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ABSTRACT 

Logit and probit models are designed to estimate latent variable models. However, there are 

cases that these estimates are used, even though the latent variable is fully observable. The most 

prominent examples are studies about obesity, where they calculate BMI based on two observed 

variables: weight and height squared. They translate BMI into a binary variable (e.g.  obese or not 

obese) and this index is used to examine factors affecting obesity. This study determines the loss in 

efficiency of using logit/probit models versus the conventional OLS (e.g. with unknown variance). 

We also compare the marginal effects between these models. The results suggest that OLS is a more 

efficient than the logit/probit models when estimating the true coefficients, regardless of the 

multicollinearity, fit of regression and cut-off probability. Likewise, OLS provided unbiased 

marginal effects compared to both binary response models. It is also less likely to be biased. We can 

conclude, that according to our Monte Carlo simulation, when the latent variable is observable, it is 

better to use the continous value and regress it with respect to their explanatory variable instead of 

converting it into a latent variable.  

Keywords: efficiency, logit, probit, BMI, bias, latent variable. 

JEL codes: B23, C01, C18, C51 

 

 

  



SECTION 1 – INTRODUCTION AND LITERATURE REVIEW 

1.1 Relevance of the topic 

Latent variables are variables which are not directly observed but rather inferred 

according to specific criteria. When a latent variable is used as a dependent variable in a regression, 

it is called an index variable (Greene 2008). More specifically, suppose we have the following 

regression model: 

 𝑌∗ = 𝑋𝛽 + 𝑒 (1.a) 

 𝑌 = 1, 𝑖𝑓 𝑌∗ > 𝑑 (1.b) 

where 𝒀∗ as the unobserved dependent variable, 𝑿 is the vector of independent variables, 𝜷 

is the vector of parameter estimates and 𝒆 is the vector of error terms. All is known about 𝒀∗ is 

whether it exceeds or falls short of some threshold d. Then, the model is called as a latent variable 

model or index function.  

The index function is typically estimated with probability models, using non-linear methods 

such as logit or probit, depending on the assumed distribution of the error 𝑒. Then, the goal is to 

measure the effect of 𝑿 on the probability that the unobserved 𝒀∗ exceeds d. Estimation of latent 

variable models is now routine. Nevertheless, the estimated coefficients of the models are not 

estimates of 𝜷, but a standardized 𝜷. Hence, aside from the sign, the estimates from this model lead 

to no direct interpretation (Greene 2008). But they are used to obtain marginal effects, which 

measures the effect of a small change in X on the probability the event occurs.  

For example, if 𝒀∗ is a consumer’s reservation price for a commodity (e.g. an automobile), 

all that is observed and recorded is whether the item was purchased. This indicates that the unseen 

reservation price exceeds the observed actual value. If reservation prices were observable, then the 

“index function” would be a standard regression model, easily estimated by OLS, with 𝜷 being the 

estimate of 𝑿 on a consumer’s willingness to pay. Thus, the lack of information due to the fact that 

𝒀∗ is an unobservable variable makes the binary models the second best solution. However, there 

are cases that these estimates are used, even though 𝒀∗ is fully observable. 

The most prominent example is the case of the studies about obesity, which is an important 

topic in the nutrition area. BMI can be calculated as weight divided by the height squared. This 

variable is used to determine if a person is obese (BMI > 30) to create an dichotomous index (e.g. 

obese or not obese). Numerous studies have used this index to examine factors affecting obesity, 

which is in this case a binary variable (Gundersen et al. 2008, Fang, Ali, and Rizzo 2009, Ibrahim et 

al. 2014, de Mola et al. 2012). 



In this case Y is “if a person is obese” and Y* is BMI, and although the latent variable Y* can 

be observed (and therefore the model could be fully estimable), it often is not estimated or used. 

Another example is in term of education, in which the surveys may contain the grades of the 

students (e.g. grade point averages (GPA) and even sometimes more detailed information). 

Nevertheless, sometimes it is preferred to group grades by a different scale (Kim 1999, Grant 2007) 

or in a pass/fail standard.  

 A natural question is why that might be case.  There are some arguments that could provide 

some explanations: 

(i) One possibility, which seems to be true in the literature on overweight, is that the focus 

of the study is on the discrete event (de Mola et al. 2012).  Interest is usually not, for example, the 

effect of income on BMI, but its effect on whether someone is likely to be obese.   

(ii) A similar argument can be made when studying the likelihood of passing a test based on 

a numerical score, or of getting a loan based on an individual’s credit rating.  What matters is 

whether the individual succeeds, not by how much they might succeed, so the success or failure 

becomes the focus of analysis.  If the objective is to understand why students pass/fail, then interest 

is in the marginal effects on the probability of success, which is computed using the coefficients of 

the estimated probability function. Notwithstanding, a problem with this argument is that if the 

index function can be directly estimated this provides everything need to calculate the marginal 

effects in the usual way. 

1.2 Contribution and objective of the study 

Davidson and MacKinnon (2004) pointed out that “It is interesting to ask how much 

efficiency in estimation (of a binary model) is lost by not observing the latent variable. Clearly 

something must be loss, since the binary variable like 𝒚𝒕 must provide less information than a 

continuous variable like 𝒚∗
𝒕”. Nevertheless, a study that measures the loss in efficiency of using a 

binary variable model rather than OLS has not been previously conducted. 

 Thus, the purpose of this study is to examine the loss in efficiency of using logit/probit 

models versus the conventional OLS (e.g. with unknown variance).  In order to do this, we use 

Monte Carlo methods to compare OLS vs binary response models. This information is useful for the 

interest of studies like those mentioned above, when the latent variable is observable but it is used 

only as a discrete variable.  

 



For this research, we focus only in the logit/probit dichotomous version (e.g. the dependent 

variable only can take values of 0 and 1). Although this study addresses a specific case, the 

conclusions could apply also to the ordered probit/logit models (e.g. where the variable can take 

values of 0, 1, 2, ...).  

SECTION 2 – THEORETICAL FRAMEWORK AND METHODOLOGY 

2.1 The Data: Monte Carlo simulation 

In this study we use Monte Carlo simulation methods to compare OLS to probit/logit under 

various conditions when Y is observed.  We employ a program which is a combination of SAS 

procedures and matrix code. The main interest is the coefficients of the index function and the 

marginal effects, in particular, the efficiency of estimation and the extent of any bias.  The 

methodology is described in figure 1. 

 
Figure 1. Flow for the methodology of the study 

The data generating process is a simple two-variable linear index function, in which we fix 

error variance and alter variable correlation (r), number of observations in a sample (n), the 

explanatory power of the model (R2) and the threshold of success (c).  

We assume for this study there is not heteroskedasticity, a dependent variable (y) that is 

observable and two independent variables (x2 and x3) with a correlation r that defines the 

multicollinearity between them. x2 and x3 are uniform random variables.  

The total number of experiments per scenario is 50. The true model is given by the 

following model: 

 𝑦∗ = 20 + 𝑥2 + 𝑥3 + 𝑒 (2)  

where 𝑒 is the error term which is normally distributed, so that probit is the theoretically 

appropriate estimator of the probability function.  



2.2 The model scenarios 

 For all scenarios the error variance 𝜎2 is set to 1. We vary the multicollinear correlation r, 

the R2 of the model, n (number of observations per sample) and c (the threshold of success). A total 

of 135 scenarios per 50 experiments were obtained. 135 scenarios are the result of: 

 3 multicollinear correlations (r =0, 0.4, 0.8),  

 3 values for the fit of the model (R2 =0.1, 0.3, 0.8), 

 3 thresholds of success for the binary response (c = 0.1, 0.25, 0.5 percentiles of y*) and 

 5 sample sizes (n = 30, 50, 100, 500, 1000). 

2.3 The model estimations 

The models to be estimated are OLS and two types of binary response models (probit/logit) 

following the scheme of figure 1.  

(i) Binary response models 

Here the latent variable is assumed to be not observed (Y*). In this type of models, Y can 

only take values of 0 and 1, given a threshold c: 

 𝑌 = {  
1 ,           𝑖𝑓 𝑌∗ > 𝑐
0 ,           𝑖𝑓 𝑌∗ ≤ 𝑐

 (3) 

 The cutoff 𝒄𝒊 is the ith percentile of 𝑌 which varies over the experiments (i=50, 25, 10), so 

the probability of success p is (1 − 𝒄𝒊) (p=0.5, 0.75 and 0.9).  

 The objective is to model the probability of success (p) given the information set 𝛀, as before. 

However, binary response models use a transformation function F(m) with the following 

properties: 

 𝐹(−∞) = 0,       𝐹(∞) = 1       and        𝑓(𝑚) =
𝜕𝐹(𝑚)

𝜕𝑚
> 0 (4)  

 where F(m) is a monotonically increasing function on m which lies between 0 and 1. Thus, 

the binary response model would have the following specification for a linear index function: 

 𝑝 = 𝐸(𝑌 ∥ Ω) = 𝐹(𝑋𝜃) (5)  

 thereby, 𝐸(𝑌 ∥ Ω) would be simply a non-linear transformation F of  𝑿𝜽, which must lie 

between 0 and 1 (Greene 2008).  

Thus, the regression as modeled for both cases follows, depending on the transformation of F(.): 

 𝐹−1(𝑦) = 𝐹−1(𝑝) = 𝜃1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝑢 (6)  



In logit/probit models, 𝜽 does not directly estimate the effect of 𝑿 on the probability1. The 

marginal effect of the variable 𝑿𝒊 is a nonlinear transformation 𝑿, given by: 

 
𝜕𝑝

𝜕𝑋𝑖
=

𝜕𝐹(𝑋𝜃)

𝜕𝑋𝑖
= 𝑓(𝑋𝜃)𝜃𝑖 (7)  

 Furthermore, the effect on p of one of the independent variables is the greatest when 

𝒑 = 𝟎. 𝟓 and the least when p is either closer to 0 or 1. Two particular specifications are the most 

employed for F(.), which are called the probit and logit models (Davidson and MacKinnon 2004). 

i.A) Probit model- For this model, the transformation function F(.) is the cumulative standard 

normal distribution function (this transformation F(.) will be denoted specifically as ∅(.) for a 

variable X)  given 𝑥: 

 ∅(𝑥) = ∫
1

√2𝜋
𝑒𝑥𝑝(−

1

2
𝑋2)𝑑𝑋

(𝑥)

−∞
 (8)  

 Thus, we have that the probit model is written as: 

 ∅−1(𝑌) = 𝑋𝜃 + 𝑒,           𝑒 ∼ 𝑁(0,1) (9) 

 Because we only observe if Y*>c, units do not matter and the variance 𝜎2 of e can be 

normalized to be equals to 1. If 𝜎2 ≠  1, then our coefficient 𝜽 is not the same as 𝜷 because it has 

been normalized to have a variance of 1 (Davidson and MacKinnon 2004), in other words: 

 𝜃 =
𝛽

√𝜎2
 (10) 

i.B) Logit model- The model has similar characteristics to the probit model but it is easier to deal 

with (Greene 2007). The transformation function F(.) is the logistic function ∧ (.): 

 ∧ (�̇�) =
𝑒𝑚

1+𝑒𝑚 (11)  

 Thus, the logit model can be written as: 

 ln (
𝑝

1−𝑝
) = 𝑋𝜃 + 𝑒 (12) 

 or, alternatively (Greene 2008): 

 𝑝 =
𝑒𝑥𝑝(𝑋𝜃)

1+𝑒𝑥𝑝(𝑋𝜃)
=∧ (𝑋𝜃) (13) 

ii.C) Similarities and differences between the models: According to Davidson and MacKinnon (2004), 

both models logit and probit tends to provide similar results. The difference between both models 

resides in the way that 𝜽 is scaled.  

                                                           
1 In order to calculate the true intercept (𝛽1), we need to adjust the intercept (𝛽𝑖𝑛𝑡) provided by the program 

subtracting the threshold, in other words: 𝛽1 = 𝛽𝑖𝑛𝑡 − 𝑐 (for more details see Greene (2008) ) 



For both cases, we are estimating: 𝜃 =
𝛽

√𝜎2
 in which, for the case of the logit model, the 

logistic distribution has a variance of 𝜋2/3, while for the probit model, the standard normal 

distribution has a variance of 1. This means that usually the estimates from the logit are larger than 

the probit model. This means that in order to obtain the true coefficients of the index function, we 

need to multiply by the √𝜋/3 the coefficients of the logit.  

For these models, the marginal effects are calculated as in equation (7), depending on the 

appropriate distribution function. 

 (ii) Ordinary Least Square (OLS) 

For the estimation, the latent variable is observed (y*) and assuming the variance is 

unknown and it has to be estimated. Thus, the model is simply calculated as: 

 𝑦 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝑒 (14) 

 in which 𝛽’s are the coefficients to be estimated, and the normal errors are normally 

distributed and homoscedastic with an estimated variance �̂�2. Then we proceed to calculate the 

effects of each variable in the probability of success. First we obtain 𝜽𝒊
𝑶𝑳𝑺 of each variable i:  

 𝜃𝑖
𝑂𝐿𝑆  =

�̂�

√�̂�2
 (15) 

 Then, in order to compute the marginal effect of each variable (𝑴𝑬𝒊
𝑶𝑳𝑺), we approach it 

using the formulation: 

 𝑀𝐸𝑖
𝑂𝐿𝑆 = 𝑔(𝑥𝑖𝜃𝑖

𝑂𝐿𝑆)𝜃𝑖
𝑂𝐿𝑆 (16) 

 where 𝒈(.) is the probability density function of the standard normal distribution of 𝒙𝒊𝜽𝒊
𝑶𝑳𝑺. 

The standard deviations will be obtained according to equation (16) for each of the beta 

coefficients. 

2.4 OLS vs. binary response models 

As mentioned above in (10), the estimate coefficients from the binary models (with 

unobservable dependent variable) are not estimates of 𝛽 but of 𝜃 in which 𝜃 = 𝛽/√𝜎2. Hence, aside 

from the sign, the estimates from this model lead to no direct interpretation. But they are used to 

obtain the marginal effects.  

In order to compare our models, we standardize our coefficients from the OLS (which 

directly estimates the index function using the observable Y*). Thus, we use �̂� and �̂�2 from 



estimating the index function by OLS to obtain θ.  The marginal effects can then be estimated in the 

usual way.   

Loss in efficiency for using latent variables 

As we have seen, in the case where Y is a latent variable, there is a penalty represented by 

the loss of efficiency due that we have less information than if we would have a continuous variable 

(Y*) (Greene 2007). The OLS variance-covariance matrix for the 𝛽 estimates (VC(𝜷)OLS)is given by: 

 𝑉𝐶(𝛽)𝑂𝐿𝑆 = (𝑋𝑇𝑋)−1 (17) 

In contrast, the variance-covariance matrix of the probit model estimates for 𝛽 

(VC(𝜷)Probit)is:  

 𝑉𝐶(𝛽)𝑃𝑟𝑜𝑏𝑖𝑡 = (𝑋𝑇Ψ(𝛽)𝑋)−1 (18) 

where Ψ(𝛽) is defined as: 

 Ψ(𝛽) =
𝑓2(𝑋𝛽)

(𝐹(𝑋𝛽)(1−𝐹(𝑋𝛽)) 
  (19) 

The largest value for Ψ(𝛽) is 0.6366 for the probit model which is reached at 𝒑 = 𝟎. 𝟓. 

Hence, in the best scenario, with the largest p, variance of the parameter for a probit model is:  

 𝑉𝐶(𝛽)𝑃𝑟𝑜𝑏𝑖𝑡 =
𝑉𝐶(𝛽)𝑂𝐿𝑆

0.6366
=  1.57 𝑉𝐶(𝛽)𝑂𝐿𝑆  (E.20) 

Thus, probit/logit model are much less efficient than the OLS model when using latent 

variables (Davidson and MacKinnon 2004). This means that in theory, if we have the possibility to 

observe the latent variable, it would be beneficial to use it and avoid the loss in efficiency, especially 

if p has values close to 0 or 1. 

Therefore, since OLS uses more sample information, we would expect greater estimator 

efficiency.  In addition, the coefficients of the index function are likely to be of interest themselves, 

irrespective of the primary purpose of a study. 

SECTION 3- RESULTS AND DISCUSSION 

 Here, we provide the results from the simulations explained in section 2. Because it would 

be redundant to explain all the scenarios, we describe the most representative results considering 

that the results are similar for all the scenarios. Sub-section 3.2 reports the estimation of the 

coefficients and standard deviation for the models (e.g. OLS, probit and logit) for a sample of the 

results, whereas sub-section 3.3 discusses the marginal effects of the estimates. 

 



3.1 Results with respect to estimation of parameters of the index function 

Table 1 describes the results of one of the scenarios, which has a threshold of 0.25, a low 

correlation (r=0.4) and a high fit (R2=0.8) and a medium sample size (n=100). The entries in the 

table are the sample means the sample standard deviation over 50 iterations of the index function 

coefficients. The true values of these coefficients are 20 for the coefficient and 1 for the slopes, as 

described in equation (2). From the table 1 we see that OLS estimates have averages very close to 1 

while the probit and logit estimates exceeds 1, especially for x2. Dividing the standard deviations by 

√50 to get the standard deviation of the mean, we find that the  probit and logit estimates for 𝛽2 are 

significantly different from 1 at p-value<0.05. Thus there appears to be some bas in these estimates. 

Furthermore, as expected the logit and probit estimates have larger standard deviation than the 

OLS results (e.g. their values are over two times higher for x2 and x3). This illustrates a loss in 

efficiency in this case.  

Table 1 Estimation of the models with r=0.4, R2=0.8, c=0.25, n=100 

Model Variable Coefficient 
Standard 
deviation 

Confidence 
interval 

LOGIT 

Intercept 19.47 1.886 (18.937 , 20.003) 

x2 1.11 0.358 (1.009 , 1.211) 

x3 1.03 0.276 (0.952 , 1.108) 

PROBIT 

Intercept 19.35 1.832 (18.832 , 19.868) 

x2 1.13 0.368 (1.026 , 1.234) 

x3 1.04 0.258 (0.967 , 1.113) 

OLS 

Intercept 19.96 1.333 (19.583 , 20.337) 

x2 1.01 0.110 (0.979 , 1.041) 

x3 0.99 0.123 (0.955 , 1.025) 

  

We now examine the two extreme cases to observe if there is still gain in efficiency using 

OLS when the dependent variable is observable. First, we present one “pessimistic case” of our 

scenarios: to be one of the extremes of the probability of success (p=0.9 or threshold c=0.10), high 

correlation (r=0.8) and low fit to the regression (R2=0.1) and small sample size (n=50). These 

results are displayed in table 2. Here, the standard error logit and probit estimates are again much 

larger than the OLS estimates.  

 

 



Table 2 Estimation of a pessimistic case with r=0.8, R2=0.1, c=0.1, n=50 

Model Variable Coefficient 
Standard 
deviation 

Confidence 
interval 

LOGIT 

Intercept 19.69 1.432 (19.285 , 20.095) 

x2 1.64 3.735 (0.584 , 2.696) 

x3 0.86 2.760 (0.079 , 1.641) 

PROBIT 

Intercept 19.70 1.351 (19.318 , 20.082) 

x2 1.63 3.596 (0.613 , 2.647) 

x3 0.76 2.672 (0.004 , 1.516) 

OLS 

Intercept 20.42 2.273 (19.777 , 21.063) 

x2 1.24 1.427 (0.836 , 1.644) 

x3 0.75 1.363 (0.364 , 1.136) 

 

As shown in table 2, for the three models, the standard error of the estimates for 𝛽2 and 𝛽3 

became larger than in the previous case.  As a consequence, our confidence intervals become larger 

and the estimates are unbiased for the three models. But again, OLS was the most efficient unbiased 

estimator.   

We examine now one of the “optimistic” scenarios: low (or null) correlation (r=0), high fit to 

the regression (R2=0.8), large sample size (n=1000) and the optimal probability of success (p=0.5 

or threshold of c=0.5). The output of the models is displayed in table 3. For this case, the standard 

deviations for the parameter estimates of x2 and x3 are much lower than before due to large sample.  

Table 3 Estimation of an optimistic case with r=0, R2=0.8, c=0.5, n=1000 

Model Variable Coefficient 
Standard 
deviation 

Confidence 
interval 

LOGIT 

Intercept 20.11 0.295 (20.024 , 20.191) 

x2 0.97 0.066 (0.956 , 0.993) 

x3 0.98 0.065 (0.961 , 0.998) 

PROBIT 

Intercept 19.99 0.291 (19.907 , 20.072) 

x2 1.00 0.065 (0.980 , 1.017) 

x3 1.00 0.062 (0.986 , 1.022) 

OLS 

Intercept 20.00 0.456 (19.870 , 20.128) 

x2 1.00 0.033 (0.986 , 1.005) 

x3 1.00 0.033 (0.989 , 1.008) 



Again, despite the magnitude of the standard deviations, the results in the optimistic 

scenario give similar conclusions to the two previous cases: The three models provide estimate 

coefficients similar to the true values. However, in this case, logit provided biased results for 𝛽2 and 

𝛽3 (significantly different from 1 at p-value<0.05). As in the previous scenarios, OLS is more 

efficient than logit/probit, by about the same relative magnitude.  

We will now summarize results by varying one of the parameters while we fix the other 

three. First, we will evaluate the correlation. We use the scenario: a threshold of 0.5, with low fit in 

the regression (R2=0.3), and largest sample size (n=1000). What varies is the correlation between 

x2 and x3 (r=0 to 0.9) and it is represented in the x-axis. Figure 1 displays the results of the standard 

deviation of the coefficient estimates for x2 (y-axis).  

 

Figure 1. Standard deviation of x2 coefficients when c=0.5, R2=0.3, n=1000 and varying r 

 As shown in figure 1, for the three models, an increase in multicollinearity increases the 

standard deviation (e.g. everything else fixed). However, the standard deviation is substantially 

lower for the OLS results in presence of multicollinearity. On average from figure 1, OLS was 

approximately 34% and 40% more efficient than logit and probit, respectively.  This is consistent 

with the theoretical results from Davidson and MacKinnon (2004) which mentions that the 

standard deviation of the logit/probit models would be higher than the OLS values. 

 On the other hand, in Figure 2, the parameter that varies is R2, in this case we analize the 

standard deviation for the coefficients of x3. We observe in the graph that logit/probit performs 

worse than OLS estimation. Also, ceteris paribus, a higher R2 suggest a lower standard deviation for 



the parameters. Because in all simulations we kept the error variance fixed at 1, increasing R2 was 

achieved by increasig the variation in X, thus reducing the relative error variance.  

  

Figure 2. Standard deviation for x3 coefficients when c=0.5, r=0.4, n=100 and varying R2 

Likewise, figure 3 displays the standard deviations for the coefficient estimates of x3, when 

we vary the sample size n, ceteris paribus. As we can observe, higher sample size decreases the 

variance which is consistent with theory. In this case, OLS is particularly more efficient when the 

sample size is small (sample n=30). The difference in efficiency is much smaller when the sample 

size is high (n=1000).  

 

Figure 3. Standard deviation for x3 coefficients when c=0.25, r=0.4, R2=0.3, and varying n 



Finally, we vary the threshold of success c, whereas we hold the other parameters constant. 

We analyze the standard deviation for the coefficient parameter of x2. Figure 4 indicates that OLS 

performed better in terms of efficiency against both binary models. OLS shows a more constant 

variation independently of the threshold of success, which is not true for the logit/probit model. 

The difference is lower when c=0.5, which is consistent with Davidson and MacKinnon (2004), 

which mentions that c=0.5 (which is analogous to p=0.5) provides the lowest difference in standard 

deviations between the two types of models. 

 

Figure 4. Standard deviation for x3 coefficients when, r=0, R2=0.8, n=100 and varying c 
 

4.2 Results with respect to the marginal effects 

 We now consider marginal effects. There are two issues of importance. One is efficiency 

estimation, as before. The second is whether marginal effects of these models are similar to the true 

model. First, we consider the latter. We calculate the true marginal effects (e.g. calculated with true 

coefficients and the appropriate sample means). Then, we take the difference between the 

estimated marginal effects of each model versus the true marginal effect. We also computed the 

standard errors of all the difference to test for biasness.  

Table 4 and 5 show two scenarios where we did these comparisons. We first note that the 

true marginal effects are not the same in the two cases in the tables. This is because as explained 

above, in order to increase R2, we increase the variation of X. Hence a “small” change in X in 

scenarios with different R2’s refer to different magnitude of small. This affects the marginal effects. 

As we can observe in tables 4 and 5, the standard deviation of x2 and x3 are lower when they 

are estimated through OLS. The difference between these models increases substantially when the 

sample size is small (n=30). Interestingly, in both scenarios (with different R2’s), the bias is high 

and statistically significant (p-values<0.05) for logit and probit. In contrast, OLS provides unbiased 



results for the marginal effects of x2 and x3. In this sense, OLS is the most preferred model to be 

used. 

Table 4 – Marginal effects and their bias when r=0.4, R2=0.3, c=0.1, n=100 

Model Variable 
Marginal 

effect 
St. dev. of 

Marg. Effect 
Bias 

St. Dev. of 
bias 

T-test of 
bias 

LOGIT 
x2 0.10 0.044 -0.023 0.061 -2.67** 

x3 0.10 0.041 -0.027 0.06 -3.18* 

PROBIT 
x2 0.11 0.052 -0.01 0.069 -1.02 

x3 0.11 0.053 -0.013 0.065 -1.41 

OLS 
x2 0.12 0.041 -0.006 0.049 -0.87 

x3 0.12 0.035 -0.003 0.041 -0.52 
Statistical significance star codes: 0 ** 0.1 * 0.5  

 

Table 5 – Marginal effects and their bias when r=0.4, R2=0.8, c=0.5, n=30 

Model Variable 
Marginal 

effect 
St. dev. of 

Marg. Effect 
Bias 

St. Dev. of 
bias 

T-test of 
bias 

LOGIT 
x2 0.59 0.327 0.217 0.33 4.65** 

x3 0.53 0.317 0.156 0.32 3.45** 

PROBIT 
x2 0.56 0.323 0.188 0.327 4.07** 

x3 0.51 0.316 0.13 0.32 2.87* 

OLS 
x2 0.40 0.090 0.02 0.09 1.57 

x3 0.39 0.070 0.009 0.069 0.92 
Statistical significance star codes: 0 ** 0.1 * 0.5 

 Finally we show in figure 5 two different cases, when we varied the sample size, how the 

lines M.E. of OLS and probit become similar with larger sample size. In contrast, there was 

differences when the sample size was small (n=30 or 50). The logit values were different than the 

other two models, especially with low sample size. This illustrates the small sample bias of 

probit/logit which does not appear to affect OLS.  

 

Figure 5. Marginal effects for of x2 when c=0.1, r=0.4, R2=0.3 (Left);  

and c=0.5, r=0.4, R2=0.8 (Right) and varying n 

Note that the graph on the right has been rescaled. 



SECTION 4 – SUMMARY AND CONCLUSIONS 

Logit and probit models are designed to estimate latent variable models. However, there are 

cases that these estimates are used, even though the latent variable is fully observable. The most 

prominent examples are studies about obesity, where they calculate BMI based on two observed 

variables: weight and height squared. They translate BMI into a binary variable (e.g.  obese or not 

obese) and this index is used to examine factors affecting obesity.  

Previous literature has not answered the question whether are still the most efficient 

models when the latent variable can be fully observed. Thus this study determines the loss in 

efficiency of using logit/probit models versus the conventional OLS (e.g. with unknown variance). 

We also compare the marginal effects between these models. This information is useful for the 

interest of food security research such as in obesity studies, specifically when the latent variable is 

observable but it is used only as a discrete variable.  

The results suggest that OLS is more efficient than the logit/probit models when estimating 

the true coefficients, independently of the multicollinearity, fit of regression and cut-off probability. 

Likewise, OLS provided unbiased estimates in all the scenarios, which was not the case for 

probit/logit. These results are consistent with Davidson and MacKinnon (2004), where they 

mentioned that the variance of the probit models are approximately 57% higher than the OLS 

results when the conditions are optimal (e.g. probability of success =0.5).  

In terms of marginal effects, we compared the true marginal effects with the values 

obtained from each model, and we found that there is biasness using logit/probit. The problem 

intensifies under the presence of small sample size.  

We can conclude, that according to our Monte Carlo simulation, when the latent variable is 

observable, it is better to use the continous value and regress it with respect to their explanatory 

variable instead of converting it into a latent variable. This is especially the case with small sample 

sizes and when the probability of “success” in the population is low. 
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