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Overview

Resource managers are faced with dificult choices regarding imperfectly observed and dynamically changing systems.
Existing techniques required modification to address disease management problems.

e

Testing for subclinical infectious diseases facilitates selective culling and provides information that improves the

eficiency of subsequent applications of broad-based controls, e.g. additional testing and monitoring.

We apply our methodology to the control of bovine tuberculosis in New Zealand’s cattle herds and compare to less

comprehensive approaches. Bovine tuberculosis represents a subclinical disease with complex transmission dynamics

(both among cattle and between cattle and disease vector populations (e.g. possums)).

Objectives

. Compare the value of accounting for physical dynamics and learning in disease management

ii. Develop and refine a methodology for assessing dynamic decision making under uncertainty when the uncertain
state is changing and continuous

Methods

« We extend the existing literature of optimal control of disease by allowing for uncertainty regarding the state of
interest: disease prevalence.
« Use a Partially Observable Markov Decision Process (POMDP) framework.
» Modeling challenge: prevalence changes over time with new infections and recoveries. These changes may be small or large.
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Learning about a Moving Target in Resource Management:

Optimal Bayesian Disease Control

Physical Dynamics

« Meta-population model

controls or recently tested
« Populations transition twice

1. Testing moves susceptible herds to recently tested group and

infected herds to movement controls
2. Susceptible herds are infected by animal movements and

disease vectors; recently tested and movement control herds

return to the susceptible population

Equations of motion:

I'=1—-K+p

= (1 a)(S—(a~K)~ B
ST
., Fa (S — (a— K))

M'=(1-7)(M + K)

« Herds are susceptible, (latently) infected, under movement

-y (M + K)

Information Dynamics

« Updating in two steps:

« Beliefs about prevalence are modeled as a beta dist.

1. Bayesian updating to account for test results
2. Density projection to capture shitts in beliefs resulting from

known physical dynamics.
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Manager Comparison: Testing Rate, Prevalence and Belief Error

We examine four managers that update their beliets differently based on new infections and test results.

« All managers account for prevalence reductions resulting from selective culling of identified facilities.

« Averages are shown in figures.
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Initial beliefs are shared across managers.
Results are averages from 5,000 Monte Carlo simulations with randomly drawn initial prevalences.
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1. Optimal manager: considers both test results and

infections.

but not test results.
» High test rate throughout

» High initial test rate that declines over time
» Prevalence quickly declines
Beliefs are the most accurate

2. Stochastic programmer: accounts for new infections

= Prevalence quickly declines (similar to optimal)

= Beliefs are somewhat accurate

3. Partial (Bayesian learner): considers test results but

not infections.

» Moderate test rate throughout

« Moderate prevalence

« Beliefs are moderately inaccurate
4. Naive: accounts for neither new infections of test

results.
« Low test rate throughout

» Prevalence quickly takes oft

= Beliefs are the most inaccurate
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Welfare Comparison

The distinct testing rate paths result in qualitatively different cumulative welfare (measured in producer profits minus
testing costs) trajectories. We compare each of these trajectories to the Naive manager in percentage terms.
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Model Performance Comparison: Optimal vs. Stochastic Programmer

« Concern: average percentage differences in cumulative weltare are driven by outliers.

» We compare the present value of cumulative welfare across the most successful managers (Optimal and Stochastic
Programmer)
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Conclusion

« Dubstantial gains are realized from accounting for both physical dynamics and learning lead to substantial
incremental gains.
« Accounting for physical dynamics is more important than accounting for learning and uncertainty.

» Learning allows managers to compensate for inaccuracies in beliefs and fundamental errors in understanding of the
physical system.
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