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INTRODUCTION ANALYTICAL MODEL AND ASSUMPTIONS

L * TC increased when GWF and N

0 TC min . . .

In West Tennessee, 96 percent of all households rely on ground water. Shallow i | g - / T loadings reduced (Figure 4).

aquifers in West Tennessee are at risk of contamination from the 1.1 million ha in arvest Seas&r}lt\lr;‘mp"rta“"” | HES o ’{ - A moderate increase in TC when

crop production in the area. Low nitrogen uptake efficiency with crop production Newly Stored Off-harvest E b ia mitigating GWF and N loading from the
leaves considerable nutrients to runoff into surface water, be retained in the soil, or Land resourcces —» SWItCh8rass | peedstock - Storage (XS) . o2°"  »  Biorefinery -2 Mid TC minimization case to the Mid 3 case,
leach into groundwater. . NXS) tran?f(?g?tlon ; -6-‘ YK L S Mid 3 but the TC surged when moving from

Growing switchgrass for biofuel production has the potential to use less water Figure 2. Flow diagram of the switchgrass supply chain T o / J/R%RTC | Mid 3 case to GWF minimization while
and fertilizer than traditional row crops. Displacing crop production with the large- 1o L GV min g™ -~ moderate decrease in both GWF and N
scale production of switchgrass as a biofuel feedstock could reduce nitrate » Cost objective is to minimize total cost (TC) where: e - loading.
loadings to groundwater in west Tennessee; hence, lowering the risk of TC=C yportunity ™ Coraduction™ Charvest™ Cstorage™ Ctransportation™ Ceapitai™ Coperation - TC (Milion $)  700~cri5y,  GWFiionm’) ¢ Figure 5 shows hay and pasture lands
groundwater contamination. However, the high private costs of producing biofuel . Grey water footprint objective is to minimize GWF where: _ o were the major land sources converted
from switchgrass hinder its development for commercial use. GWE =3 (Nload AH_ ) /(Permit—CN,)~" Nload, - x AH, /(Permit—CN, zf:':’ch T;ai:ien:::;;?:lc;nns:IcF:)Sr:,eest[‘)AcI;edri‘nTgc to switchgrass in the TC minimization

. . . oad. . X ermi oad; , x ermit—CN.). , - - :

One way to account for the positive ecosystem services provided by Z 549 Z Z ! nitrate loading case given their lower opportunity cost.
switchgrass Is through the concept of grey water footprint (GWF), or the volume of e The study area mcluded all agricultural Iand in west Tennessee and a buffer area of et Coton = Sorghum * The allocation to hay and pasture lands
water needed to sufficiently dilute nitrate loadings to meet ambient water quality 50 mile contiguous to the state border, and was downscaled to a 5 mile? resolution 0 SSoybeans mHay  mCom gradually reduced when mitigating GWF.
standards. Considering the positive externalities associated with reduced nitrate spatial unit (i) . - Most area converted to switchgrass

a1
o

loadings can help the biofuel industry develop a more sustainable feedstock supply

. . . production in the GWF minimization
chain that balances both economic and environmental performance.

case came from corn, a fertilizer-
Intensive crop.

* The background nitrate (N) level (CN) of groundwater was assigned from the
estimated mean values from sample points in 2014 at spatial unit (i).

« Water quality standard for N was set as 10 mg/L (Permit).
* A multi-objective, mixed integer linear programming model integrating the cost and

Land allocation
(Thousands ha) .
o
o

* Both imputed cost method and
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o
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~20 | n=173 grey water footprint minimization was objectives applied to the problem. compromise solution method suggest
S - An improved, augmented g-constraint method (Mavrotas and Florios, 2013) was 0 L Mid 3 case was the most preferred |
S ied to derive th deoff relationshio b n d GWE obiecti TCmin  Midl Mid2 Mid3 TGWF solution for switchgrass supply chain:
—15 LIS (2 e Gy ST emeans e it applie to erive t e tra eoft re atl_ons Ip etween the cost an objectives min |
% 10 mg/L with three middle points (Mid 1, Mid 2, and Mid 3). Figure 5. Land area allocation olmputed cost of reducing GWF at
0 . . 3
L * Two approaches to determine the most preferred solution: (a) Imputed average $0.94/m* GWF,
O 45 cost of GWEF, and (b) compromise solution method (Ramos et al., 2014). . T | oTotal 3 sites with two at 100-MGY and
S n= _ _ _ o e N MR 0 _ '
- C 5 - n=65 - Total demand in the region assumed to be 250 million gallons of ethanol per year | i : fggﬂ;g;gg;:gy+ one at 50-MGY capacity were selected
o ompris g l l R (MGY), with biorefinery capacity of 50 MGY or 100 MGY. oo (see Figure 6),
e - 2, 7! | R AR S - Potential locations for the biorefineries were from TVA’s industrial park database. — it conversic;n, GWF lowered
M!ss!ssipp! embaytment aquifer system (MEA S % % . . . . . . Exciedmgvglgead(mgn_) i
issisippiRiver Vally alluvial acuifer (URVAA) @Q,‘? W ny A & ¥ - Water pollution from mechanical operations and vehicle transportation was o ver sy ::)y 311 thou dsand dn7] 3£;r12d nitrate
oo s 500 N ® assumed to be negligible. H gmn;ggg;g%z;m Oadings reduced /,572 tons,
;Sou‘:;.;g[]:t:rr['l ER]oasé%al Plain aquifer syste?gﬂ[fﬂt”:elzhm B : \hj:rju::r;j?;ofoz(f) Ocompared to TC mln Scenano
- — et % Only 3.5% increase in TC.
Figure 1. Observations of nitrate levels in west Tennessee aquifers (1980-2014) I{ES‘JLTS = 0631" . > GWE lowered by nearly 650%.
P —— Per annum TC Minimization TGWE Minimization Figure 6. Most preferred solution with » Cost per unit of GWF reduction
OBJECTIVES : : : feedstock area lowered by 84%.
Biorefinery site Total 3 sites: Total 6 sites:
« Estimate GWF for different switchgrass supply chain configurations in West 100-MGY X2 and 50-MGY X1  50-MGY X6 CONCLUSION
Tennessee; and TC $743 million $1,035 million
« Estimate the relationship between the costs of supplying switchgrass as a TGWE 125 million m? ~1.040 million m3 * Developing a switchgrass biofuel industry could approach to reduce nitrate-
biofuel feedstock and GWF in West Tennessee. _ | | | loadings to groundwater in west Tennessee although switchgrass supply
NO, loadings Pre-land conversion:2,292 Mg Pre-land conversion:10,232 Mg chain is costly.
leachate Post-land conversion:1,144 Mg  Post-land conversion:1,198 Mg Tradeoff b foed y 4 GWE oh v cha
. « Tradeoff between total feedstock cost an In switchgrass supply chain
DATA AND METHODS Serving populations 301,277 residents 398,214 residents was related to land selection for switchgrass production.
9 P
»  Cost data [opportunity cost (Cypporunity)» fe€dstock production (C,oqucion): Maps * The most preferred placement of switchgrgss biofuel supply chain in west
harvest (Cpanesy): Storage (Cyorage) transportation cost (Cyansportation)s Capital cost s o T_ennessee_could reduce grey water footprlnt by 811 thousand m?3 and
of biorefinery (C,a), and operational cost (C,peaion)] Were obtained from = — nitrate loadings by seven thousand tons in groundwater at cost of $0.94/m3
previous studies (Larson et al. 2010; Yu et al., 2014). =1y + GWEF.
* GWEF estimated using water footprint models (Aldaya et al. 2012), USGS Figure 3_' Land ‘: This project was partially founded by the Southeast Partnership for IBSS that is supported
groundwater quality data (USGS Water Resources, 2015) and Daycent water °°'f"‘:s'°“ t]f’ ) ) ; SEEL by USDA AFRI Grant no. 2011-68005-30410.
submodel nitrate loading for crop lands (p) and switchgrass (swg) (Nload) z‘:")'tz f;:l‘: romother ¥ A R s 1(: dine author: T Edward Yu. trul@utk od
(Schimel et al. 2001). .p s =5 . e = il / orresponding author: T. Edward Yu, tyul@utk.edu.
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