consumer demand

for meats?  Some of the results of this analysis are broadly consistent with previous studies.  For

instance, the fact that the intercepts are statistically significant supports the hypothesis that

consumers’ tastes have changed over time, which is a common result from previous analysis.

The intercept values imply declining pork and beef consumption and rising poultry consumption

even in the absence of price changes. Changes in meat expenditures and own-price effects are

more important determinants of demand than cross-price effects.

I used the work by Moschini, Mora, and Green to justify the separating meat demand

from other goods.  As a group, all the meat expenditure elasticities are not significantly different

from 1, and this implies that the demand for meat is homothetic and, consequently, strongly

separable.  This strong separability would simplify including meat demand in more complete
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demand systems.  The four meat quantities and prices could be replaced with an aggregated meat

quantity and price.

It may be fruitful to pursue improvements in the econometric technique.  For one thing,

the stochastic structure that I imposed on my random coefficients is very simple. Swamy and

Tinsley considered auto-correlated random coefficients.  Swamy and Tinsley were interested in

the forecasting application of their random coefficient models.  If there is autocorrelation in

consumers’ random meat demand elasticities, this can be used to improve the forecasting

performance of the models.  To incorporate very general autocorrelation into the heteroskedastic

framework, you would expand the size of the covariance matrix to include cross-time correlation

as well as cross-equation correlation.  In this case, rather than inverting 204 (3 by 3) you would

have to invert one (612 by 612) matrix.  I am not sure that we have the hardware and software to

reliably handle problems of this size.  It might be possible to reduce the size of the problem by

restricting the form of autocorrelation you consider.

I have argued that econometric demand equations are not consistent with the usual

definitions of stable tastes.  If we change the definition of stable tastes to include environmental

or other factors whose values change randomly over time, then we can relate unstable

econometric equations to stable tastes.  The most intriguing result of this study is that the

estimates suggest that only two of these factors cause random changes in the price elasticities of

demand.  The research cannot determine what these two are; further research that does identify

these factors would be very helpful.
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Table 1— Mean parameter estimates and the implied elasticities of demand

beef pork chicken turkey
beef -0.1554 0.1143 0.0216 0.0195 0.0000 -0.0056
pork 0.1143 -0.1229 0.0041 0.0044 0.0000 -0.0006
chicken 0.0216 0.0041 -0.0225 -0.0032 0.0000 0.0047
turkey 0.0195 0.0044 -0.0032 -0.0207 0.0000 0.0016

beef pork chicken turkey
beef -0.827 -0.058 -0.110 -0.004 1.000 -0.010
pork -0.116 -0.725 -0.135 -0.024 1.000 -0.002
chicken -0.395 -0.243 -0.300 -0.062 1.000 0.031
turkey -0.057 -0.160 -0.230 -0.553 1.000 0.039

interceptsOwn & Cross-price Meat 
expenditure1

Mean parameter estimates

Implied elasticities

Price coefficients interceptsMeat 
expenditure1

1 The meat expenditure terms were constrained to 0, making all the meat expenditure
elasticities 1.
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Table 2— Random-Coefficient Covariance Matrix Blocks, times 10,000

beef pork chicken turkey
beef 0.82 -0.41 -0.28 -0.13
pork -0.41 0.50 -0.13 0.03
chicken -0.28 -0.13 0.40 0.01
turkey -0.13 0.03 0.01 0.09

beef beef beef beef pork pork pork chicken chicken turkey
beef pork chicken turkey pork chicken turkey chicken turkey turkey

beef beef 60.36 -42.75 -17.84 0.23 18.71 16.67 7.36 -0.84 2.01 -9.61
beef pork -42.75 30.69 12.28 -0.22 -15.61 -11.52 -3.56 1.15 -1.91 5.69
beef chicken -17.84 12.28 5.58 -0.02 -3.50 -5.18 -3.61 -0.23 -0.17 3.80
beef turkey 0.23 -0.22 -0.02 0.01 0.39 0.03 -0.20 -0.08 0.07 0.11
pork pork 18.71 -15.61 -3.50 0.39 19.17 3.55 -7.11 -3.43 3.38 3.34
pork chicken 16.67 -11.52 -5.18 0.03 3.55 4.80 3.17 0.15 0.22 -3.42
pork turkey 7.36 -3.56 -3.61 -0.20 -7.11 3.17 7.50 2.13 -1.69 -5.61
chicken chicken -0.84 1.15 -0.23 -0.08 -3.43 0.15 2.13 0.76 -0.68 -1.36
chicken turkey 2.01 -1.91 -0.17 0.07 3.38 0.22 -1.69 -0.68 0.64 0.98
turkey turkey -9.61 5.69 3.80 0.11 3.34 -3.42 -5.61 -1.36 0.98 4.52

cij matrix covariance matrix, using symmetry to drop terms1

Intercept covariance matrix

1 This matrix has a rank of 2.  Its maximum rank is 6.


