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1 Introduction

Missing values which result from attrition are common in randomized trials. Failure to appro-

priately address the missingness could result in biased estimates and misleading conclusions.

This is of particularly concern in cost-effectiveness analysis (CEA) as any bias in either the

point estimates for cost or effects will then bias the cost-effectiveness estimate. Since these

cost-effectiveness estimates are used to inform health policy, it is necessary to be especially

careful regarding how missing data is handled (Faria et al, 2014). Complicated experi-

mental designs, such as cluster randomized trials (CRT) and trials which follow individuals

over time (longitudinal or panel data), also call for greater care when addressing missingness.

Of greatest concern is when observations are systematically missing, i.e. missing not at ran-

dom. Sample selection models are one method used to address potential bias resulting from

this mechanism of missingness. The purpose of this paper is to compare two sample selection

models used to address non random missing values and determine the relative advantages of

either when applied to a longitudinal cluster randomized trial. From the economics litera-

ture we will utilize the Heckman (1976) sample selection model and the Diggle and Kenward

(1994) model from the statistics literature. The analysis will utilize both data collected as

part of a cluster randomized trial for a worksite weight loss program, and a simulation study.

This paper presents preliminary results which analyzed the data from the CRT trial, and

will propose the design for the simulation study.



2 Current Practice

Analyzing data from a cluster randomized trial (CRT) in a cost effectiveness analysis (CEA)

presents many challenges. Data from a CRT is complicated by the presence of grouping of

individual observations in levels such as hospitals, worksites, classrooms, etc. Such grouping,

or clustering as it is also known, is problematic because it can induce correlation in the error

term, and result in biased estimation (Goldstein, 1995). Further complications are intro-

duced when trying to conduct a CEA given the bivariate nature of the outcomes (cost and

effects) which may be correlated, and for which cost may have a skewed distribution (Gomes

et al, 2011; Flynn and Peters, 2005). There has been substantial progress on identifying the

best practices for handling these challenges as they specifically relate to the CEA of data

from a CRT, however, what receives less attention is addressing missing data (Gomes et al,

2011; Gomes et al, 2013).

Missing data is a routine occurrence in experiment data, and if not addressed appropri-

ately it can bias estimations (Nobel et al, 2012; Faria et al., 2014; Rubin and Little, 2002;

Diaz-Ordaz et al., 2014). Often the missingness is a result of attrition, which occurs when

experiments follow individuals over time and participants are either lost to follow-up or drop

out of a study. Previous literature has consistently found that when data is missing either
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in CEA, CRT, or CEA of CRT data it is most often ignored, or simplistic methods such

as complete case analysis or last observation carried forward are utilized (Dias-Ordaz et al,

2014; Dias-Ordaz et al, 2014a; Dias-Ordaz et al, 2014b; Nobel et al, 2012). These methods

are valid only when observations are missing completely at random, which is very difficult

to justify in a clinical trial (Rubin and Little, 2002; Dias-Ordaz et al, 2014b).

Within the literature on missing data in CEA and CRT the focus has been on adapting

multiple imputation (MI) to address the complex nature of the data. However, this method

is most often used to address cases when it is assumed the data is missing at random (MAR),

although it can be adapted for use in the missing not at random. case (Ruin, 1996; Gomes

et al, 2013; Diaz-Ordaz et al, 2014a). Previous research on the application of MI to CEA

of CRT and has shown that it is important to incorporate the hierarchical structure of the

dataset into the method used to address missingness to avoid bias estimation (Gomes et

al, 2013; Diaz-Ordaz et al, 2014a). To do this, researches have used multilevel models in

both the imputation and analysis stages of MI (Gomes et al, 2013; Diaz-Ordaz et al, 2014a).

However, these models were only designed to analyze missing data that resulted from MAR

and from a two time period study. In one application, it was shown that when the true

missingness mechanism was MNAR the MI model adjusted for the hierarchical nature of

the data was still biased (Gomes et al, 2013). This clearly demonstrates the importance of

identifying models that will yield valid inference under the MNAR mechanism and are suited

to handle the complex nature of CEA and CRT data.
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Thus it is important to assess the ability of various methods to appropriately handle not

only the complicated nature of CRT data, but also the mechanism of missingness in the

data. Sample selection models are one option when trying to address potential bias from

attrition. Two popular forms of this model are the Diggle and Kenward model from the

statistics literature and the Heckman model from econometrics. The purpose of this paper

will be to investigate their appropriateness when utilized in the analysis of cost effectiveness

data from a cluster randomized trial.

3 Comparison of Sample Selection Models

Both the Heckman and Diggle Kenward (DK) sample selection models contain two parts:

an outcome mechanism and a selection mechanism (Diggle and Kenward, 1994; Heckman,

1979) . The outcome mechanism describes the process generating the outcome of interest, as

if it were fully observed. However, with attrition estimating this process alone could result

in bias. To address this bias, both sample selection models incorporate a sample selection

mechanism, which describes the process which results in attrition. By estimating both the

outcome and selection mechanisms, the models hope to correct for the bias in the outcome

mechanism.
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A major difference between the Heckman and DK model comes in the specification of the

sample selection equation. While the DK model relies upon trends in the outcome to identify

the selection process, the Heckman model relies on a latent process, which is correlated with

the outcome of interest. To further illustrate the differences we will now review each model

in more depth.

3.1 Diggle Kenward Sample Selection Model

An important component of models for missingness in the statistics literature is the notion of

mechanism of missingness which were first developed by Rubin (1976), in a paper in which

he sought to determine the conditions under which missingness could be ignored without

biasing the analysis of the outcome of interest.

To introduce these mechanisms, we first need to establish some notation. Since we are work-

ing with longitudinal data, the index i = 1, ....N refers to the number of individuals, and

the index j = 1, ....T refers to the number of time periods under observation. Let Y ∗ = (y∗ij)

denote the complete sample that would have been obtained if there was no missing data. Let

the missing components of Y ∗ be noted as missing Y m = (ymij ) and the observed Y o = (yoij)

(Diggle et al., 2002). The random variable indicator for drop out, Di, used to indicate this

partition in the data set. Thus, in the case that drop out occurs at Di = d then yi1, .....yi,d−1

are observed and yid, ...yiT are missing.
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Combining the partition of the outcome and the random variable for missingness, results in

the joint distribution of the sample: f(Y o, Y m, D|θ, β) where θ and β are unknown parame-

ters for the distribution of the outcome, Y, and missingness, D, respectively. Using standard

factorization rules we can rewrite it as:

f(Y o, Y m, D|θ, β) = f(Y o, Y m|β)f(D|Y o, Y m, θ) (1)

To make this distribution compatible with likelihood methods, it is then necessary to inte-

grate out the missing values so that the joint distribution is in terms of the observed random

variables only (Diggle et al., 2002).:

f(Y o, D|θ, β) =

∫
f(Y o, Y m|β)f(D|Y o, Y m, θ)dY m (2)

This particular form of factorization results in the sample selection model, where f(Y o, Y m|β)

describes the outcome process, and f(D|Y o, Y m, θ) describes the selection or attrition or

missingness process. In the case that these processes are distinct (i.e. the parameter space

of (θ, β) is the product of the parameter space for θ and β) then the missing-data mecha-

nisms is ignorable, which implies that the outcome process can be estimated independently

of the missingness process without bias (Rubin and Little, 2002). Determining distinct-
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ness relies upon identifying the missingness mechanism in the data. The classifications of

missingness mechanisms were first introduced by Rubin and Little (1987) and focuses on

further defining the conditional distribution of missingness, based on the relationship be-

tween the random variable for missingness and the outcome (Rubin and Little, 2002). For

panel datasets, this requires defining the relationship between past and current observations.

The most restrictive case is called missing completely at random (MCAR), this assumes that

the missingness random variable is independent of both the observed and missing outcome

thus Rubin and Little, 2002):

Pr(Di = d|yi1, ...., yiT ) = θfor allyi1, ..., yiT (3)

In the case that the missingness variable depends on the observed outcome, but not the

missing outcome it’s known as missing at random (MAR). In the case of panel data, this

implies that missingness can depend on values observed prior to drop out, but not on values

at the time of drop out (Rubin and Little, 2002).

Pr(Di = d|yi1, .., yiT ; θ) = Pr(Rt = d|yi1, .., yi,d−1, θ)for allyi1, ..., yiT (4)

Finally, in the case that missingness depends on both the observed and missing observation,
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the conditional distribution cannot be further simplified and results in the missing not at

random (MNAR) mechanism. From the above discussion, it can be seen that the missingness

mechanism is only ignorable in the MCAR and MAR case. In the case we have reason to

believe that the data follows a MNAR mechanism, it will be necessary to estimate the full

sample selection model.

The Diggle and Kenward model is one of the most widely cited examples of how to opera-

tionalize the sample selection model for the case of attrition in the panel data setting (Diggle

and Kenward, 1994; Rubin and Little, 2002; Molenberghs and Kenward, 2007). The purpose

of their original paper was to develop a model that could accommodate MCAR and MAR as

special cases in an MNAR model (Diggle and Kenward, 1994). Diggle and Kenward noted

in their paper that they believe developing a model that could distinguishing and test for

differences between MNAR and MAR was a more important than distinguishing between

MCAR and MAR (which had been the focus of previous papers) because failure to distin-

guish between the former would result in bias parameter estimates of the outcome equation

(Diggle and Kenward, 1994). In the case that the data are MNAR, individuals who are

observed differ systematically from those who are missing, this implies that the conditional

expectation of Y ∗ is different from Y o (Diggle and Kenward, 1994). More importantly, they

believe that different trends amongst the observed and unobserved individuals drives this

bias. Thus, by incorporating this theory into their selection process, and jointly estimating

the selection and outcome process they can avoid biased estimates.
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To estimation this selection model, we need to make assumptions about the selection pro-

cess (f(R|Y o, Y m, θ) in our previous notation), and the marginal distribution of the outcome

(f(Y o, Y m|β) in our previous notation). One of the most important assumptions in their

model, is that if an individual is still observed at time j = k, the sequence of measurements

(Y = yi1, ...., yik) follows the same as that for the complete outcome (Y ∗ = y∗i1, ...., y
∗
ik), (Dig-

gle and Kenward, 1994). In their model, the sample selection process is a function of the

history of observed observations up to the time of drop out at j = d, Hd = (yi1, ...., yi,d−1,

and y∗id the value of the outcome that would have been observed had the individual not

dropped out. The probability of drop out is given by:

P (R = d|Hd) = pd(Hd, y
∗
id; θ) (5)

Given that this model was only for the attrition pattern, it assumes there is no missingness
in the first time period and that:

P (Yk = 0|Hk, Yk−1 = 0) = 1 (6)

This formulation of the probability of missingness (i.e. the sample selection process) includes

the ability to distinguish between the missingness mechanism discussed earlier, where MNAR

and MAR result from different assumptions about the relationship between missingness and

the unobserved observations. In the case of MCAR, pd() depends on neither Hd nor y∗id; in
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the car of MAR, pd() depends on Hd but not y∗id; and finally in MNAR, pd() depends, most

importantly, on y∗id and possibly also on Hd.

The distribution of the outcome, y∗ij, is represented by f ∗
ij(yij|H∗

j ; β) where H∗
j = i∗i1, ..., y

∗
i,j−1

and is normally distributed, and , while the conditional distribution of yij is represented by

fij(y|Hj; β), where Hj = yi1, ..., yi,j−1. Combining all of this, we can then write the distri-

bution for completers (i.e. those who do not drop out), suppressing the dependence on the

parameters θ, β :

f(y) = f ∗
1 (y1)

T∏
k=2

fk(yk|Hk)

= f ∗(y)

(
t∏

k=2

(1− pk(Hk, yk))

) (7)

And for those who experience drop out at time j = d:

f(y) = f ∗
1 (y1)

(
d−1∏
k=2

fk(yk|Hk)

)
P (Yd = 0|Hd)

= f ∗
d−1(y

d−1)

(
d−1∏
k=2

(1− pk(Hk, yk))

)
P (Yd = 0|Hd)

(8)

Combining across the full population (ie. completers and drop outs) yields a log-likelihood

function which can be written in the following partitioned form:
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L(θ, β) = L1(β) + L2(θ) + L3(θ, β)

Where:

L1(β) =
N∑
i=1

log(f ∗
d−1(yi)

L2(θ) =
N∑
i=1

d1−1∑
k=1

log(1− pk(Hk, yik)

L3(θ, β) =
∑
i:di≤n

log(Pr(R = di|yI))

(9)

To estimate this model, they assume that missingness follows a logistic distribution: logit[pk(Hk, y; θ)] =

θ0 + θ1y+
∑k

j=2 θjyk+1−j. However, in most applications the mechanism is restricted to only

consider the current time period in which an individual drops out, and the previous period

result in the following specification: logit[pk(Hk, y; θ)] = θ0 + θ1yi,j−1 + θ2yj. This formula-

tion of the missingness mechanism also provides the basis for their test of MAR vs MNAR,

which utilizes the earlier discussion of the application of the mechanisms to panel data. In

panel, the missingness mechanism is MAR if it depends on all past observations, but not the

current missing observation, while MNAR depends on the current observation and also the

past. By making their missingness mechanism a function of the history of the outcome they

were able to incorporate both mechanism in such a way that allowed for testing between the

two. To test for an MNAR mechanism consider the coefficient θ2 which is associated with

yij, the observation for the current time period, which may be missing. In the case that θ2

is significantly different from zero, it would imply the presence of an MNAR mechanism.

The outcome model follows a multivariate normal distribution, with a variance covariance
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structure that accounted for serial correlation. In the terminology of econometrics, their

outcome model follows a random effects model (estimated using maximum likelihood) with

adjustment for serial correlation. Given the presence of unobserved random effects, and

missing data the log likelihood is highly complex, with multiple high dimensional integra-

tions (for both missing data and the random effects), and can be difficult to estimate in the

presence of high rates of attrition.

One criticism of this model, and sample selection models in general, is that they are sensitive

to model specification, especially in the sample selection process (Little and Rubin, 2002;

Verbeke et al, 2001; Molenberghs and Kenward, 2007). In the words of Diggle and Kenward

(2002) the sample selection process ”conveys the notion that dropouts are selected according

to their measurement history,” while they attribute this interpretation of the sample selection

process to Heckman (1976) we will see next that this interpretation misses a key assumption

about the sample selection model in econometrics, which is that the sample selection process

is driven by a separate mechanism (Heckman, 1976).

3.2 Heckman Sample Selection Model

Sample selection models were originally developed in the cross sectional setting for cases in

which a large point mass was observed over zero, and it was believed that using just the pos-
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itive values would bias the relationship of interest (Amemiya, 1985). In Heckman’s (1976)

seminal paper on the topic, the interest was in estimating the wage function for women,

however, a large number of observations have a recorded wage of zero in the survey. Their

observations are not missing, rather the zero values reflect their choice not to work. Thus,

to determine the wage equation it must be jointly considered with the individuals choice to

work. In the case that there are unobserved factors which influence both the decision to

work and wages, then estimation using ordinary least squares will be biased. Here, unlike

in the Diggle and Kenward model, the bias is driven by omitted variables that are present

in both the sample selection process and the outcome. Given the theorized presence of the

same omitted variables in both equations, the two equations will be correlated requiring

their joint estimation.

Heckman (1976) noted that this model can be applied to missing data which results in cen-

soring and can also be applied to missing data (Heckman, 1976; Amemiya, 1985). Instead of

choosing to work, individuals now chose to be part of the sample. The model is represented

by the following set of equations:

R = 1ifR∗ > 0

= 0ifR∗ ≤ 0

Y ∗ = Y oifR = 1

= Y mifR = 0

(10)

Where:

14



R∗ = Wθ + V

Y = Xβ + U
(11)

In this formulation of the sample selection model, both the outcome and sample selection

process follows a latent variable process (where R∗, Y ∗ represents the latent variables). This

implies that while we only observe the binary outcome R, the process of selecting into the

same actually follows a continuous process. This latent variable process represents the indi-

viduals optimization problem, in the case that they determine it is optimal to be observed

in the sample R∗ > 0, R = 1 and Y is observed.

The goal of the model is to estimate the outcome equation, Y ∗, however, as was discussed

previously Y ∗ is only observed in the case that that R = 1. The question then is, can we

consistently estimate Y ∗ given the sample selection process?

E(Y |X,R ≥ 0) = Xβ + E(U |V ≥ −Wθ) (12)

Clearly, unless U is independent of V , the conditional mean of W will be non zero, and

a sample selection bias in the parameters of Y will result. Given the linear form of both

the selection process and the outcome, assuming a joint distribution (here bivariate normal)

for the error terms allowed Heckman to derive the exact form of the sample selection bias
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(Heckman, 1976).

(
V
U

)
∼ N{

(
0
0

)(
1 σV U

σV U σ2
U

)
} (13)

Since the error terms are bivariate normal, we also know that the error terms will display a
linear dependence (Vella, 1998).

U |V ∼ N(σV U , σ
2
U − σ2

V U)

U = σV UV + ε

Where:

ε ∼ N(0, σ2
U − σ2

V U)

(14)

We can then substitute this definition for U back into equation ??:

E(Y |X,R = 1) = Xβ + E(σvuV + ε|V > −Wθ)

= Xβ + σV UE(V |V > −Wθ)

Where:E(V |V > −Wθ)describes the mean of a truncated standard normal

= Wβ + σV U

(
φ(Wθ)

1− Φ(−Wθ)

)
= Wβ + σV U

(
φ(Wθ)

Φ(Wθ)

)
= Xβ + σV Uλ(Wθ)

(15)

In the last line, λ(Wθ) is known as the inverse mills ratio, and it indicates the probability

that an individual will be included in the sample. Although this model was not explicitly

16



designed for longitudinal data it can be used in this setting, it would just assume that the

selection process is the same in every period.

One advantage of deriving an explicit form for the bias and utilizing two separate equations

for the selection and outcome process is that it increases the options for estimation. Either

a two step approach which estimates the sample selection bias, or a maximum likelihood

approach which parametrizes the sample selection bias can be used. In either the two step,

or MLE the full sample is used to estimate the sample selection equation, and only those

who are observed are used in the outcome.

Heckman (1976) suggested the two step method, in which the first stage estimated the selec-

tion process using a probit model. Then these results were used to calculate the inverse mills

ratio, which was then used as a variable in the second stage ordinary least squares model.

Alternatively, a maximum likelihood approach can be used, in which the selection equation

and the outcome are jointly estimated, and the correlation between the equations is parame-

terized in the model as ρ. The log likelihood for the MLE for the Heckman model is as follows:

For those who are observed:

Lij = Φ

(
wijθ + (yij − xijβρ/σ

(1− ρ2)1/2

)
− 1/2

(
yij − xijβ

σ

)2

− ln((2πσ)1/2)

For those who are not observed

Lij = lnΦ(−wijθ)

(16)
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Much like the Diggle and Kenward model, the Heckman model also has a test for MNAR, or

the sample selection bias. In the two step model, this is the same as the test for the signifi-

cance of coefficient on the inverse mills ratio, and in the MLE it its he test for significance of ρ.

4 Data

This paper uses baseline, 6month, and 12month data from a cluster randomized control trial

for worksite weight loss to conduct a cost-effectiveness analysis at 12 months. Recruited

worksites were randomly assigned to two groups: a less-intensive quarterly newsletter pro-

gram focused on providing knowledge on healthful eating and physical activity (LMW); or

an individually-targeted internet-based intervention with monetary incentives (INCENT).

To be eligible worksites had to: provide internet access to their employees; have between 100

and 600 employees; have employees physically located in one site with access to a central

location for kiosk weigh-ins; and agree to conduct a brief health survey of the entire employee

population. To be eligible participants had to: be adults (> 18 years old); have a BMI ≥ 25

kg/m2; not currently pregnant or pregnant in the last 12 months; not currently participat-

ing in a weight loss program (e.g. Weight Watchers); free of serious medical conditions (e.g.

terminal cancer, recent heart attack); be employed by one of the participating worksites;

and have access to the internet at their work location. Individuals who withdrew from the

intervention at 6 or 12 months due to medical illness or change in employment were excluded
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from the outcome analysis.

After randomization, 14 worksites were included in the INCENT group and 14 in the LMW

group. Baseline statistics were calculated at the worksite level to ensure balance was achieved

during randomization. Because the panel is unbalanced (i.e. there are different numbers of

participating employees in each worksite) both weighted and unweighted analysis was con-

ducted. The weighted method takes into account the different sized clusters when calculating

means and t-tests (Hayes and Moulton, 2009). Since the results of both methods were sim-

ilar only unweighted means are reported. The similarity of the results provide additional

evidence of the validity of the randomization process. Table 1 contains the baseline sum-

mary statistics. From the table we can see that at baseline the only significant difference

between INCENT and LMW at the cluster level is worksite years (i.e. the number of years

an individual was employed at their worksite) and percentage of employees who are managers.

At baseline, 1790 individuals enrolled for the study (1001 in INCENT and 789 in LMW).

However, one worksite from LMW dropped out at 6 months and thus participating employ-

ees (n=54) from this worksite were excluded from the outcome analysis. Individuals who left

the intervention due to serious medical condition or job loss(n=62), were also exclude from

analysis. Finally, all individuals missing baseline weights (n=48) were excluded. Thus, there

were 27 clusters (14 in INCENT and 13 in LMW) and 1626 individuals (932 in INCENT

and 694 in LMW) included in the analysis.
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For the cost-effectiveness analysis, change in body mass index (BMI) will be used as the

effectiveness outcome. Costs were collected retrospectively (i.e. after the trial ended) and

include both the program costs, and the absolute cost of absenteeism. The calculation of

program costs differed between the two treatment arms. Program fees for the INCENT group

followed the formulation used by a company which currently operates a similar program. The

program fee included a monthly base program fee which was incurred per eligible employee,

which is an important distinction from the number of participating employees, as well as

monthly rental fee for the health spot, travel cost for kick off, and the incentive. The

incentive structure was based off percentage weight loss, all relative to the baseline, and

incentives were earned at 6 months and 12 months. Incentive amounts started at 5% weight

loss, and increased by increments of 5: weight loss of 5-9% earned $5; 10-14% earned $10; 15-

19% earned $15, and >20% earned $20. The total program fee was payed off in installments,

with 60% paid at baseline, 20% at 6 months, and the remaining 20% is paid at 12 months.

The LMW program fees were micro-costed since a pre-existing program did not exist upon

which to base the fee. Since the LMW was an adaptation of the INCENT program, the base

program fee was based off the cost to adapt the newsletter and the mini-sessions. It was

assumed that the the payment scheduled was the same for the LMW worksites as it was for

the INCENT, thus 40% paid at baseline, 20% at 6 months, and the remaining 20% is paid

at 12 months.
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Absenteeism is assessed the same for both groups, using the World Health Organization

(WHO) Health and Work Performance Questionnaire (HPQ) (Kessler et al, 2003;2004).

This survey assesses absenteeism by missed hours of work to account for the variation in

work requirements in different occupations (i.e. the ”typical” 8 hour work day may not be

so typical anymore) (Kessler et al, 2003;2004). Workers are asked not only about the number

of hours they work, but also about how many hours they are expected to work and the num-

ber of additional hours worked to make up for missed time (Kessler et al, 2003;2004). For

this study, absolute absenteeism was utilized, which is calculated as the number of expected

hours per month, less the number of hours worked in the past month. Absenteeism was

valued using the human capital method, which values time away from work at the wage rate

(fringe benefits are also commonly included in implementation). However, this study only

collected information on household yearly income at baseline and in interval form. Thus we

only have information on which interval a household’s income falls into and not their unique

income level. For each interval, the midpoint was used to indicate monthly income and was

used to value monthly absenteeism.

Table 2 includes the summary statistics on the total costs of the program for the LMW and

INCENT group. As with the BMI outcome, the observations associated with the worksite

from LMW that dropped out at 6 months (n=54) were excluded from the outcome analysis.

Individuals who left the intervention due to serious medical condition or job loss(n=62), and

were missing their baseline program costs (n=87) were also exclude from analysis. Thus,
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at baseline there are 1587 observations (914 in INCENT, 673 in LMW). While there is

generally a concern with health costs being skewed, this is generally in reference to direct

medical costs, which can be very large for the few individuals who are very ill (Briggs and

Gray, 1998; Blough et. al, 1999; Briggs et. al, 2005; Gilleski and Mroz, 2004; Manning etl

al, 2005; Manning and Mullahy, 2001; Mihaylova et. al, 2011). However since we do not

have information on direct medical costs for this study, we are not concerned with a skewed

distribution.

By 6 months, 443 individuals were missing outcome values for the effectiveness outcome,

BMI (258 in INCENT and 185 in LMW), resulting in 27.24% attrition (27.68% in INCENT

and 26.66% in LMW). By 12 months, 672 individuals (400 in INCENT and 272 in LMW)

had missing BMI values, resulting in attrition of 41.33% (42.92% in INCENT and 39.19% in

LMW). For costs, by 6 months 454 individuals had missing outcome (277 in INCENT, 177

in LMW) and by 12 months 646 individuals had missing outcomes (387 in INCENT, 259 in

LMW).

5 Methods

For the case study portion of this paper we will consider the performance of the Heckman

and Diggle Kenward sample selection models when applied to the cost and effectiveness out-
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comes of the 12 month outcomes for the worksite weight loss program. We also include the

results from a linear mixed model that ignores missingness as a comparison to detect bias,

but includes random effects at the individual level and controls for autocorrelation.

The results from the linear mixed model are used as starting values for the DK sample

selection model with the MCAR missingness mechanism. To estimate the DK sample selec-

tion model with MNAR missingness mechanism (the mechanism of primary interest) it is

necessary to estimate the MCAR, then MAR and finally the MNAR versions of the model.

The results from the MCAR model serve as the starting values for the MAR model, and the

results from the MAR model are used as starting values for the MNAR model.

To estimate the Heckman sample selection model we need to specify a selection equation,

which includes at least one variable that is not included in outcome model. For these pre-

liminary results we utilize gender and age in the selection equation. In both models, for the

outcome equation we use a simple program evaluation specification with a dummy variable

for the INCENT group, and treatment interaction terms (time X group indicator) for both

INCENT and LMW. Additionally, for the cost data, the outcome had to be estimated in the

cost per millions.
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6 Results

Since the primary purpose of this paper is to investigate the performance of two sample

selection, analysis of the preliminary results will focus on comparing the estimates for the

two treatment interaction term (INCENT X Time) from the different models. In the case

that significant sample selection bias was present in the worksite data we would expect to see

large differences between the point estimates in the linear mixed model, which represents the

more naive model that ignores missingness, and the sample selection models which should

address bias from attrition.

Table 4 contains the result for the cost data, and from comparing the results from the linear

mixed model to those from the MNAR DK model and the Heckman model, we can see there

isn’t much difference, which would suggest, at an initial glance, that there does not appear

to be a sample selection bias in the cost data. Additionally, the DK and Heckman models

given similar results. Table 3 contains the results for the effectiveness outcome, where we

can see there are more substantial differences both between the linear mixed model and the

sample selection models, as well as between the two sample selection models. It should also

be noted hat the missing values in the variance covariance matrix in the MNAR model are

indication that we have not yet achieved convergence in the DK model. The differences

between the linear mixed model and the sample selection models may indicate the presence

of selection bias. However, given that the Heckman model relies on linear regression in the
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outcome, which may be biased when utilized with CRT data a simulation is necessary to

further investigate the varied performance between the two estimators.

Additionally, when comparing the performance of the two sample selection models it is also

important to consider the ease of estimation. For both costs and effectiveness, the DK model

required substantial additional time to estimate as models could take upwards of 15 minutes

to achieve convergence. Both also required the convergence criteria to be relaxed in order to

achieve convergence. For effects, even after substantially relaxing the convergence criteria it

was still not possible to achieve convergence in the MNAR model.

Given the differences in the performance of the two models between the cost and effect out-

comes, it suggests the need for a simulation to isolate the effects that different parameters

in the cluster randomized trial have on the relative performance of the two models. Follow-

ing the work of previous simulation papers which evaluated the performance of estimators

for CRT in the cross sectional setting, we will include the number of clusters, cluster size,

intraclass correlation coefficient (ICC) as parameters in our simulation(Gomes et al, 2011).

Given the application to the CEA and longitudinal data, we will also explore the effects of

the level of correlation between outcomes, as well as the strength of the trend that occurs in

individual outcomes over time.
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7 Tables

Table 1: Baseline Summary Statistics, Cluster Level

Total INCENT LMW
BMI 33.32 33.24 33.39

(1.41) (1.48) (1.39)
Severity 5.62 5.57 5.67

(2.46) (2.87) (2.09)
Caucasian(%) 77.32 72.66 81.97

(21.83) (20.60) (22.78)
African American(%) 19.14 24.02 14.26

(21.75) (20.99) (22.15)
Other(%) 3.55 3.32 3.79

(2.49) (2.23) (2.78)
Female(%) 73.82 80.21 67.43

(20.01) (10.84) (25.02)
Male(%) 26.18 19.79 32.57

(20.01) (10.84) (25.02)
Spouse(%) 60.71 58.28 63.14

(7.94) (7.36) (8.00)
Worksite Years 9.75 8.12 11.38**

(3.37) (3.00) (2.98)
Heart Disease(%) 4.71 2.71 6.70

(8.06) (3.66) (10.63)
Diabetes(%) 10.37 8.54 12.21

(8.89) (5.67) (11.17)
High Blood Pressure(%) 32.54 29.04 36.03

(11.41) (10.85) (11.25)
Arthritis(%) 18.34 14.94 21.74

(10.33) (5.24) (13.02)
Income<$50,000(%) 37.93 39.63 36.22

(16.17) (16.83) (15.92)
Income $50,000-$99,999(%) 38.10 37.68 38.53

(7.56) (5.53) (9.36)
Income>$100,000(%) 21.51 21.28 21.73

(13.72) (13.98) (13.99)
Manager(%) 14.14 11.28 17.01**

(6.02) (4.27) (6.27)
Sales(%) 7.56 9.97 5.15

(14.60) (18.90) (8.54)
Service(%) 3.48 3.60 3.35

(4.14) (3.96) (4.46)
Office(%) 19.83 21.63 18.03

(9.57) (10.63) (8.38)
Equipment(%) 7.29 5.66 8.91

(13.76) (13.74) (14.11)
Other(%) 15.07 15.15 14.99
Stars refer to a significant difference between the INCENT and LMW group

*= p <.05 **= p <.01 ***= p <.001
Continued on next page
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Table 1–continued from previous page
Total INCENT LMW
(8.54) (9.88) (7.35)

Note: Weighted means were also calculated, but because they were
very similar to unweighted means the results are not reported

Stars refer to a significant difference between the INCENT and LMW group
*= p <.05 **= p <.01 ***= p <.001

Table 2: Summary of Costs (INCENT vs LMW)

Cost Baseline
mean(sd) Program Cost Absenteeism Cost Incentive Cost Total Cost Count
INCENT 64.02 19,258.39 19,323.36 911

(17.27) (262,697.48) (262,695.87)
LMW 25.33 -1,540.91 -1,515.62 670

(7.17) (254,510.76) (254,510.45)
Total 47.5 10,444.01 10,492.16 1,581.00

(23.65) (259,382.24) (259,381.94)
Cost 6 Months

Program Cost Absenteeism Cost Incentive Cost Total Cost Count
INCENT 32.01 23,165.54 1.09 23,198.97 643

(8.63) (281,146.74) (3.16) (281,146.01)
LMW 12.66 15,909.09 15,921.77 500

(3.58) (315,522.16) (315,522.02)
Total 23.75 19,991.24 20,015.59 1,143.00

(11.82) (296,562.76) (296,562.43)
Cost 12 Months

Program Cost Absenteeism Cost Incentive Cost Total Cost Count
INCENT 32.01 12,796.26 1 12,830.03 530

(8.63) (257,653.97) (2.69) (257,653.58)
LMW 12.66 26,694.88 26,707.71 419

(3.58) (262,390.80) (262,390.94)
Total 23.75 18,932.74 18,957.27 949

(11.82) (259,710.21) (259,709.77)
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Table 3: Sample Selection Models: Effectiveness

Coef(SE) Diggle Kenward
Linear Mixed Model MCAR MAR MNAR Heckman

Outcome: BMI
INCENT X Time -0.91981 -0.8914192 -0.8865487 -0.8868919 -1.6363

(0.1561592) (0.1585991) (0.1585149) (0.1585111) (0.2008)
LMW X Time 0.31793 0.3149041 0.3020068 0.3024478 0.546

(0.1785604) (0.1806888) (0.1805895) (0.1805853) (0.2192)
Selection

Costj−1 0.0273798 2.19E-01
( 0.00657176) (1.69E-05)

Costj 1.591342
(NaN)

Age 2.11E-05
(1.46E-05)

Female -1.36E-01
(3.70E-02)

Table 4: Sample Selection Models: Costs

Coef(SE) Diggle Kenward
Linear Mixed Model MCAR MAR MNAR Heckman

Outcome: Cost/10e5
INCENT X Time 0.00726 0.00712 0.00707 0.00777 0.00706

( 0.00658) (0.00665) (0.00665) (0.00774) (0.00744)
LMW X Time -0.00974 -0.00969 -0.00979 -0.01037 -0.00795

(0.00752) (0.00760) (0.00760) (0.00827) (0.00854)
Selection

Costj−1 0.16097 0.21116
(0.17015) (0.19494)

Costj 0.07599
(0.35429)

Age 2.89E-05
(1.96E-05)

Female -1.84E-01
(4.75E-02)
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