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On	the	Examination	of	the	Reliability	of	

Statistical	Software	for	Estimating	Logistic	

Regression	Models	

Abstract	

The	numerical	 reliability	of	 software	packages	was	examined	 for	 the	 logistic	

regression	model.	Software	 tested	 include	SAS	9.3,	MATLAB	R2012a,	R	3.1.0,	

Stata/IC	 13.1	 and	LIMDEP	10.5.	 Thirty	 benchmark	datasets	were	 created	by	

simulating	 different	 conditional	 binary	 choice	 processes.	 To	 obtain	 certified	

values,	this	study	followed	the	National	Institute	of	Standards	and	Technology	

procedures	when	they	generated	certified	values	of	parameter	estimates	and	

standard	 errors	 for	 the	 nonlinear	 logistic	 regression	 models	 used.	 The	

logarithm	of	the	relative	error	was	used	as	a	measure	of	accuracy	to	examine	

the	numerical	reliability	of	these	packages.	

1 Introduction	

The	primary	objective	of	statistical	software	is	to	analyze	data	or	estimate	models.	

Researchers	 use	 estimated	 results	 for	 different	 purposes	 (e.g.	 policy	 analysis,	

prediction,	 inference	 etc.)	 assuming	 the	 results	 are	 reliable,	which	 also	mean	 the	
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results	 are	 numerically	 accurate. 1 	Thus,	 the	 numerical	 accuracy	 of	 the	 results	

regardless	of	the	use	of	the	statistical	software	packages	is	one	of	the	crucial	factors	

for	 credible	 research.	 However,	 research	 has	 shown	 that	 different	 statistical	

packages	may	provide	different	results	for	the	same	problem	(McCullough	and	Vinod	

1999).	Consider	a	scenario	where	two	researchers	are	solving	the	same	problem,	but	

using	different	statistical	packages,	report	different	estimates.	In	such	a	case,	either	

the	 statistical	packages	 (or	at	 least	one	of	 them)	may	be	 inaccurate	or	one	of	 the	

authors	 (or	both)	did	not	properly	 specify	 the	 statistical	procedures	 (McCullough	

1998;	Odeh,	Featherstone,	and	Bergtold	2010).	

However,	in	most	cases,	researchers	consider	the	results	may	be	inaccurate	either	

due	to	data	problems	or	statistical	procedures	rather	than	considering	the	statistical	

software	as	a	possible	source	of	error.	In	general,	researchers	assume	that	the	built‐

in	estimation	procedures	of	software	packages	are	reliable	and	interpret	the	results	

assuming	they	were	correctly	estimated	(Odeh,	Featherstone,	and	Bergtold	2010).	

Researchers	mainly	focus	on	user‐friendliness	and	speed	of	software	packages,	often	

ignoring	the	numerical	accuracy	of	software	(McCullough	2000b).	 If	 the	estimated	

result	 is	 not	 reliable,	 then	 it	 has	 strong	 negative	 implications	 for	 policy	 analysis,	

statistical	inference,	prediction	etc.,	which	weakens	the	work	of	applied	economists	

(Tomek	 1993).	 Estimates	 are	more	 sensitive	 to	 starting	 values	 and	 algorithms	 in	

nonlinear	 models	 and	 a	 small	 change	 in	 model	 specifications	 may	 significantly	

																																																								
1	Reliability	describes	the	repeatability	and	consistency	of	a	measure	or	test.	Musa,	Iannino,	and	

Okumoto	(1987)	define	software	reliability	as	“the	probability	of	failure‐free	operation	of	a	computer	
program	in	a	specified	environment	for	a	specified	period	of	time”.	
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change	 results	 (McCullough	 and	 Vinod	 2003;	 Odeh,	 Featherstone,	 and	 Bergtold	

2010).2	The	two	main	problems	for	many	nonlinear	models	are:	one	algorithm	may	

give	solutions	while	other	may	fail	and	even	if	both	algorithms	give	solutions,	one	

may	be	more	 accurate.	The	 reasons	 for	different	 solutions	 are	differences	 in	 step	

length,	 convergence	 criterion,	 and	 the	 way	 that	 derivatives	 are	 computed	

(McCullough	and	Renfro	2000).	

Logistic	regression	is	one	of	the	widely	used	models	using	maximum	likelihood	in	

modeling	 a	 discrete	 choice	 outcome	 variable	 by	 agricultural	 economists	 and	

economists.	 The	 estimation	 of	 logistic	 regression	 is	 based	 on	 the	 assumption	 of	

asymptotic	 maximum	 likelihood	 inference.	 Greene	 (2002)	 showed	 that	 if	

nonlinearity	in	the	parameters	appear	on	the	right‐hand	side	of	the	equation,	then	

the	nonlinear	least	squares	estimator	is	consistent.	However,	if	parameters	appear	

nonlinearly	 in	 functions	of	 the	dependent	variable	 in	 a	model,	 then	 the	nonlinear	

least	squares	estimator	is	no	longer	consistent	because	it	ignores	the	Jacobian	of	the	

transformation	 (a	 derivative	 of	 a	 coordinate	 transformation),	 but	 the	 maximum	

likelihood	 (ML)	 estimator	 is	 consistent	 and	 efficient	 for	 these	 type	 of	 models.	

Moreover,	if	parameters	contain	in	the	Jacobian	matrix	(the	matrix	of	all	first	order	

partial	 derivative	 of	 a	 vector	 valued	 function),	 least	 squares	 is	 different	 than	

maximum	likelihood.	This	indicates	that	separate	benchmark	tests	may	be	required	

for	maximum	likelihood	estimation	routines	for	logistic	regression.	

																																																								
2	In	any	empirical	work,	researchers	do	not	know	true	values,	thus	cross	validation	of	research	results	

become	critical	for	nonlinear	models.	
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The	 purpose	 of	 this	 research	 is	 to	 examine	 the	 numerical	 reliability	 of	 five	

statistical	 software	 packages	 for	 the	 estimation	 of	 logistic	 regression	 models.	

Software	 testing	was	 conducted	using	SAS	9.3,	MATLAB	R2012a,	R	3.1.0,	 Stata/IC	

13.1	and	LIMDEP	10.5,	which	are	commonly	used	by	both	agricultural	economists	

and	 economists.	 This	 paper	 focuses	 on	 the	 numerical	 accuracy	 of	 the	 results	

(parameter	estimates	and	standard	errors)	estimated	by	these	packages	using	the	

simulated	datasets	with	several	available	algorithms,	 starting	values,	 convergence	

criteria,	 and	 different	 commands	 and	whether	 errors	 are	 correctly	 identified	 and	

reported	during	the	estimation	of	logistic	regression.	

The	main	contribution	of	this	study	is	to	conduct	a	comparative	examination	of	

the	 numerical	 reliability	 of	 the	 above	 mentioned	 software	 packages	 with	 the	

simulated	datasets,	which	have	not	been	examined	in	this	respect.	The	results	of	this	

study	will	be	useful	to	researchers	and	software	vendors	as	it	shows	the	strengths	

and	 weaknesses	 of	 software	 packages	 for	 the	 logistic	 regression	 estimation.	 The	

software	 vendors	 may	 address	 inadequacy	 in	 later	 versions	 if	 it	 exists	 and	

researchers	can	choose	a	software	package	based	on	their	problems	because	some	

packages	perform	well	for	particular	datasets	(e.g.	multicollinarity,	quasi	separation	

etc.).	Collinearity	is	a	big	challenge	in	environmental	or	ecological	research,	whereas	

quasi‐complete	separation	or	complete	separation	is	a	common	problem	in	the	area	

of	 health	 economics.	 For	 example,	 Heinze	 and	 Schemper	 (2002)	 found	 complete	

separation	in	the	statistical	analysis	of	endometrial	cancer	study.	If	there	is	a	problem	



6	

of	 complete	 separation	 in	 data,	 the	 maximum	 likelihood	 estimates	 for	 logistic	

regression	do	not	exist.	

Many	past	studies	have	examined	the	reliability	of	software	packages	including	

SAS,	MATLAB,	STATA,	LIMDEP,	etc.	(Musa,	Iannino,	and	Okumoto	1987;	McCullough	

1998,	 1999b;	 Kolenikov	 2001;	 Keeling	 and	 Pavur	 2007;	 Odeh,	 Featherstone,	 and	

Bergtold	 2010;	 M´elard	 2014).	 These	 studies	 have	 mainly	 focused	 on	 linear	 and	

nonlinear	regression	models	using	the	National	Institute	of	Science	and	Technology	

(NIST)	 benchmark	 datasets.	 Because	 of	 the	 reliability	 studies,	 many	 software	

vendors	 correct	 inadequacies	 in	a	new	version.	For	example,	 the	 results	obtained	

from	 LIMDEP	 8.0	 were	 better	 than	 LIMDEP	 7.0	 for	 nonlinear	 regression	 (Odeh,	

Featherstone,	and	Bergtold	2010).	

Although	the	logistic	regression	model	is	popular	for	choice	decision	modeling,	

there	 has	 not	 been	 any	 systematic	 examination	 of	 the	 numerical	 reliability	 of	

software	packages	for	logistic	regression	estimation	routines.	There	are	some	studies	

that	focus	on	choice	estimation	using	built‐in	commands	from	software	packages.	For	

example,	Huber	and	Train	(2001)	examined	the	similarities	and	differences	between	

classical	and	Bayesian	methods	for	mixed	logit.	Likewise,	Oster	(2002,	2003)	used	

exact	methods	 to	 compare	 StatXact,	 LogXact,	 Stata,	 Testimate,	 and	 SAS	 based	 on	
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hardware	requirements,	documentations,	data	entry,	estimated	results	etc.	However,	

these	studies	were	not	intended	to	examine	the	numerical	reliability	of	software.3	

2 Literature	Review	

This	section	provides	a	general	background	on	sources	and	types	of	error	due	to	data	

storage	and	computation	by	software.	The	first	subsection	introduces	representation	

form	 of	 data	 on	 importing	 and	 exporting	 associating	 with	 errors.	 The	 remaining	

sections	discuss	past	studies	related	to	reliability	of	statistical	software	focusing	on	

estimator,	algorithm,	and	starting	values.	

2.1 Computational	Error	

Computational	error	may	occur	during	data	storage	and	the	estimation	of	a	model	

and	the	sources	of	error	can	be	viewed	from	different	perspectives.	One	way	to	view	

at	 the	 possible	 sources	 of	 error	 is	 from	 computing	 side,	 which	 includes	 the	

interaction	among	hardware,	complier,	and	algorithm.	If	problem	exists	in	either	of	

the	three	components	or	all,	then	the	ability	to	produce	numerically	accurate	results	

decreases.	An	alternative	approach	is	looking	at	statistical	computing	as	a	data	flow	

process.	

																																																								
3	An	important	point	to	be	noted	here	is	that	reliable	or	numerically	accurate	estimates	do	not	imply	

the	estimates	are	consistent	and	unbiased,	which	are	not	the	objective	of	the	study.	
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Software	package	needs	to	import	and	export	data	for	any	statistical	estimation	

(Sawitzki	 1994).	 It	 imports	 and	 exports	 data	 in	 ASCII	 representation	 (a	 code	 for	

representing	 English	 characters	 as	 numbers,	 with	 each	 letter	 assigned	 a	 number	

from	 0	 to	 127)	 with	 finite	 precision	 based	 on	 powers	 of	 ten,	 but	 the	 internal	

representation	is	binary.4	The	different	representations	rarely	coincide	in	precision,	

which	yields	truncation	errors	(Sawitzki	1994).5	

Simon	 and	 LeSage	 (1988)	 indicated	 that	 truncation,	 cancellation,	 and	

accumulation	errors	are	the	main	errors	for	numerical	inaccuracies.	Truncation	error	

occurs	 when	 computer	 stores	 data	 incorrectly,	 especially	 decimal	 numbers.	 The	

presence	 of	 truncation	 error	 leads	 to	 the	 less	 accurate	 result	 in	 subsequent	

calculations.	 Cancellation	 error	 occurs	 if	 the	 data	 have	 a	 low	 level	 of	 relative	

variations,	which	means	 the	 subtraction	of	 two	 roughly	equal	numbers.	 Similarly,	

accumulation	 error	 occurs	 gradually	 from	 small	 errors	 to	 large	 errors	 in	 total	

number	of	computations	during	estimation	process.	

McCullough	 and	 Vinod	 (1999)	 reported	 the	 impact	 of	 truncation	 or	 round	 off	

error	 for	Vancouver	 Stock	Exchange	 index,	which	began	with	 value	 of	 1,000.	The	

index	was	recalculated	to	four	decimal	places,	but	reported	only	with	three	decimal	

places	truncating	the	last	digit.	The	index	value	became	520	after	some	months	in	

																																																								
4	Computer	 stores	numbers	with	 finite	precision.	 It	 cannot	perform	any	 computation	with	 any	

arbitrary	 precision.	 However,	 the	 objective	 is	 to	 understand	 how	 the	 system	 work	 within	 the	
limitations	rather	than	finding	the	limitations	in	a	system.	

5	Altman,	Gill,	and	McDonald	(2004)	define	precision	as	the	degree	of	agreement	among	a	set	of	
measurements	 of	 the	 same	 quantity‐	 the	 number	 of	 digits	 that	 are	 the	 same	 under	 unchanged	
conditions	for	repeated	measurements.	
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similar	economic	situations.	The	index	value	found	to	be	1098.892	when	the	index	

was	 recalculated	 properly.	 This	 case	 indicates	 that	 if	 the	 errors	 occur	 during	

intermediate	computations,	final	estimation	constitutes	errors	in	a	proportion.	But	

to	determine	what	proportion	is	correct	for	intermediate	computation	is	difficult,	and	

the	potential	error	may	still	be	significant	(Odeh,	Featherstone,	and	Bergtold	2010).	

2.2 Studies	on	Linear	and	Nonlinear	Regressions	

Several	past	studies	have	examined	the	numerical	reliability	of	statistical	software	

(Koro¨si,	Matyas,	 and	 Sz´ekely	 1993;	 Sawitzki	 1994;	McCullough	 1998;	 Kolenikov	

2001;	Odeh,	Featherstone,	and	Bergtold	2010).	Most	of	these	studies	used	Statistical	

Reference	Datasets	(StRD)	developed	by	NIST	to	examine	the	reliability	of	software	

for	 linear	 and	 nonlinear	 regressions,	 and	 so	 on.	 For	 example,	McCullough	 (2004)	

used	the	Wilkinson’s	tests	(entry	level	tests)	to	examine	the	numerical	accuracy	of	E‐

Views	3,	LIMDEP	7,	RATS	4.3	(Regression	Analysis	of	Time	Series),	SHAZAM	8,	and	

TSP	4.4	(Time	Series	Processor).	These	tests	are	simple,	thus	they	can	be	used	to	most	

of	the	statistical	packages	for	examining	the	reliability	and	it	is	assumed	that	every	

reliable	software	should	pass	this	test.	However,	some	packages	still	have	some	flaws	

like	 dropping	 points	 from	 a	 graph,	 incorrect	 calculation	 of	 the	 sample	 variance,	

correlation	coefficients	in	excess	of	unity,	and	incorrect	and	inconsistent	handling	of	

missing	values.	The	author	also	argued	that	some	of	these	statistical	packages	fixed	
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flaws	like	incorrect	calculation	of	standard	error	that	were	raised	by	the	reliability	

test	literature.	

Veall	(1991)	performed	a	comprehensive	study	of	SHAZAM	6.2	and	found	that	the	

SHAZAM	developer	made	significant	improvement	in	version	6.2	than	the	version	6.	

The	 author	 also	 argued	 that	 SHAZAM’s	 performance	 is	 well	 on	 the	 Longley	

benchmark	regression.6	However,	the	author	also	claimed	that	SHAZAM	has	problem	

on	 computation	 of	 correlations	 of	 very	 large	 and	 very	 small	 perfectly	 correlated	

numbers.	

Silk	(1996)	complements	the	work	of	Veall	(1991)	by	examining	iterated	SUR	

(Seemingly	Unrelated	Regression)	and	system	of	linear	equations	in	SAS	6.10,	SHAZAM	

7.0,	and	TSP	4.3.	The	iterated	SUR	routines	can	give	different	parameter	estimates	and	

different	test	statistics	for	hypothesis	of	interest.	The	author	found	that	each	package	

provides	 identical	 results	 for	 two‐stage	 least	squares,	 three‐stage	 least	 squares,	 and	

seemingly	unrelated	regression.	However,	these	packages	provide	different	result	from	

the	 built‐in	 routines	 for	 the	 limited	 information	 maximum	 likelihood	 and	 the	 full	

information	maximum	likelihood	procedures.	Reliability	studies	help	to	find	bug	and	

inadequacy	in	software	packages,	which	motivate	researcher	to	examine	packages	in	a	

new	version	with	different	 tests	 and	benchmark	datasets.	 For	 example,	McCullough	

(1998,	 1999a)	 proposed	 and	 conducted	 the	 intermediate	 level	 tests	 on	 linear	 and	

nonlinear	regressions,	random	number	generators,	and	statistical	distributions	in	SAS	

																																																								
6	Longley	is	a	benchmark	dataset	provided	by	NIST.	
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6.12,	 SPSS	 7.5,	 and	 S‐PLUS	 4. 7 	All	 software	 packages	 produce	 reliable	 results	 on	

univariate	summary	statistics	and	 linear	regression	test	suites.	However,	 the	author	

found	weaknesses	in	all	three	packages	in	random	number	generators	due	to	deficient	

period	 length.	 SAS	 and	 SPSS	 had	 inadequate	 routines	 in	 the	 one‐way	 analysis	 of	

variance	(ANOVA)	and	nonlinear	least	squares.	If	inadequacy	in	any	routine	exists	for	

this	kind	of	average	tests,	it	means	the	software	packages	do	not	meet	the	minimum	

requirements	 that	 is	 supposed	 to	 have	 for	 reliable	 estimation.	 The	 deficiencies	 in	

software	packages	imply	that	the	reliability	of	statistical	packages	cannot	be	taken	for	

granted	(McCullough	1999a).8	

The	reliability	of	the	statistical	procedures	in	Microsoft	Excel	97	for	 linear	and	

nonlinear	regressions,	random	number	generation,	and	statistical	distributions	were	

assessed	and	the	results	exhibited	that	Excel’s	performance	was	not	adequate	in	all	

three	areas	(McCullough	and	Wilson	1999).	Similarly,	Nerlove	(2005)	examined	the	

Excel	2000	with	the	numerical	algorithms	group’s	(NAG’s)	add‐in	and	found	that	the	

performance	of	the	Excel	was	not	significantly	different	with	and	without	the	add‐

in.9	The	author	also	suggested	the	correction	method	if	the	program	does	not	provide	

the	accurate	results	for	high	difficulty	level	of	data	for	linear	regression	model.	For	

example,	the	data	set	with	high	multicollinearity,	it	can	be	corrected	with	centering	

																																																								
7	NIST	ordered	datasets	by	level	of	difficulty	(lower,	average,	and	higher)	and	the	level	of	difficulty	

of	a	dataset	depends	on	the	algorithm.	
8 	In	 subsequent	 versions	 of	 statistical	 software,	 these	 problems	may	 not	 exist	 because	 software	

developers,	generally,	remedy	deficiencies	that	were	noted	in	earlier	version.	
9	Add‐ins	in	Microsoft	Excel	provide	optional	commands	and	features	for	data	analysis,	which	may	

not	be	available	by	default.	Thus,	users	must	install	or	(in	some	cases)	activate	these	add‐ins	to	use	
them.	
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the	 data.	 It	 means	 subtracting	 the	 mean	 for	 each	 explanatory	 variable	 may	 help	

decrease	the	degree	of	multicollinarity.	

Likewise,	 Keeling	 and	 Pavur	 (2007)	 conducted	 a	 comparative	 study	 of	 the	

reliability	of	several	software	packages	(Excel	2000/XP,	Excel	2003,	SAS	9.1,	JMP	5.0,	

Minitab	14,	R	1.9.1,	Splus	6.2,	SPSS	12,	Stata	8.1,	and	StatCrunch	3.0)	with	regard	to	

univariate	 summary	 statistics,	 one‐way	 ANOVA,	 linear	 regression,	 and	 nonlinear	

regression	 using	 the	 NIST	 data	 sets.	 These	 packages	 performed	 better	 than	 the	

earlier	versions	with	regard	to	linear	and	nonlinear	regressions.	However,	SAS	9.1	

had	difficulty	on	the	univariate	data	in	calculating	the	autocorrelation	for	the	three	

data	 points.	 SAS	 9.1	 improved	 its	 performance	 for	 all	 of	 the	 average	 and	 high	

difficulty	datasets	whereas	McCullough	(1999a)	reported	LREs	of	zero	for	the	above	

datasets.	 Similarly,	 Odeh,	 Featherstone,	 and	 Bergtold	 (2010)	 showed	 that	 some	

packages	performed	better	with	a	new	version.	For	example,	Excel	2007	gave	higher	

LRE	value	than	was	found	in	the	previous	literature.	However,	this	does	not	imply	

that	there	are	no	issues	with	Excel.	Likewise,	STATA	10	gave	slightly	better	results	

from	 those	 reported	 by	 STATA	 (2007)	 on	 its	 website.	 These	 studies	 show	 that	

software	vendors	improve	the	performance	of	a	packages	in	a	new	version,	which	

also	justify	the	importance	of	reliability	studies.	

	

2.3 Maximum	Likelihood	Estimators	

Nonlinear	estimation	routines	also	provide	solutions	 for	maximum	 likelihood	and	

most	 of	 software	 packages	 provide	 t‐statistics	 and	 confidence	 intervals	 (Wald	
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intervals)	 for	 maximum	 likelihood.	 These	 statistics	 are	 based	 on	 quadratic	

approximations	 to	 the	 log‐likelihood	 and	 they	 will	 be	 accurate	 only	 if	 the	 log‐

likelihood	 is	 approximately	 quadratic	 over	 the	 range	 of	 interest.	Moreover,	Wald	

intervals	and	likelihood	intervals	are	quite	similar	if	log‐likelihood	is	approximately	

quadratic.	However,	when	log‐likelihood	is	not	approximately	quadratic‐	which	is	a	

more	likely	case	for	logistic	regression‐	the	two	intervals	are	different	and	the	Wald	

interval	is	not	reliable	(McCullough	and	Vinod	2003).	

Many	 solvers	 merge	 the	 concepts	 of	 stopping	 rule	 and	 convergence	 criteria,	

which	make	 it	difficult	 to	know	whether	optimality	conditions	meet	at	a	reported	

maximum.	Commonly	used	convergence	criteria	are	relative	parameter	convergence,	

zero	gradient,	objective	function,	but	some	of	these	criteria	may	report	a	solution	at	

false	maximum.	For	instance,	if	relative	parameter	convergence	and	function	value	

are	 used	 for	 the	 convergence	 criterion,	 solver	 can	 stop	 and	 report	 “convergence”	

even	 though	 the	 gradient	 is	 far	 from	 zero	 (Train	 2003).	 Rose	 and	 Smith	 (2002)	

examined	 an	 ARCH	model	where	 the	 program	 reports	 convergence	 based	 on	 the	

value	 of	 the	 objective	 function,	 a	 very	 small	 change	 in	 log‐likelihood	 from	

243.5337516	to	243.5337567	changes	a	nonzero	gradient	to	a	zero	gradient,	but	the	

problem	is	that	a	reported	zero	gradient	does	not	imply	an	optimum	or	even	a	saddle	

point	and	for	each	component	of	gradient	can	be	numerically	zero,	but	the	solution	

may	not	be	a	valid	solution,	it	may	due	to	a	very	flat	region	of	the	surface	(McCullough	

and	Vinod	2003).	
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These	situations	show	that	available	software	packages	are	not	foolproof.	Thus,	

users	should	not	only	rely	on	a	software‐generated	message,	they	should	carefully	

examine	the	solution.	McCullough	and	Vinod	(2003)	suggest	the	following	steps	for	

verifying	a	solution	obtained	from	nonlinear	solver:	(1)	examine	the	gradient‐	is	it	

zero?	Relying	only	on	the	default	setting	may	give	false	convergence;	(2)	examine	the	

Hessian	using	an	eigenvector	analysis	to	determine	whether	it	is	positive	(negative)	

definite	for	minimization	(maximization).	This	helps	to	identify	if	the	local	maximum	

of	the	likelihood	occurs	in	a	flat	region	of	the	log‐likelihood	function;	(3)	profile	the	

likelihood	 function	 to	 examine	 the	 adequacy	 of	 the	 quadratic	 approximation.	 The	

measure	of	variability	in	estimates	are	reflected	in	the	standard	errors	that	can	be	

produced	by	nonlinear	routines	as	t‐statistics	or	Wald	statistics.	The	Wald	statistic	is	

helpful	 to	assess	 the	adequacy	of	quadratic	 approximation,	 and	 (4)	 solution	path:	

does	 the	 solution	 path	 show	 the	 expected	 rate	 of	 convergence?	 This	 information	

helps	 to	 find	 whether	 there	 is	 problem	 on	 nonlinear	 solvers.	 These	 are	 useful	

methods	 to	 guard	 against	 less	 accurate	 results,	 but	 these	 methods	 are	 not	

accommodated	by	many	packages.	Some	packages	do	not	allow	the	user	to	display	

gradient,	though	gradient	is	used	for	optimization.	

McKenzie	and	Takaoka	(2003)	used	two	different	tests	to	examine	the	numerical	

accuracy	 of	 LIMDEP	 8	 using	 StRD	 following	 the	 tests	 suggested	 by	 McCullough	

(1997).	The	authors	reported	only	two	potential	problem	areas	out	of	twelve	tests.	

LIMDEP	has	problem	on	identification	of	probit/logit	models	(Test	E9)	and	picking	

up	perfectly	collinear	datasets	(Test	E13).	In	Test	E9,	an	error	message	is	necessary	

because	not	all	the	probit	model’s	parameters	are	identified.	The	LIMDEP	version	7	
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produces	the	error	message	‘0/1	choice	model	is	inestimable,	bad	variable	=	SE’.	For	

the	 Test	 E13	 that	 uses	 singular	 matrix,	 LIMDEP	 provides	 a	 warning	 stating	 a	

condition	number,	but	it	still	estimates	some	parameters.	To	some	extent,	this	error	

message	is	helpful	to	understand	identification	issue.	A	reliable	algorithm	should	give	

error	message	if	it	cannot	estimate	a	model.	

Research	has	shown	that	analysts	who	often	run	solvers	with	the	default	setting,	

the	result	are	found	to	be	less	accurate	and	software	differs	in	ability	in	producing	

accurate	results.	For	example,	Stokes	(2004)	showed	the	quite	different	results	for	

solving	a	probit	model	in	SAS,	RATS,	LIMDEP,	and	STATA.	The	reason	for	the	

different	results	is	the	default	convergence	level	built	into	the	packages.	

Most	 software	 packages	 use	 approximation	 for	 hypothesis	 testing	 for	 discrete	

choice	 analysis	 assuming	 the	 test	 statistics	 follow	 a	 normal	 or	 a	 chi‐square	

distribution.	When	 the	 assumptions	 on	 the	 test	 statistics	 are	 satisfied,	 exact	 and	

approximate	methods	give	similar	results	and	one	can	reach	to	the	same	conclusions.	

However,	when	the	assumption	of	a	normal	or	a	chi‐square	distribution	on	the	test	

statistics	are	not	satisfied,	the	exact	test	should	be	applied	because	the	approximate	

test	may	yield	invalid	results	(Oster	2002).10	Conventional	approximation	does	not	

work	well	 when	 data	 are	 unbalanced	 or	 thinly	 distributed	 into	many	 categories.	

Conventional	 approach	 for	 estimating	 logistic	 regression	 depends	 on	 asymptotic	

																																																								
10	Exact	test	can	be	done	in	the	following	ways:	permute	data	in	all	possible	ways	under	the	null	

hypothesis	that	is	being	tested	and	compute	the	value	of	the	test	statistic	for	each	permutation.	Finally,	
compare	the	test	statistics	between	the	observed	value	and	the	permuted	distribution.	Based	on	the	
associated	p	values,	one	can	conclude	whether	the	results	are	statistically	significant.	
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maximum	likelihood	inference.	But	software	packages	based	on	this	kind	of	inference	

may	 provide	 incorrect	 results,	 or	 may	 fail	 to	 report	 results,	 especially	 if	

mutlicollinearity	 exists	 or	 when	 there	 are	many	 independent	 variable	 relative	 to	

sample	size	(Oster	2002).	Oster	(2002,	2003)	used	exact	methods	covering	the	one‐

sample,	two	dependent	samples,	two	independent	samples,	stratified	sample	etc.	to	

examine	 StatXact	 5,	 LogXact	 4.1,	 Stata	 7,	 Testimate	 6,	 and	 SAS	 8.2.	 The	 author	

compared	 the	 packages	 based	 on	 hardware	 requirements,	 documentations,	

categorical	data	analysis	etc.	The	author	recommends	StatXact	for	categorical	data	

analysis.	Likewise,	Huber	and	Train	(2001)	examined	the	similarities	and	differences	

between	 classical	 and	Bayesian	methods	 for	mixed	 logit	 and	 found	 that	 Bayesian	

approach	has	benefits	for	numerical	accurate	results	for	the	small	sample.	However,	

this	study	was	not	intended	to	examine	the	reliability	of	software.	

A	 recent	 study	 by	 Chang	 and	 Lusk	 (2011)	 compared	 the	maximum	 likelihood	

estimator	for	SAS	9.2,	LIMDEP	9	(contain	NLOGIT	4),	and	Hole’s	model	(a	user	written	

add‐	 in	 module)	 for	 STATA	 11	 for	 the	 mixed	 logit	 model	 using	 Monte	 Carlo	

simulation.	They	used	 the	default	algorithm	and	 tolerance	 level	 for	each	software	

package.	The	results	show	that	SAS	and	NLOGIT	always	converges	across	 the	500	

iterations,	but	Stata	had	poor	non‐convergence	when	sample	sizes	were	below	200	

observations.	They	reported	a	tendency	for	bias	for	small	size	(N	=	200)	due	to	a	great	

variability	 in	 the	ML	 parameter	 estimates.	 In	 addition,	 the	 results	 for	 root	mean	

squared	error	(RMSE)	are	similar	among	the	three	packages	for	large	samples,	but	

RMSEs	 are	 different	 for	 small	 samples.	 Overall,	 among	 these	 packages,	 NLOGIT	

generated	the	smallest	RMSE.	However,	their	procedures	are	unable	to	examine	the	
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accuracy	of	the	different	mixed	logit	procedures	due	to	the	lack	of	variation	in	data	

to	identify	the	parameter	estimates	empirically	(Hole	2011).	In	addition,	this	study	

did	 not	 use	 certified	 values	 to	 compare	 estimates	 obtained	 from	 the	 software	

packages.	

The	reliability	study	does	motivate	software	developers	to	improve	packages,	but	

many	deficiencies	still	exist.	Several	past	studies	have	examined	these	packages	(SAS	

9.3,	MATLAB	R2012a,	R	3.1.0,	Stata/IC	13.1,	and	LIMDEP	10.5.)	along	with	random	

number	generator,	linear	and	nonlinear	regressions,	but	the	numerical	reliability	of	

logistic	regression	estimation	with	the	benchmark	datasets	has	not	been	examined	

to	the	authors’	knowledge.	

3 Research	Methods	

The	paper	examines	 the	numerical	reliability	of	 these	software	packages:	SAS	9.3,	

MATLAB	R2012a,	R	 3.1.0,	 STATA/IC	13.1,	 and	LIMDEP	10.5,	 for	 both	default	 and	

optimal	 user	 settings	 within	 the	 software	 packages	 (algorithm,	 starting	 value,	

convergence	 level)	 examined	 for	 each	 benchmark	 dataset	 created.	 The	 logistic	

regression	 estimation	 commands/procedures	 for	 each	 software	 package	 are	

illustrated	in	Figure	1.	The	figure	shows	the	command/procedure	examined;	the	type	

of	estimator	used;	algorithms	available;	if	the	user	can	specify	starting	values	for	the	

parameter	estimation;	and	available	tolerance	criteria	and	settings.		The	remaining	

sub‐sections	present	the	logistic	regression	model;	benchmark	dataset	creation;	and	

procedures	for	testing	software	reliability.		
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Figure	1:	Study	Design	for	the	Numerical	Reliability	of	Software	
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3.1 Logistic	Regression	Model	

The	generalized	linear	model	(GLM)	provides	a	broad	family	for	statistical	analysis.	

The	family	of	models	allows	for	the	estimation	of	a	regression	with	response	data	(Y)	

from	 the	 exponential	 family,	 which	 includes	 the	 binomial,	 Poisson,	 geometric,	

negative	 binomial,	 exponential,	 gamma,	 normal,	 and	 inverse	 normal	 distributions	

(Myers	et	al.	2012).	This	paper	focuses	on	the	binomial	distribution	(binary	response	

variable).	A	binary	response	variable	(Y)	has	the	probability	of	success	P(Y	=	1)	=	p	

and	 the	 probability	 of	 failure	P(Y	=	 0)	 =	 1	 −	p	 and	Y	 is	 assumed	 to	 be	 Bernoulli	

distributed,	which	it	the	binomial	distribution	with	one	trial.	

			 The	 logistic	 regression	 model	 utilizes	 the	 logistic	 CDF	 to	 ensure	 that	 the	

conditional	mean	or	P(Y	=	1)	is	bounded	between	0	and	1.	In	addition,	following	the	

approach	in	GLM	it	is	assumed	the	linear	predictor	is	linear	in	the	parameters,	but	

can	 include	 nonlinear	 covariate	 terms.	 Thus,	 the	 logistic	 regression	 takes	 the	

following	general	functional	form:	

1 ; 		

where	 ; 	is	the	linear	predictor	(or	index	function);	Xi	is	a	set	of	explanatory	

variables;	 	is	a	set	of	parameters	to	be	estimated;	and	ui	is	an	IID	error	term	

(Bergtold	et	al.,	2010).	Greene	(2002)	states	that	the	error	term	for	the	logistic	

regression	model	has	the	following	properties:	

• Mean	of	error	is	zero;	

• Error	terms	are	independent	but	not	normally	distributed;	and	
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• Variance	 of	 the	 errors	 depends	 on	 the	 explanatory	 variables,	 and	 by	

construction	are	heteroskedastic.	

3.2 Model	Estimation	

The	 logistic	 regression	 model	 can	 be	 estimated	 using	 the	 method	 of	 maximum	

likelihood	(Greene	2002).	The	likelihood	function	for	the	logistic	regression	can	be	

given	as	follows:	

, ; ∏ Λ ; 1 Λ ; 	 	 					(1)	

Where	L(.,.;.)	is	the	likelihood	function,	Λ	represents	the	logistic	cumulative	density	

function,	and	N	 is	the	sample	size.	We	maximize	the	log‐likelihood	function	rather	

than	the	likelihood	function	because	the	log	function	is	monotonically	increasing	and	

easier	to	work	with	it	(Greene	2002).	The	simplified	log‐likelihood	function	(LL(β))	

in	terms	of	parameters	can	be	written	as	follows:	

														 , ; ∑ ln Λ ; 1 1 Λ ; 	 (2)	

	
where.	 In	 model	 estimation,	 we	 find	 the	 estimated	 value	 of	 β	 that	 maximizes	

, ; .	The	value	of	log‐likelihood	is	always	negative	because	the	likelihood	is	a	

probability	between	0	and	1	and	the	logarithm	of	any	number	between	0	and	1	is	

negative	(Train	2003).	

As	 the	 log‐likelihood	 function	 is	 non‐linear	 in	 the	 parameters,	 a	 closed‐form	

solution	 for	 the	 esitmators	 of	 the	 parameters	 is	 not	 available.	 Thus,	 iterative	

numerical	methods	mut	be	used	to	maximize	the	log‐likelihood	function	and	obtain	
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parameter	 estimates.	 Numerical	 methods	 employed	 will	 utilize	 optimization	

algorithm	for	estimation,	which	have	various	components,	including	starting	value,	

choice	of	optimization	algorithm,	gradient	calculation	procedures,	and	termination	

or	stopping	rule	criteria	(Train	2003).	Each	of	these	components	may	have	an	affect	

on	the	numerical	accuracy	and	reliability	of	model	estimation.		

3.3 Optimization	Algorithms	

Many	 estimation	 procedures	 maximize	 some	 kind	 of	 function,	 such	 as	 the	 log‐

likelihood	function,	the	simulated	likelihood	function,	or	squared	moment	conditions	

(Train	2003).	 In	 logistic	 regression,	an	optimization	algorithm	maximizes	 the	 log‐

likelihood	 function	 and	 the	 optimization	 is	 achieved	 iteratively.	 An	 optimization	

algorithm	chooses	an	initial	value	and	generates	a	sequence	of	better	values	than	the	

initial	 one	 until	 the	 algorithm	 finds	 an	 optimal	 solution	 determined	 by	 the	

termination	criteria	or	stopping	rule.	The	strategy	used	to	move	from	one	value	to	

the	next	differs	from	one	algorithm	to	another.	Most	strategies	use	the	values	of	the	

objective	 function,	 the	 constraints	 and	 the	 first	 and	 second	 derivative	 of	 these	

functions	to	reach	a	solution.	Some	algorithms	accumulate	information	gathered	at	

previous	iterations,	whereas	others	use	only	local	information	from	at	the	current	

point.	Likewise,	some	algorithms	reach	an	optimal	solution	in	a	few	iterations,	while	

other	 may	 take	 many	 iterations.	 For	 example,	 if	 the	 log‐likelihood	 function	 is	

quadratic	in	β,	then	the	Newton	Raphson	algorithm	will	attain	the	maximum	in	one	

step	for	any	starting	value.	However,	most	log‐likelihood	functions	are	not	quadratic,	
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and	 hence	 the	 Newton	 Raphson	 algorithm	 needs	 more	 than	 one	 step	 to	 find	 an	

optimal	 solution	 (Train	 2003).	 Regardless	 of	 these	 specifics,	 a	 good	 algorithm	 is	

supposed	 to	have	 the	properties	 of	 robustness,	 efficiency,	 and	accuracy.	A	 robust	

algorithm	is	one	that	should	perform	well	on	a	broad	variety	of	problems	for	many	

reasonable	 starting	 values.	 An	 efficient	 algorithm	 means	 it	 should	 not	 take	 an	

excessive	amount	of	computer	time	and	memory	(storage).	An	accurate	algorithm	

means	it	should	not	be	over‐sensitive	to	data	problems	or	arithmetic	from	rounding	

errors.	However,	there	is	usually	a	trade‐off	between	efficiency	and	accuracy,	as	well	

as	between	storage	requirements	and	convergence	rates	(Nocedal	and	Wright	2000).	

There	are	many	numerical	methods	available	for	maximizing	the	log	Likelihood	

function	for	in	the	method	of	maximum	likelihood	for	the	logistic	regression	model.	

The	most	widely	 used	 optimization	method	 (algorithm)	 is	Newton	Raphson	 (NR)	

(Train	 2003),	 with	 other	 populat	 algorithms	 including	 the	 Broyden‐Fletcher‐

Goldfarb‐Shanno	 (BFGS),	 Berndt‐Hall‐HallHausman	 (BHHH),	 Davidon‐Fletcher‐

Powell	 (DFP)	 and	 Fisher	 Scoring	 (FS).	 Each	 algorithm	 requires	 stopping	 or	

terminating	criterion	to	optimize	the	objective	function.	Researcher	can	set	one	or	

more	of	the	following	convergence	criteria.	For	example,	in	the	PROC	LOGISTIC	and	

PROC	QLIM	commands	in	SAS,	the	default	gradient	convergence	is	set	equal	to	1E	−	

8,	 but	 researchers	 can	 change	 it,	 but	 in	 some	 packages	 like	 MATLAB	 and	 R,	 the	

convergence	criteria	cannot	be	changed.	In	general,	an	algorithm	uses	one	(or	more	

than	one)	of	the	following	stopping	criteria:	

1. |log(L(βn+1)	−	log(L(βn))|	<	ε	
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The	 successive	 change	 in	 the	 log‐likelihood	 values	 should	 be	 less	 than	 the	

convergence	criterion	(ε)	‐	a	very	small	number.	

2. max	(|βn+1	−	βn|)	<	ε	

									The	successive	change	in	the	parameter	values	is	less	than	the	convergence	

level.	

3. gT(−H−1)g	<	ε	where	g	is	the	gradient	and	H	is	the	Hessian	of	 , ; .	This	

criterion	measures	the	size	of	the	gradient	using	the	Hessian	and	is	assumed	

equal	to	zero	(met)	when	it	is	less	than	the	set	convergence	level.	

4. ||g(βn)||	<	ε	

The	magnitude	(as	measured	by	the	norm)	of	the	gradient	is	less	than	the	set	
convergence	level.	

First	derivative	and	second	derivative	methods	are	used	in	finding	the	optimal	

solution.	The	main	difference	between	them	is	that	first	derivative	methods	do	not	

calculate	 the	Hessian	matrix,	whereas	 second	derivate	methods	 need	 to	 calculate	

Hessian	matrix	or	approximations	of	it.	In	addition,	there	are	derivative	free	methods	

(also	referred	to	as	grid	search	methods)	that	can	utilized,	as	well.	First	derivative	

methods,	in	general,	need	less	computer	time	than	second	derivative	and	grid	search	

methods	to	find	the	optimal	solution.	However,	methods	that	do	not	use	the	Hessian	

tend	 (or	 second	 derivatives)	 tend	 to	 be	 less	 reliable.	 We	 examine	 a	 number	

alternative	algorithms	in	this	study.	
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3.4 Data	Generation	and	Data	Properties	

This	section	explains	Statistical	Reference	Datasets,	data	generation	process,	and	the	

process	 to	 obtain	 certified	 values.	 Data	were	 generated	 in	MATLAB	 and	 certified	

values	 for	 parameter	 estimates	 and	 associated	 standard	 errors	 were	 created	 in	

Mathematica.11	

The	National	 Institute	of	Standards	and	Technology	(NIST)	develops	Statistical	

Reference	 Datasets	 (StRd),	 which	 are	 designed	 for	 benchmarking	 statistical	

packages.	 The	 purpose	 of	 StRD	 is	 to	 provide	 reference	 datasets	 to	 objectively	

examine	 the	 accuracy	 of	 statistical	 software	 (National	 Institute	 of	 Standards	 and	

Technology	2014).	The	StRD	dataset	archives	include	the	five	main	suites.12	In	each	

suite,	datasets	are	ordered	by	level	of	difficulty	(low,	average,	and	high)	and	the	level	

of	difficulty	depends	on	algorithm	(technique).13	

The	 nonlinear	 benchmark	 tests	 can	 also	 be	 used	 to	 test	 maximum	 likelihood	

estimator	 (MLE),	 however,	 they	 are	 not	 designed	 for	 them	 (Altman,	 Gill,	 and	

McDonald	 2004).	 Thus,	 we	 created	 thirty	 benchmark	 datasets	 for	 the	 logistic	

regression	model	using	maximum	likelihood	estimation.	Thirty	benchmark	datasets	

were	created	by	simulating	different	conditional	binary	choice	processes	in	MATLAB	

																																																								
11	Data	descriptions	and	models	are	reported	in	Appendix.	
12	The	five	suites	of	datasets	are	Analysis	of	Variance,	Linear	Regression,	Nonlinear	Regression,	Markov	

Chain	Monte	Carlo,	and	Univariate	Summary	Statistics.	
13	Datasets	classified	in	to	different	difficulty	levels	provide	a	rough	guide	to	users.	According	to	the	

NIST,	 a	 package	 that	 can	 solve	 a	 dataset	 (or	 the	model)	with	 the	 high	 level	 of	 difficulty	 does	not	
guarantee	the	given	package	can	solve	the	dataset	with	the	low	and	average	levels	of	difficulty	and	
vice‐	versa.	
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following	 Bergtold,	 Spanos,	 and	 Onukwugha	 (2010).	 A	 table	 of	 summarizing	 the	

datasets	and	parameters	used	are	presented	in	the	Appendix	at	the	end	of	the	paper.	

The	table	provides	the	dataset	name,	cutoff	point,	functional	form	of	the	predictor,	

level	of	multicollinearity	between	covariates,	number	of	observations,	and	amount	of	

variation	in	the	covariates.	The	datasets	vary	in	difficulty	by	changing	the	conditions	

under	which	they	were	generated.	These	conditions	include:	changing	the	P(Y=1)	(i.e.	

the	cutoff	value);	varying	the	amount	of	noise	or	variation	in	the	data	(through	the	

variance	 parameters	 of	 the	 dataset);	 varying	 the	 degree	 of	 near	multicollinearity	

between	 covariates;	 introducing	 different	 nonlinearities	 into	 the	 predictor/index	

function;	 and	 creating	 datasets	 that	 quasi‐separable.	 For	 example,	 for	 near	

mutlicollinearity,	datasets	were	generated	with	different	numbers	of	observations	

(e.g.	50	to	1000)	changing	the	degree	of	correlation	between	covariates	from	0.75	to	

0.995.	Collinearity	is	a	significant	challenge	in	environmental	or	ecological	research	

and	 different	 software	 handles	 it	 differently.	 Similarly,	 for	 cut‐off	 points,	 we	

generated	datasets	with	cutoffs	(i.e.	P(Yi		=	1))	from	0.015%	to	19%.	For	example,	the	

cutoff	value	for	the	cutoff4	data	was	set	at	0.015%,	which	may	represent	a	situation	

of	modeling	credit	card	fraud.		

To	obtain	certified	values	to	test	the	numerical	reliability	of	 logistic	regression	

estimation,	we	followed	National	Institute	of	Standards	and	Technology	procedures	

when	they	generated	certified	values	of	parameter	estimates	and	standard	errors	for	

nonlinear	 models	 estimated	 using	 nonlinear	 least	 squares	 procedures	 (National	

Institute	 of	 Standards	 and	 Technology	 2014).	 Certified	 values	 were	 generated	

through	 self‐coded	 logistic	 regression	 estimation	 procedures	 with	 analytic	
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derivatives	using	the	Mathematica	software	optimization	algorithms,	given	their	high	

degree	of	reliability	and	accuracy.	McCullough	(2000a)	showed	that	Mathematica	can	

obtain	perfect	accuracy	on	the	NIST	StRD.	Certified	values	were	obtained	simulating	

quad	 precision	 (128	 bits)	 by	 doing	 all	 computations	 to	 50	 significant	 digits	 to	

minimize	the	overflow	and	round‐off	errors	during	intermediate	computations.14For	

each	 benchmark	 dataset,	 the	 associated	 logistic	 regression	 model	 was	 estimated	

using	 three	 alternative	 algorithms	 (a	 Quasi‐Newton,	 conjugate	 gradient,	 and	 grid	

search	 algorithm).	 Standard	 errors	 were	 estimated	 using	 the	 common	 estimator	

found	 in	 most	 software	 packages.	 Following	 Greene	 (2002),	 the	 asymptotic	

covariance	matrix	is	estimated	by	using	the	inverse	of	the	Hessian	evaluated	at	the	

maximum	likelihood	estimates	of	 the	parameters.	 	 	Certified	values	 for	parameter	

estimates	and	standard	errors	were	 confirmed	when	 two	different	algorithms	 for	

two	different	starting	values	in	Mathematica	agreed	on	the	first	11	significant	digits	

for	each	parameter	estimate.15		Analytic	derivatives	were	used	in	estimation	because	

it	is	more	accurate	than	their	finite	difference	approximation	(McCullough	1998).		

The	 two	 starting	 values	 used	 are	 the	 null	 vector	 with	 the	 value	 for	 intercept	

replaced	by	the	unconditional	log	odds	and	the	parameter	estimates	from	the	linear	

probability	model.	A	set	of	starting	values	can	be	changed	by	users	in	some	logistic	

regression	commands,	for	example,	PROC	LOGISTIC	and	PROC	QLIM	in	SAS,	whereas	

																																																								
14	Overflow	error	occurs	when	the	computer	handles	a	number	that	is	too	large	for	it	because	each	

computer	has	well‐defined	range	of	values	that	it	can	store	or	represent.	Rounding	error	occurs	when	
the	calculated	approximation	of	a	number	and	its	exact	value	are	different.	

15	The	 datasets	 descriptions,	 certified	 and	 estimated	 values	 for	 the	 logistic	 regression	model	 for	 a	
sample	dataset	are	given	in	Appendix.	
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for	GLM	in	MATLAB	only	the	default	starting	values	can	be	used	in	estimation.	Since	

convergence	is	sensitive	to	starting	value	in	logistic	regression	estimation,	changing	

starting	values	might	give	higher	LREs,	which	indicates	that	a	default	setting	is	not	

the	optimal	setting	for	that	problem.	

3.5 Measure	of	Accuracy	

To	 examine	 the	 numerical	 reliability	 of	 statistical	 software,	 logarithm	 of	 relative	

error	(LRE)	can	be	used	as	a	measure	of	accuracy	(McCullough	1998;	McCullough	and	

Wilson	1999;	Odeh,	Featherstone,	and	Bergtold	2010).	The	LRE	measure	is	used	to	

assess	 the	 reliability	 of	 estimated	 results	 for	 the	 above	 mentioned	 statistical	

packages.	The	LRE	measure	is	given	by	the	following	formula:	

	

where	q	denotes	the	estimated	value,	and	c	stands	for	the	certified	(correct)	value.	If	

the	 certified	 value	 is	 zero,	 the	 LRE	measure	 is	 undefined;	 in	 such	 a	 case,	 the	 log	

absolute	 error	 (LAE	=	 −log10|q|)	 is	 used.	 The	 LRE	 value	measures	 the	 number	 of	

significant	digits	of	the	estimated	results	in	comparison	to	the	certified	values.16For	

example,	an	LRE	value	of	6.5	exhibits	that	the	estimated	result	is	accurate	to	the	six	

significant	digits.	If	the	program	reports	the	negative	LRE	value,	then	it	is	considered	

																																																								
16	The	significant	digits	in	a	number	are	defined	as	the	first	nonzero	digit	and	all	succeeding	digits.	For	

example,	5.314	has	four	significant	digits	whereas	0.00029	has	only	two	significant	digits.	
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as	zero.	For	a	non‐linear	model,	it	is	expected	to	have	a	minimum	LRE	score	of	four	

(McCullough	 1998;	 Odeh,	 Featherstone,	 and	 Bergtold	 2010),	 which	 is	 used	 as	 a	

measure	of	accuracy	of	significant	digits	of	the	estimated	results.		

For	 each	benchmark	dataset	 generated,	 a	number	of	 parameter	 estimates	 and	

standard	 errors	 are	 obtained,	we	 calculate	 LRE	 for	 each	 parameter	 and	 standard	

error.	Then	we	choose	the	minimum	LRE	for	parameter	estimate	and	standard	error	

for	each	setting	(e.g.	algorithm,	starting	value,	convergence	level),	and	compare	the	

minimum	LRE	to	different	settings.	We	first	examine	the	default	settings	and	then	

examine	 the	 user	 settings	 that	 can	 be	 changed	 to	 find	 an	 optimal	 user	 setting	 by	

examining	different	algorithms	and	tolerance	criteria,	which	may	be	different	from	

the	default.	If	a	package’s	default	setting	gives	lower	LRE	values	than	optimal	user	

setting,	then	it	indicates	that	a	default	setting	did	provide	as	robust	estimation	results	

compared	 to	 optimal	 user	 settings,	 which	 is	 a	 very	 likely	 the	 case	 for	 logistic	

regression	 (McCullough	 and	 Vinod	 2003).	 Users	 can	 obtain	 more	 numerically	

accurate	results	by	changing	default	settings	of	a	package.		

Based	 on	 a	 minimum	 accuracy	 (an	 LRE	 score)	 for	 thirty	 datasets,	 this	 study	

reports	how	many	datasets	meet	the	minimum	accuracy	of	four	digits	(an	LRE	score	

of	four)	for	parameter	estimates	and	standard	errors.	An	accuracy	of	four	digits	(an	

LRE	score	of	4)	 is	 assumed	here	 to	provide	minimum	reliability	 for	estimation	of	

nonlinear	models	(McCullough	1998;	Odeh,	Featherstone,	and	Bergtold	2010).	It	may	

be	 the	 case	 that	 higher	 accuracy	 is	 needed,	 and	 a	 minimum	 LRE	 of	 6	 could	 be	

considered	instead.	When	default	settings	fail	to	provide	the	minimum	requirement	

or	low	reliability,	then	users	should	consider	changing	algorithmic	settings,	such	as	
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use	 of	 an	 alternative	 algorithm,	 change	 in	 starting	 value,	 lowering	 of	 tolerance	

criteria	or	use	of	analytic	derivatives.	A	program	that	fails	to	give	accuracy	to	four	

digits	for	simple	problem	may	give	less	accurate	results	for	more	difficult	problems	

(for	 this	 study,	 multicollinearity	 or	 quasi‐separation	 datasets).	 These	 results	

(comparison	 of	 an	 LRE	 score	 for	different	 setting)	 provide	 information	 about	 the	

strengths	and	weaknesses	of	statistical	software,	which	give	flexibility	to	researchers	

to	choose	optimal	 settings	and	right	 software	based	on	 their	problems,	and	allow	

software	vendors	to	potential	reliability	issues	in	newer	versions	of	the	software.	

	

4	Results	

We	 estimated	 the	 thirty	 benchmark	 datasets	 for	 each	 software	 package	 at	 two	

alternative	starting	points	at	the	default	and	optimal	user	settings	(as	determined	by	

the	authors).	If	a	software	package	has	more	than	one	procedure	that	estimates	logistic	

regression	models,	then	report	results	for	each	procedure.	Results	for	minimum	LRE	

for	default	and	optimal	user	settings	are	reported	in	Tables	1	to	4.	In	Tables	2	and	4,	

which	present	 the	 results	 for	 the	user	optimal	 settings,	 the	default	 values	are	again	

reported	as	there	are	no	setting	to	adjust	by	the	end	user.	The	default	in	this	case	is	the	

user	optimal.	A	value	of	NS	indicates	that	an	algorithm	achieved	false	convergence,	or	

no	 optimal	 solution	 was	 obtained	 for	 the	 particular	 setting	 (i.e.	 the	 model	 did	 not	

estimate).		An	LRE	score	of	four	or	greater	is	required	to	meet	the	minimum	standard	

of	reliability	of	nonlinear	regression	estimation	following	McCullough	(1998).	
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For	parameter	estimates,	the	LOGIT	command	in	STATA,	R,	and	MATLAB	with	

default	setting	met	McCullough’s	(1998)	criteria	of	minimum	LRE	of	four	in	twenty‐six	

out	of	thirty	benchmark	datasets.	Similarly,	twenty	and	seventeen	datasets	for	starting	

values	one	and	two	met	the	minimum	LRE	criteria	for	PROC	LOGISTIC	in	SAS.	Likewise,	

the	 LOGIT	 command	 in	 LIMDEP	 met	 the	 criteria	 for	 twenty‐seven	 and	 twenty‐six	

models	using	the	default	setting	for	starting	values		one	and	two,	respectively.	Similar	

results	were	found	for	the	minimum	LRE	scores	for	the	estimated	standard	errors.		

On	 average,	 the	 optimal	 user	 settings	 were	 able	 to	 improve	 algorithmic	

performance	for	estimation	of	models.	In	some	cases,	it	allowed	a	procedure	for	a	given	

statistical	package	to	meet	the	minimum	LRE	score.	Consider	the	Cutoff5	dataset	for	

PROC	LOGISTIC	in	SAS.	For	both	starting	points,	the	minimum	LRE	for	the	parameter	

and	standard	error	estimates	were	2.8	and	4.3	respectively.	When	optimal	user	settings	

were	used	by	lowering	the	tolerance	criteria,	the	minimum	LRE	for	CUTOFF	5	for	both	

starting	 points	 for	 the	 parameters	 and	 standard	 errors	 increased	 to	 7.4	 and	 8.5,	

respectively.		

The	results	for	each	statistical	package	examined	are	discussed	in	more	detail	

below.					
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STATA	

All	thirty	datasets	were	estimated	with	LOGIT,	BINREG,	and	GLM	in	STATA.	Users	

can	change	convergence	criteria,	algorithm,	and	starting	value	in	STATA	for	each	

procedure.	Four	algorithms	(NR,	BHHH,	BFGS,	and	DFP),	two	tolerance	criteria	

(1e‐5	(default)	and	1e‐12)	and	two	starting	values	(start	one	and	start	two)	were	

examined	for	to	determine	optimal	user	settings.	

This	software	packages	performed	well	for	parameter	estimates	based	on	the	

LRE	criteria	in	twenty	six	out	of	the	thirty	benchmark	datasets	models	for	the	LOGIT	

and	 GLM	 commands	 for	 starting	 values	 one	 and	 two.	 However,	 for	 the	 BINREG	

command	using	the	default	setting	with	starting	values	one	and	two,	only	fourteen	and	

fifteen	datasets	met	the	criteria,	respectively.	Finding	user	optimal	setting,	twenty	six	

models	out	of	the	30	benchmark	datasets	met	the	minimum	LRE	criteria.	Likewise,	for	

standard	errors	with	PROC	LOGISTIC,	twenty	five	and	twenty	six	models	met	the	LRE	

criteria	for	start	one	and	two.	And	with	PROC	QLIM	for	starting	values	one	and	two,	

eight	and	nine	datasets	did	not	meet	the	minimum	LERE	criteria.		

MATLAB	

All	 the	 models	 were	 estimated	 with	 GLMFIT	 in	 MATLAB.	 Users	 cannot	 change	

algorithm,	 convergence	 criteria,	 or	 starting	 values.	 This	 software	 package	 reliably	

estimated	 twenty‐six	 and	 twenty‐seven	 models	 out	 of	 thirty	 for	 the	 parameter	

estimates	 and	 associated	 standard	 errors.	 One	 of	 the	 shortcomings	 of	 the	 GLMFIT	
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procedure	 in	 MATLAB	 is	 that	 it	 only	 provides	 the	 use	 of	 one	 algorithm	 (Newton	

Raphson)	to	estimate	the	logistic	regression	model.		

R	

This	software	packages	uses	the	GLM	command	for	estimation	of	 logistic	regression	

models.	For	starting	values	one	and	two,	twenty‐six	and	twenty‐five	models	met	the	

minimum	LRE	criteria	 for	parameter	estimates,	 respectively.	However,	 for	 standard	

errors	only	twenty‐three	datasets	met	the	criteria	for	both	starting	values.	R	provides	

a	limited	number	of	user	options	to	control	estimation.	For	the	GLM	command,	users	

can	only	change	starting	values.	

LIMDEP	

LIMDEP	 uses	 the	 LOGIT/BLOGIT	 command	 to	 estimate	 logistic	 regression.	 This	

software	package	reliably	estimated	twenty‐seven	and	twenty‐six	of	the	thirty	models	

for	 starting	 values	 one	 and	 two,	 respectively	 using	 the	 default	 settings.	 LIMDEP	

estimated	twenty‐seven	models	of	the	thirty	models	reliably	with	user	optimal	setting	

for	 the	 both	 starting	 values.	 Likewise,	 twenty‐eight	 models	 met	 the	minimum	 LRE	

criteria	 in	 user	 optimal	 setting	 for	 estimation	 of	 standard	 errors	 for	 both	 starting	

points.		

SAS	
All	the	models	were	estimated	with	PROC	LOGISTIC	and	PROC	QLIM	in	SAS.	For	

parameter	estimates	obtained	using	PROC	LOGITISTIC	with	default	settings,	out	

of	 the	 thirty	 benchmark	models,	 only	 twenty	 and	 seventeen	models	 met	 the	
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minimum	LRE	of	four	for	starting	points	one	and	two,	respectively.	In	contrast,	

twenty‐six	models	were	reliably	estimated	using	user	optimal	settings	for	both	

starting	 values.	 	 Similarly,	 with	 PROC	 QLIM,	 twenty‐five	models	 of	 the	 thirty	

models	 met	 the	 criteria	 in	 default	 setting	 for	 both	 starting	 values,	 whereas	

twenty‐six	and	twenty‐five	models	met	the	criteria	with	user	optimal	setting	for	

starting	points	one	and	two,	respectively.		

The	results	for	LRE	score	show	that	for	most	of	the	packages,	more	datasets	met	

the	 reliability	of	 software	 criteria	 in	user	optimal	 setting	 than	default	 setting.	

Even	if	the	same	number	of	models	were	estimated	reliably	in	default	and	user	

optimal	settings,	software	gives	higher	LREs	when	using	user	optimal	setting.	For	

example,	with	the	Base	benchmark	dataset,	the	LRE	score	for	starting	value	two	

using	 the	 default	 setting	 in	 LIMDEP	was	 6.6,	 but	with	 user	 optimal	 setting	 it	

increased	to	10.6.		

5	Conclusion	

The	reliability	of	estimating	logistic	regression	models	for	five	widely	selected	

software	 packages	 used	 by	 applied	 economists	 and	 researchers	 in	 other	

disciplines	was	examined.	The	packages	were	SAS	9.3,	MATLAB	R2012a,	R	3.1.0,	

STATA/IC	13.1,	and	LIMDEP	10.5.	To	test	reliability	we	developed	30	benchmark	

datasets	 following	 the	 procedures	 established	 by	 NIST	 for	 their	 nonlinear	

regression	benchmark	datasets.	For	each	statistical	package,	we	estimated	the	

30	benchmark	datasets	to	estimate	the	associated	logistic	regression	models	for	

different	procedures	 in	 each	 software	package.	The	 reliability	of	 the	 software	
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packages	and	associated	procedures	was	assessed	using	the	minimum	LRE	of	the	

parameter	 and	 asymptotic	 standard	 error	 obtained,	 computed	 using	 the	

benchmark	values	for	the	parameter	and	standard	error	estimates.	We	followed	

previous	 literature	 and	 tested	 the	 default	 settings	 for	 each	 package	 and	 then	

adjusted	the	options	in	each	software	package	to	obtain	a	user	optimal	setting	to	

try	and	get	closer	to	the	certified	values	generated	for	each	benchmark	dataset.	

In	reality,	the	certified	benchmark	values	will	be	unknown,	thus	modelers	and	

researchers	should	follow	the	suggestions	by	McCullough	(2004)	to	verify	their	

results.		

			 Software	 reliability	 testing	 results	 suggest	 that	 many	 of	 the	 logistic	

regression	estimation	procedures	in	the	software	packages	tested	are	reliable,	

meeting	the	minimum	LRE	requirement	of	4.	STATA,	MATLAB,	R,	LIMDEP,	and	

SAS	 for	 the	 most	 part	 provided	 consistent	 reliable	 results.	 Users	 should	 be	

careful	when	relying	on	default	settings.	The	BINREG	procedure	in	STATA	and	

PROC	 LOGISTIC	 in	 SAS	 both	 performed	 comparatively	worse	when	 using	 the	

default	 settings.	 When	 user	 optimal	 settings	 were	 determined	 by	 changing	

tolerance	criteria	and	algorithm	choice,	reliability	results	significantly	improved	

for	both	estimation	commands.	Overall,	user	optimal	settings	resulted	in	better	

and	more	accurate	performance	than	default	settings.	In	some	cases,	no	default	

settings	were	available	to	change,	limiting	the	flexibility	of	the	package.	This	was	

the	case	for	both	MATLAB	and	R.		
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			 This	 study	 expands	 on	 the	 reliability	 testing	 of	 software	 packages	 for	

statistical	 estimation	 by	 considering	 discrete	 choice	 models	 using	 maximum	

likelihood	 estimation.	 Furthermore,	 the	 study	provides	30	unique	benchmark	

datasets	with	 certified	 parameter	 and	 standard	 error	 estimates	 for	 reliability	

testing	that	can	be	used	to	test	future	versions	of	and	other	statistical	software	

packages	in	the	future.		 	
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Table	1.	Minimum	LRE	for	Parameter	Estimates	with	Default	Settings	

Datasets 

                               STATA  MATLAB  R  LIMDEP                SAS 

LOGIT  BINREG      GLM  GLMFIT  GLM  LOGIT  LOGISTIC  QLIM 

D1  D2  D1  D2  D1  D2    D  D1  D2  D1  D2  D1  D2  D1  D2 

Base  10.9  6.7  7.3  8  10.9  6.6  10.8  10.9  10.8  10.9  6.6  5.4  6.6  8.2  6.4 

Multico1  0.7  0.7  0.7  0.7  0.7  0.7  0.7  0.7  0.7  10  9.1  0.7  0.7  0.7  0.7 

Multico2  9.7  9.3  5.2  5.4  9.7  9.4  10.5  9.7  10.7  9.7  10.7  4.7  5.2  6.8  10.3 

Multico3  7.1  7.9  5.1  4.6  7.1  9.1  10.7  8.4  10.8  8.4  10.8  4.3  5.8  8.9  9.6 

Multico4  7  7.1  4.1  3.3  7  7.1  10.2  10.2  10.2  10.2  10.2  5.5  5.3  8.6  7.8 

Multico5  7.1  6.9  3.9  4.5  7.1  6.9  10.5  9.3  9  9.3  9  4.6  4.4  8.9  8.1 

Multico6  7  6.6  5.4  4.8  7  6.6  10.2  6.9  6.9  6.9  6.9  6.9  6.9  8.1  8.8 

Multico7  6.4  6.4  5.8  5  6.3  6  10.5  9.7  10.5  9.7  6.6  5  6.6  6.6  6.3 

Multico8  10.1  9.6  5.4  4.3  10.1  9.5  10.1  10.1  8.2  6.2  8.2  6.2  3.9  7.2  6.3 

Multico9  5.9  5.8  4.3  3.3  5.9  5.8  10.3  6  9.6  6  9.6  6  6  6.7  6.3 

Multico10  4.8  4.8  1.3  0.2  4.8  4.8  10.4  9.1  10.4  9.1  10.4  4.8  4.6  3.9  4.4 

Multico11  5.4  7.5  3.9  4.4  5.4  7.5  10.2  10.2  7.5  5.4  7.5  5.4  2.9  4.5  4.7 

Multivar1  8.2  8.1  5  4.8  8.2  8.1  10.6  9.3  10.6  9.1  7.2  4.4  7.2  7.4  8 

Multivar2  7.5  7.5  4.1  4.2  7.5  7.5  10.6  9.5  8.6  1.7  1.7  4.5  4  8  7.1 

Multivar3  10.3  7.7  5.1  5.3  10.3  7.7  10.3  10.3  7.7  6  7.7  6  3.4  7.5  8.6 

Multivar4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  2.4  7.8  2.4 

Multivar5  5.1  5.1  2.8  2  5.1  5.1  10.3  8  0  8  0  3.4  3.7  5.5  5.2 

Multivar6  6.7  6  3  3.2  4.5  6.1  10.3  7.7  7.5  7.7  7.5  3.7  3.6  4.4  4.4 

Multivar7  7.1  7.1  5.9  5.5  7.1  7.1  10.6  10.6  11  7.2  11  7.2  5.5  5.4  5.7 

Cutoff1  8.5  8.1  NS  NS  8.5  8.1  10.2  5.8  5.7  5.8  10.2  2  2  3.3  3.3 

Cutoff2  5.7  5.7  3.7  4.2  5.7  5.7  10.8  10.8  10.8  5.9  5.9  5.9  5.9  4.5  5.3 

Cutoff3  5.9  5.9  NS  NS  6.9  6.9  10.6  7.3  7.3  7.3  7.3  7.3  7.3  6.1  7.4 

Cutoff4  5.5  5.5  NS  NS  5.7  5.7  10.4  10.4  10.4  6.8  6.8  6.8  6.8  7.6  6.6 

Cutoff5  4.5  4.5  5.7  5.7  4.6  4.6  10.3  6.9  6.9  6.9  6.9  2.8  2.8  9.6  5.7 

Cutoff6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

Cutoff7  8.4  9  NS  NS  8.4  9  10.8  6.7  6.6  6.7  6.6  3.1  3.1  6.5  5.4 

Cutoff8  5.9  5.7  2.9  2.9  6.1  5.8  10.4  7.7  7.6  7.7  7.6  3.7  3.7  5.1  6 

Empirical1  6  10.7  2.6  2.9  6  10.7  10.7  10.7  10.7  6.4  6.6  6.4  6.3  5.7  5.7 

Quasisep1  6.5  6.6  5.3  5.3  5.2  5.3  10.3  8  10.3  8  7  4.1  7  8.3  8.2 

Quasisep2  3.6  3.6  0  0  3.6  3.6  3.6  3.6  3.6  10.2  9.2  3.6  3.6  3.6  3.6 

Note: D = Default Settings; 1 = Starting Point 1; 2 = Starting point 2, NS= did not converge to a 
solution 
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Table	2.	Minimum	LRE	for	Parameter	Estimates	with	User	Optimal	Settings 

 Datasets 

STATA  MATLAB  R  LIMDEP  SAS 

     LOGIT       BINREG      GLM  GLMFIT      GLM    LOGIT       LOGISTIC     QLIM 

U1  U2  U1  U2  U1  U2  D  D1  D2  U1  U2  U1  U2  U1  U2 

Base  10.9  8.4  10.9  8.4  10.9  8.4  10.8  10.9  10.8  10.9  10.6  10.9  10.8  10.6  6.6 

Multico1  0.7  0.7  0.7  0.7  0.7  0.7  0.7  0.7  0.7  10  9.1  0.7  0.7  0.7  0.7 

Multico2  9.7  9.3  9.7  9.3  9.7  9.4  10.5  9.7  10.7  9.7  10.7  9.7  10.7  10.2  10.3 

Multico3  8.7  8.2  7.9  9.1  7.9  9.1  10.7  8.4  10.8  8.9  10.8  8.4  10.8  8.9  9.6 

Multico4  7  7.1  7  7.1  7  7.1  10.2  10.2  10.2  10.2  10.2  10.2  10.2  9.7  9.5 

Multico5  7.8  7.1  7.2  7.2  7.2  7.2  10.5  9.3  9  9.3  9  9.3  9.3  10.4  9.4 

Multico6  7  7  7  7.2  7  7  10.2  6.9  6.9  10.2  10  10.2  10.2  8.1  8.8 

Multico7  6.5  7.4  6.7  6.2  6.7  6.2  10.5  9.7  10.5  9.7  7.9  10.6  10.5  7.9  7.2 

Multico8  10.1  9.6  10.1  9.5  10.1  9.5  10.1  10.1  8.2  10.1  9.1  10.1  8.2  8.6  8.3 

Multico9  5.9  5.8  6.4  5.8  6.4  5.8  10.3  6  9.6  9  9.6  6  6  6.7  9.3 

Multico10  5.4  5  5.6  5.6  5.4  5  10.4  9.1  10.4  9.1  10.4  9.1  10.4  8  9 

Multico11  10  7.5  10  7.5  10  7.5  10.2  10.2  7.5  10.2  7.9  10.2  7.5  6.7  8.9 

Multivar1  8.3  8.1  9.7  8.1  8.3  8.1  10.6  9.3  10.6  10.8  7.4  9.1  7.2  9.2  9.8 

Multivar2  7.5  7.5  7.5  7.5  7.5  7.5  10.6  9.5  8.6  1.7  2.5  9.5  8.6  8.7  8.1 

Multivar3  10.3  7.7  10.3  7.7  10.3  7.7  10.3  10.3  7.7  10.4  9.9  10.3  7.7  10.2  8.6 

Multivar4  2.6  2.6  2.5  2.5  2.5  2.5  2.4  2.4  2.4  2.4  2.4  2.4  2.4  7.8  2.4 

Multivar5  5.5  5.3  5.5  5.3  5.5  5.3  10.3  8  0  8  7.5  8  8.1  9.1  9 

Multivar6  6.7  6.3  6.6  6.5  6.6  6.3  10.3  7.7  7.5  7.7  8.3  7.7  7.5  8.6  7.5 

Multivar7  7.1  7.2  7.6  7.6  7.9  7.6  10.6  10.6  11  7.7  11  10.6  11  5.8  7.3 

Cutoff1  8.5  8.1  8.5  8.1  8.5  8.1  10.2  5.8  5.7  10.2  10.2  5.8  5.7  3.3  3.7 

Cutoff2  6.5  6.4  6.5  7.3  6.5  6.4  10.8  10.8  10.8  10.8  10.8  10.8  10.8  8.1  7.6 

Cutoff3  6.3  6.3  6.9  6.9  6.9  6.9  10.6  7.3  7.3  8  7.7  7.3  7.3  7.5  7.5 

Cutoff4  5.5  5.5  5.7  5.7  5.7  5.7  10.4  10.4  10.4  8  8  10.4  10.4  9  9 

Cutoff5  4.5  4.6  5.7  5.7  4.6  4.7  10.3  6.9  6.9  6.9  10.6  7.4  7.4  9.6  7.3 

Cutoff6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

Cutoff7  8.4  9  8.4  9  8.4  9  10.8  6.7  6.6  9.8  10.2  6.7  6.6  7.7  7.9 

Cutoff8  6.2  6.4  6.5  6.3  6.5  6.3  10.4  7.7  7.6  9.7  7.7  7.7  7.6  7.7  7.6 

Empirical1  10.7  10.7  10.7  10.7  10.7  10.7  10.7  10.7  10.7  7.4  7.2  10.7  10.7  10.8  10.7 

Quasisep1  6.5  6.6  5.4  6.6  6.6  6.6  10.3  8  10.3  9.1  9.1  8  10.3  8.3  8.2 

Quasisep2  3.6  3.6  3.6  3.7  3.6  3.6  3.6  3.6  3.6  10.2  9.2  3.6  3.6  3.6  3.6 

Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, 
NS= did not converge to a solution, MATLAB has no user optimal setting. 
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Table	3.	Minimum	LRE	for	Standard	Errors	with	Default	Settings 

Datasets  

STATA  MATLAB  R     LIMDEP  SAS 

     LOGIT  BINREG     GLM  GLMFIT       GLM  LOGIT  LOGISTIC  QLIM 

D1  D2  D1  D2  D1  D2  D  D1  D2  D1  D2  D1  D2  D1  D2 

Base  11.3  7.3  11.3  7.3  11.3  7.3  11.3  6.3  7.3  11.3  7.3  6.3  7.3  5.6  5.6 

Multico1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  10.5  9.7  0.1  0.1  0.1  0.1 

Multico2  9.9  9.4  9.9  9.5  9.9  9.5  10.7  5  5.4  9.9  11  5  5.4  4.7  4.7 

Multico3  7  7.4  6.7  7.2  6.7  7.2  6  4.1  5.5  8.2  10.7  4.1  5.5  3.1  3.1 

Multico4  8.6  7.9  8.4  7.9  8.4  7.9  10.1  6  5.8  10.1  10.1  5.9  5.8  4.8  4.8 

Multico5  7.9  7.3  7.9  7.3  7.9  7.3  8.7  4.9  4.7  9.7  9.3  4.9  4.7  4.6  4.7 

Multico6  7.1  7  7.1  6.8  7.1  6.8  6.8  3.7  3.7  7.3  7.2  7.3  7.2  2.4  2.4 

Multico7  5.6  5.6  5.1  5.1  5.1  5.1  6.9  4.7  6.4  9.4  6.4  4.7  6.4  3.4  3.4 

Multico8  10.5  10.1  10.5  10.1  10.5  10.1  7.1  6.6  4.4  6.6  8.8  6.6  4.4  5.7  5.7 

Multico9  7.3  7.2  7.3  7.2  5.9  7.2  10.4  4.3  5.4  8.2  10.5  8.2  8.2  5.1  5.1 

Multico10  7.1  7.1  7.1  7.1  7.1  7.1  10.2  5.6  6.4  10.2  10.2  5.6  6.4  4.1  4.1 

Multico11  7.3  9  7.3  9  7.3  9  10.2  7.3  4.5  7.3  9  7.3  4.5  5.7  5.7 

Multivar1  8.4  8.4  9.5  8.4  8.4  8.4  9.7  4.9  7.8  9.6  7.7  4.9  7.7  5.4  5.4 

Multivar2  7.9  7.9  7.9  7.9  7.9  7.9  9.2  5.2  4.7  2.5  2.5  5.2  4.7  4.5  4.5 

Multivar3  10.7  8.7  10.7  8.7  10.7  8.7  10.7  6.9  4.4  6.9  8.7  6.9  4.4  5.7  5.7 

Multivar4  4.6  4.6  3.7  3.7  3.7  3.7  9.3  4.2  4  8.4  8  4.2  4  5.7  3.9 

Multivar5  7.3  7.3  7.3  7.3  7.3  7.3  9.9  5  0  9.7  NS  5  5.4  5.1  5.2 

Multivar6  0.1  0.1  6.7  6.5  6.7  6.4  8.9  4.1  4.1  8.1  8  4.1  4.1  4.6  4.6 

Multivar7  6.2  6.2  6.2  6.2  6.2  6.2  10.3  7.2  5.4  7.2  10.5  7.2  5.4  3.7  3.7 

Cutoff1  10.6  10.4  10.6  10.4  10.6  10.4  10  3.9  3.9  7.7  10.3  3.9  3.9  4.3  4.3 

Cutoff2  6.5  6.6  6.5  6.6  6.5  6.6  8.4  6.7  6.7  6.7  6.7  6.7  6.7  5  4.9 

Cutoff3  5.7  5.7  5.8  5.8  5.8  5.8  9.5  3.8  3.8  7.5  7.5  7.5  7.5  4.1  4.1 

Cutoff4  5.1  5.1  5.2  5.2  5.2  5.2  8.6  6.7  6.7  6.7  6.7  6.7  6.7  4.6  4.6 

Cutoff5  6.4  6.4  5.7  5.7  5.7  5.7  10.2  4.3  4.3  8.5  8.5  4.3  4.3  4  4 

Cutoff6  0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9  1.1  1.1  0.9  0.9  0.9  0.9 

Cutoff7  8.8  10.1  8.8  10.2  8.8  10.1  9.2  3.6  3.5  7.1  7.1  3.6  3.5  4.8  4.8 

Cutoff8  6.1  6.2  6.3  6.1  6.3  6.1  10  4  4  8.1  8  4  4  4.9  4.9 

Empirical1  6.5  10.3  6.5  10.3  6.5  10.3  9.1  6.9  6.8  6.9  6.8  6.9  6.8  5.2  5.2 

Quasisep1  5.7  5.7  4  4  4  4  6.8  3.9  6.8  7.7  6.8  3.9  6.8  2.7  2.7 

Quasisep2  4.1  4.1  4.1  4.1  4.1  4.1  4.1  4.1  4.1  9.5  9.7  4.1  4.1  0  0 

Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, 
NS= did not converge to a solution 
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Table	4.	Minimum	LRE	for	Standard	Errors	with	User	Optimal	Settings 

 STATA  MATLAB  R  LIMDEP  SAS 

   LOGIT  BINREG    GLM  GLMFIT  GLM  LOGIT  LOGISTIC  QLIM 

Datasets  U1  U2  U1  U2  U1  U2   D  D1  D2  U1  U2  U1  U2  U1  U2 

Base  11.3  9.7  11.3  9.7  11.3  9.9  11.3  6.3  7.3  11.3  11.1  11.3  11.3  5.6  5.6 

Multico1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  10.5  9.7  0.1  0.1  0.1  0.1 

Multico2  9.9  9.4  9.9  9.5  9.9  9.5  10.7  5  5.4  9.9  11  9.9  11  4.7  4.7 

Multico3  7.2  7.3  7.3  7.2  7.3  7.2  6  4.1  5.5  8.8  10.7  8.2  10.8  3.1  3.1 

Multico4  8.6  1.4  8.4  1.4  8.4  1.4  10.1  6  5.8  10.1  10.1  10.1  10.1  4.8  4.8 

Multico5  8.3  8.1  7.9  7.9  7.9  7.9  8.7  4.9  4.7  9.7  9.3  8.8  8.8  4.6  4.6 

Multico6  7.1  7.1  7.1  1.6  7.1  7.1  6.8  3.7  3.7  9.8  9.9  9.9  10.6  2.4  2.4 

Multico7  5.6  5.6  0.2  0.2  0.2  0.2  6.9  4.7  6.4  9.4  8.4  9.4  10.5  3.4  3.4 

Multico8  10.5  10.1  10.5  10.1  10.5  10.1  7.1  6.6  4.4  10.5  10.1  10.5  8.8  6.1  5.7 

Multico9  7.8  7.2  7.3  7.3  7.3  7.3  10.4  4.3  5.4  10.1  10.5  8.2  8.2  5.1  5.1 

Multico10  6.8  0.5  7.1  7.1  6.8  0.5  10.2  5.6  6.4  10.2  10.2  10.3  10.2  4.1  4.1 

Multico11  10.2  9  10.2  9  10.2  9  10.2  7.3  4.5  10.2  9.7  10.2  9  5.8  5.8 

Multivar1  8.7  8.4  9.5  8.4  8.7  8.4  9.7  4.9  7.8  10.6  8.2  9.6  7.7  5.4  5.4 

Multivar2  7.9  7.9  7.9  7.9  7.9  7.9  9.2  5.2  4.7  2.5  2.5  10.4  9.3  4.5  4.5 

Multivar3  10.7  8.7  10.7  8.7  10.7  8.7  10.7  6.9  4.4  10.8  10.7  10.7  8.7  5.7  5.7 

Multivar4  0  0  0  0  0  0  9.3  4.2  4  6.3  8  4.2  4  5.7  3.8 

Multivar5  7.2  6.8  7.2  6.8  7.2  6.8  9.9  5  0  9.7  9.3  9.8  9.8  5.1  5.1 

Multivar6  0.1  0.1  6.7  6.7  6.7  6.7  8.9  4.1  4.1  8.1  8.5  8.1  8  4.9  4.9 

Multivar7  6.2  6.2  6.1  0  6.1  0  10.3  7.2  5.4  7.6  10.5  10.3  10.5  3.7  3.7 

Cutoff1  10.6  10.4  10.6  10.4  10.6  10.4  10  3.9  3.9  10.3  10.3  7.7  7.7  4.3  4.4 

Cutoff2  7.4  7.1  7.4  7.1  7.4  7.1  8.4  6.7  6.7  10.1  10.1  10.1  10.1  4.9  4.9 

Cutoff3  5.7  5.7  5.8  5.8  5.8  5.8  9.5  3.8  3.8  9.3  8  7.5  7.5  4.1  4.1 

Cutoff4  5.1  5.1  5.2  5.2  5.2  5.2  8.6  6.7  6.7  8.2  8.2  10.2  10.2  4.6  4.6 

Cutoff5  6.4  6.4  4.7  2.4  5.7  5.7  10.2  4.3  4.3  8.5  10.2  8.5  8.5  4  4 

Cutoff6  0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9  1.1  1.1  0.9  0.9  0.9  0.9 

Cutoff7  8.8  10.1  8.8  10.2  8.8  10.1  9.2  3.6  3.5  10.5  10  7.1  7.1  4.8  4.8 

Cutoff8  5.8  5.8  7  6.7  7  6.7  10  4  4  9.9  8.1  8.1  8  4.9  4.9 

Empirical1  10.3  10.3  10.3  10.3  10.3  10.3  9.1  6.9  6.8  9.8  8.4  10.3  10.3  5.2  5.2 

Quasisep1  5.7  5.7  4  3.9  0  3.9  6.8  3.9  6.8  9.4  9.4  7.7  10.4  2.7  2.7 

Quasisep2  4.1  4.1  4.1  4.1  4.1  4.1  4.1  4.1  4.1  9.5  9.7  4.1  4.1  0  0 

Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, 
NS= did not converge to a solution, MATLAB has no user optimal setting.  



40	

References	

Altman,	M.,	J.	Gill,	and	M.P.	McDonald.	2004.	Numerical	issues	in	statistical	computing	

for	the	social	scientist.	NJ:	John	Wiley	&	Sons.	

Bergtold,	J.S.,	A.	Spanos,	and	E.	Onukwugha.	2010.	“Bernoulli	regression	models:	

Revisiting	the	specification	of	statistical	models	with	binary	dependent	variables.”	

Journal	of	Choice	Modelling	3:1–28.	

Chang,	J.B.,	and	J.L.	Lusk.	2011.	“Mixed	logit	models:	accuracy	and	software	choice.”	

Journal	of	Applied	Econometrics	26:167–172.	

Greene,	W.H.	2002.	Econometric	Analysis.	Englewood	Cliffs,	H.J	Prentice.	

Heinze,	G.,	and	M.	Schemper.	2002.	“A	solution	to	the	problem	of	separation	in	

logistic	regression.”	Statistics	in	medicine	21:2409–2419.	

Hole,	A.R.	2011.	“A	comment	on	mixed	logit	models:	accuracy	and	software	choice.”	

Working	paper.	

Huber,	J.,	and	K.	Train.	2001.	“On	the	similarity	of	classical	and	Bayesian	estimates	of	

individual	mean	partworths.”	Marketing	Letters	12:259–269.	

Keeling,	K.B.,	and	R.J.	Pavur.	2007.	“A	comparative	study	of	the	reliability	of	nine	

statistical	software	packages.”	Computational	Statistics	&	Data	Analysis	51:3811–	

3831.	

Kolenikov,	S.	2001.	“Review	of	STATA	7.”	Journal	of	Applied	Econometrics	16:637–	



41	

646.	

Koro¨si,	 G.,	 L.	 Matyas,	 and	 I.	 Sz´ekely.	 1993.	 “Comparative	 review	 of	 some	

econometric	software	packages.”	Journal	of	Economic	Surveys	7:105–118.	

McCullough,	 B.	 2000a.	 “The	 accuracy	 of	 Mathematica	 4	 as	 a	 statistical	 package.”	

Computational	statistics	15:279–300.	

—.	2000b.	“Is	 it	safe	to	assume	that	software	is	accurate?”	International	 Journal	of	

Forecasting	16:349–357.	

—.	1997.	 “A	 review	of	RATS	v4.	 2:	Benchmarking	numerical	 accuracy.”	 Journal	of	

Applied	Econometrics	12:181–190.	

—.	 2004.	 “Wilkinson’s	 tests	 and	 econometric	 software.”	 Journal	 of	 economic	 and	

social	measurement	29:261–270.	

McCullough,	 B.,	 and	 C.G.	 Renfro.	 2000.	 “Some	 numerical	 aspects	 of	 nonlinear	

estimation.”	Journal	of	Economic	and	Social	Measurement	26:63–77.	

McCullough,	B.D.	1998.	“Assessing	the	reliability	of	statistical	software:	Part	I.”	The	

American	Statistician	52:358–366.	

—.	 1999a.	 “Assessing	 the	 reliability	 of	 statistical	 software:	 Part	 II.”	The	American	

Statistician	53:149–159.	

—.	1999b.	 “Econometric	 software	 reliability:	EViews,	LIMDEP,	SHAZAM	and	TSP.”	

Journal	of	Applied	Econometrics	14:191–202.	



42	

McCullough,	B.D.,	 and	H.D.	Vinod.	 1999.	 “The	numerical	 reliability	 of	 econometric	

software.”	Journal	of	Economic	Literature	37:633–665.	

—.	2003.	 “Verifying	 the	solution	 from	a	nonlinear	solver:	A	case	study.”	American	

Economic	Review	93:873–892.	

McCullough,	B.D.,	and	B.	Wilson.	1999.	“On	the	accuracy	of	statistical	procedures	in	

Microsoft	Excel	97.”	Computational	Statistics	&	Data	Analysis	31:27–37.	

McKenzie,	C.R.,	and	S.	Takaoka.	2003.	“2002:	a	LIMDEP	odyssey.”	Journal	of	Applied	

Econometrics	18:241–247.	

M´elard,	G.	2014.	“On	the	accuracy	of	statistical	procedures	in	Microsoft	Excel	2010.”	

Computational	statistics	29:1095–1128.	

Musa,	 J.D.,	 A.	 Iannino,	 and	 K.	 Okumoto.	 1987.	 Software	 reliability:	measurement,	

prediction,	application.	McGraw‐Hill,	Inc.	

Myers,	R.H.,	D.C.	Montgomery,	G.G.	Vining,	and	T.J.	Robinson.	2012.	Generalized	linear	

models:	with	applications	in	engineering	and	the	sciences.	John	Wiley	&	Sons.	

National	Institute	of	Standards	and	Technology.	2014.	“Statistical	Reference	

Datasets.”	http://www.itl.nist.gov/div898/strd,	 (accessed	on	April	15,	2014).	

Nerlove,	M.	2005.	“On	the	numerical	accuracy	of	Mathematica	5.0	for	doing	linear	and	

non‐linear	regression.”	Mathematica	Journal	9:824–851.	



43	

Nocedal,	 J.,	 and	 S.J.	 Wright.	 2000.	 Numerical	 Optimization.	 Springer	 Series	 in	

Operation	Research	and	Financial	Engineering.	

Odeh,	 O.O.,	 A.M.	 Featherstone,	 and	 J.S.	 Bergtold.	 2010.	 “Reliability	 of	 statistical	

software.”	American	Journal	of	Agricultural	Economics	92:1472–1479.	

Oster,	R.A.	2002.	“An	examination	of	statistical	software	packages	for	categorical	data	

analysis	using	exact	methods.”	The	American	Statistician	56:235–246.	

—.	 2003.	 “An	 examination	 of	 statistical	 software	 packages	 for	 categorical	 data	

analysis	using	exact	methods—Part	II.”	The	American	Statistician	57:201–213.	

Rose,	C.,	and	M.D.	Smith.	2002.	Mathematical	statistics	with	Mathematica.	Springer	

New	York.	

SAS	Manual.	2009.	“SAS/STAT(R)	9.22	User’s	Guide.”	http://goo.gl/GhTdCA,	(accessed	

on	July	15,	2014).	

Sawitzki,	 G.	 1994.	 “Report	 on	 the	 numerical	 reliability	 of	 data	 analysis	 systems.”	

Computational	statistics	&	data	analysis	18:289–301.	

Silk,	J.	1996.	“Systems	estimation:	A	comparison	of	SAS,	SHAZAM	and	TSP.”	Journal	of	

Applied	Econometrics	11:437–450.	

Simon,	S.D.,	and	J.P.	LeSage.	1988.	“Benchmarking	numerical	accuracy	of	statistical	

algorithms.”	Computational	Statistics	&	Data	Analysis	7:197–209.	



44	

Stokes,	H.H.	2004.	 “On	 the	advantage	of	using	 two	or	more	econometric	 software	

systems	to	solve	the	same	problem.”	Journal	of	Economic	and	Social	Measurement	

29:307–320.	

Tomek,	W.G.	1993.	“Confirmation	and	replication	in	empirical	econometrics:	A	step	

toward	improved	scholarship.”	American	Journal	of	Agricultural	Economics	75:6–	

14.	

Train,	 K.E.	 2003.	 Discrete	 Choice	Methods	with	 Simulation.	 Cambridge	 University	

Press.	

Veall,	M.R.	1991.	“SHAZAM	6.2:	a	review.”	Journal	of	Applied	Econometrics	6:317–	

320.	

	 	



45	

Appendix:	Description	of	Benchmark	Datasets	
Dataset 	 P (Yt 

=1), 	
Cutoff 
Point 	

Predictor Functional Form Multi-
collinearity 	
(ρ) 	

Number of 
Observatio
n 	

Varianc
e 	

Base 	 P = 0.6 	 η(X;b) = b0 + b1*X - 200 	 σ1 = 1 

Multicollinearity1 	
P = 0.6 	 η(X;b) = b0 + b1*X1 + b2*X2 ρ12 = 0.75 	 500 	 σ1 = 1.5 

σ2 = 1.5 	

Multicollinearity2 	
P = 0.6 	 η(X;b) = b0 + b1*X1 + b2*X2 ρ12 = 0.995 	 500 	 σ1 = 1.5 

σ2 = 1.5 	

Multicollinearity3 	
P = 0.6 	 η(X;b) = b0 + b1*X1 + b2*X2 

 	
ρ12 = 0.995 	 500 	 σ1 = 1.5 

σ2 = 1.5 	

Multicollinearity4 	

P = 0.6 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X1^2 + b4*X1*X2 + b5*X2^2  	

ρ12 = 0.75 	

1000 	 σ10 = 1 
σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 	

Multicollinearity5	

P = 0.6 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X1^2 + b4*X1*X2 + b5*X2^2  	
 	
 	

ρ12 = 0.95  	

1000 	 σ10 = 1 
σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 	
 	

Multicollinearity6 	

P = 0.6 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X1^2 + b4*X1*X2 + b5*X2^2  	

ρ12 = 0.995 	

1000 	 σ10 = 1 
σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 	
 	

Multicollinearity7 	 P = 0.6 	 η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4  	

ρij = 0.985    
i, j= 	1..4, i ≠ j 	

1000 	 σ = 1 

Multicollinearity8 	 P = 0.4 	
Q = 0.70-

0.80  	
 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X1*X2  	

ρ0 = 0.3 
ρ1 = 0.7 	

50 	 - 

Multicollinearity9 	 P = 
0.4  
	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b12*X1*X2 + 
b13*X1*X3+  
b23*X2*X3+b123*X1*X2*X3 	

ρ0 = 0.3 
ρ1 = 0.7 	

400 	 σ = 1 

Multicollinearity10 	

P = 
0.4 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b11*X1^2 + b12*X1*X2 
+ b13*X1*X3 + b23*X2*X3 + 
b112*x1^2*X2 +  b113*X1^2*X3 
+ b123*X1*X2*X3 + 
b1123*X1^2*X2*X3 	
 	

ρ0 = 0.3 
ρ1 = 0.7 	

325 	 σ = 1 - 3 
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Multicollinearity11 	 P = 

0.4 
Q = 
0.99 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X1*X2  	
 	

ρ0 = 0.8 
ρ1 = 0.4 	

89 	 - 

Multivariate 1 	 P = 0.6 	 η(X;b) = b0 + b1*X1 + b2*Ln(X2) 
+ b3*X3  	

- 300 	 σ = 1 

Multivariate2 	
P = 0.6 	

η(X;b) = b0 + b1*X1 + b2*X1^2 + 
b3*X2 + b4*ln(X2) + b5*X3 	
 	

- 	
300 	 σ1 = 0.9 

σ2 = 1.8 	

Multivariate 3 	 P = 0.4 	
 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4 + b5*X5  	
 	

ρij = 0.5   i, j = 
1-	
5, i ≠ j 	

1000 	 σi = 15 
 	

Multivariate4 	 P = 0.4 	
 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4 + b5*X5 	

ρij =0.3- 0.7   
i, j = 1-5, i ≠ j 	

1000 	 σi = 1 
 	

Multivariate5 	

P = 0.5 	
 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4 + b5*X5 + 
b11*X1^2 +  b12*X1*X2 + 
b13*X1*X3 + b14*X1*X4 + 
b15*X1*X5 + b22*X2^2 + 
b23*X2*X3 + b24*X2*X4 + 
b25*X2*X5 +  b33*X3^2 + 
b34*X3*X4 + b35*X3*X5 + 
b44*X4^2 + b45*X4*X5 + 
b55*X5^2 	
 	

ρij =0.15- 0.35
  i, j = 1-5, i ≠ 

j  	

100 	 σ = 1 

Multivariate6 	 P = 0.4 	
 	

Same as the Multivariate5’s 
functional form 	

ρij =0.1- 0.6,  i, 
j = 1-5, i ≠ j 	

200 	 σ = 0.5 -
0. 77 	

Multivariate 7 	 P = 0.4 	
 	

η(X;b) = b0 + b1*X1 + b2*X2  
 	

ρ = 0.75 	
 	

9 	 σ1 = 
0.25 σ2 
= 0.40 	
 	

Cutoff1 	 P= 0.05 	 η(X;b) = b0 + b1*X1 + b2*X2  ρ12 = 0.99 	
 	

50 	 σ = 1 

Cutoff2 	 P = 0.15 	 η(X;b) = b0 + b1*X1 + b2*Ln(X2) 
+ b3*X3  	
 	

- 32 	 σ = 1 

Cutoff3 	 Ρ = 
0.0005  	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4  	
 	

ρ12 = 0.96 
ρ34 = 0.96 	

5000 	 σ = 0.2- 
2.5 	

Cutoff4 	
P = 
0.00015	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 	
 	

ρ = 0.7 –  (- 
0.85) 	
 	

 	

20000 σ = 1 
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Cutoff5 	 P = 0.05 	 Same as the Multivariate5’s 
functional form 	

ρij =0.3 – 0.5   
i, j = 1-5, i ≠ j 	

500 	 σ = 1- 2 

Cutoff6 	

P = 0.10 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b12*X1*X2 	

ρ0 = 0.2,ρ1 = 
0.9 	

 	
 	

65 	 - 

Cutoff7 	 P = 0.10 	 η(X;b) = b0 + b1*X1 + b2*X2 + 
b12*X1*X2 	
 	

ρ0 = 0.3, ρ1 = 
0.8 	

 	

17500 - 

Cutoff8 	

P= 0.19 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b11*X1^2 + b12*X1*X2 
+ b13*X1*X3 + b23*X2*X3 + 
b112*x1^2*X2 + b113*X1^2*X3 + 
b123*X1*X2*X3 + 
b1123*X1^2*X2*X3 	

ρ0 = 0.4, ρ1 = 
0.7 	

 	

200 	 - 

Empirical1 	 On-Farm 	
Conserva
tion 	
Practice 	
Adoption 	
Bergtold 	
(2005) 	

η(X;b) = b0 + b1*X1 + b2*X2 + 
b3*X3 + b4*X4 + b5*X5 + b6*X6 
+ b7*X7 + b8*X8 + b9*X9 + 
b10*X10 + b11*X11 + b12*X12 +  
b13*X13 	

- 	

1081 	 - 

Quasisep1 	 Generate
d data 
followin
g an 
example 
out of 
Ryan 
(1997)  	

η(X;b) = b0 + b1*X 
 	

- 	

100 	 - 

Quasisep2 	 Generate
d data 
followin
g an 
example 
out of 
Ryan 
(1997)  	

η(X;b) = b0 + b1*X + b2*X2 + 
b3*X3 + b4*X4 + b5*X5 	
 	

-  	

60 	 - 



	

	


