

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Supply Shocks, Futures Prices, and Trader Positions

Joseph P. Janzen Dept of Agricultural Economics and Economics, Montana State University 309A Linfield Hall, P.O. Box 172920 Bozeman, MT 59717-2920, USA Email: joseph.janzen@montana.edu

> Nicolas Merener Business School, Universidad Torcuato di Tella 1010 Saenz Valiente Buenos Aires 1428, Argentina Email: nmerener@utdt.edu

Selected Poster prepared for presentation at the 2015 Agricultural & Applied Economics Association and Western Agricultural Economics Association Joint Annual Meeting, San Francisco, CA, July 26-28, 2015

Copyright 2015 by Joseph P. Janzen and Nicolas Merener. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Supply Shocks, Futures Prices, and Trader Positions

Joseph P. Janzen^{*} and Nicolas Merener[†] *Department of Agricultural Economics and Economics, Montana State University [†]Business School, Universidad Torcuato di Tella

Supply Shocks: Rainfall in the U.S. Corn Belt

- Following the adage that "rain makes grain", we exploit the relationship between rainfall and corn production
- ► For U.S., most corn production is rainfed; 87-90% of corn acres non-irrigated over 1993-2014 Positive correlation between rainfall and corn yield in corn belt is specific to key stages of crop development in June, July, and August (see Tannura, Irwin, and Good, 2008)
- Rainfall is plausibly exogenous to observed variation in futures prices and trader positions
- Data on daily rainfall at 41 weather stations throughout the corn belt collected from National Climatic Data Center for period from 1993-2014
- Use production-weighted spatial average across all stations
- Consider four-day forecast rainfall using actual (future) rainfall as proxy

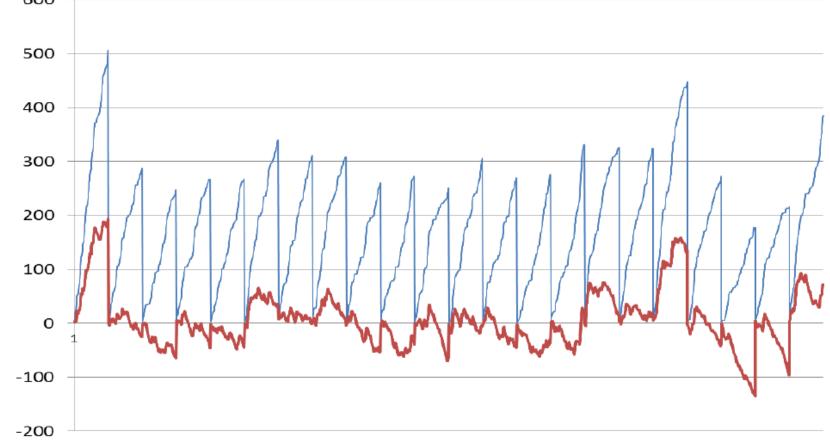
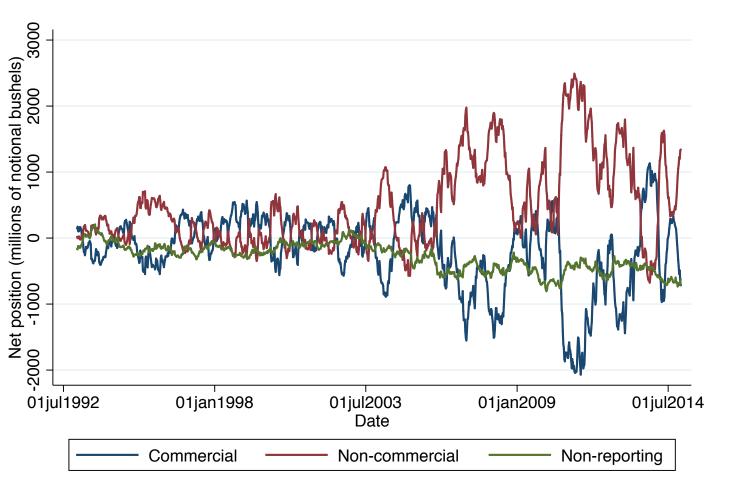


Figure: Accumulated rainfall (blue) and deviation of accumulated rainfall from trend (red) during summer months, measured in millimeters, 1993-2014

Figure: Location of weather stations in U.S. corn belt


- since June 1 minus linear trend over 1993-2014)
- Average rainfall is 3.4mm(0.14in) per day or 309mm(12.3in) per summer
- Possibility: response of prices and positions is non-linear, depend on whether rainfall is above or below trend

Futures Prices: CME Corn Futures

- December CME corn futures price is a benchmark for value of new-crop corn Physical corn underlying CME futures is deliverable at Illinois River shipping stations at center of corn belt
- ▶ i.e. Corn belt rainfall is an important driver of supply deliverable against December contract

Trader Positions: CFTC Commitment of Traders

- Commodity Futures Trading Commission publishes weekly snapshot of long and short futures positions held by various groups of traders
- Two basic groups, commercials and non-commercials, are generally assumed to be hedgers (buy and sell physical corn) and speculators (no physical position)
- Since 2006, data is available on disaggregate groups (commercial, swaps dealer, managed money, and other reportable)

2015 Agricultural and Applied Economics Association Annual Meeting, San Francisco, CA

Rainfall variable: cumulative rainfall (mean rainfall accumulation to date

Figure: Net position of trader groups, 1993-2014

Research Question

How do prices and trader positions respond to supply shocks in grain futures markets?

- We know prices fall when supply increases, but the joint response of prices and positions may tell us more:
- Who has the strongest incentive to trade when supply shifts?
- Is trading following supply shocks motivated by risk transfer or price discovery?
- What are the price impacts of various trader groups?

Analytical Framework and Empirical Model

- Cheng, Kirilenko, and Xiong (2014) (CKX) consider the joint dynamics of futures prices, F, and hedger and speculator positions (x_h and x_s). In this model:
- physical market for the commodity (dS).
- dS may be considered shock to the aggregate physical position held by all traders, that is a if they act on news about fundamentals and contribute to price discovery
- Both groups may also respond to corn price (implied) volatility shocks (dIV) and shocks to (dOil)
- Therefore, our adaptation of the CKX (2014) model is:

(1)
$$dx_h = -\beta_h dF - \gamma_h dV IX$$

$$dx_s = -\beta_s dF - \gamma_s dVIX$$

$$(3) \qquad \qquad 0 = dx_h + dx_s$$

where (1) and (2) are group demand functions for futures positions driven by structural coefficients (β , γ , η , θ , and λ) and (3) is a market clearing condition. • Because F, x_h , and x_s are jointly determined, (1) and (2) are unidentified. Using (3), we solve for dF and dx_h as a function of the other shocks which may be

considered exogenous:

$$(4) dF = -\frac{\gamma_h + \gamma_s}{\beta_h + \beta_s} dVIX - \frac{\eta_h + \eta_s}{\beta_h + \beta_s} dS - \frac{\theta_h}{\beta_h}$$

$$(5) dx_h = \frac{\gamma_s \beta_h - \gamma_h \beta_s}{\beta_h + \beta_s} dVIX + \frac{\eta_s \beta_h - \eta_h \beta_s}{\beta_h + \beta_s}$$

- We estimate the linear response of prices and positions to exogenous supply shocks using ordinary least squares (OLS).
- ► We relate OLS coefficient estimates to structural parameters using (4) and (5) These conditions suggest that price and position responses to exogenous shocks depend on the relative magnitude of the structural coefficients between groups.
- If (short) hedgers demand for short futures positions is increasing linearly in the size of the we expect the coefficient estimate on our supply shock variable to be negative.

 \blacktriangleright Trader positions each period respond to concurrent shocks to futures prices (*dF*), trading risk as proxied by the VIX market volatility index (*dVIX*), and an "idiosyncratic" shock related to the

supply shock. CKX assume this shock affects hedgers only, but it may also affect speculators

external markets, especially crude oil, due to financialization effects or fundamental linkages

 $-\eta_h dS - \theta_h dIV - \lambda_h dOil$ $1 - \eta_s dS - \theta_s dIV - \lambda_s dOil$

 $\frac{\theta_{h} + \theta_{s}}{\beta_{h} + \beta_{s}} dIV - \frac{\lambda_{h} + \lambda_{s}}{\beta_{h} + \beta_{s}} dOil$ $\frac{\theta_{s}}{\delta_{s}} + \frac{\theta_{s}\beta_{h} - \theta_{h}\beta_{s}}{\delta_{s}} dIV - \frac{\lambda_{s}\beta_{h} - \lambda_{h}\beta_{s}}{\delta_{s}} dOil$

aggregate physical position, then $\eta_h > 0$. If hedging demand drives prices and positions, then

Empirical Results

We consider separate regressions for prices and positions. We also consider potential non-linear response of prices and positions depending on whether rainfall is above or below trend. (Above trend rainfall indicates that crop-year ending stocks will be large, buffering price response.)

Weekly time series regressions of corn returns ($\Delta \ln F_t$) on accumulated rain, VIX, Oil and momentum, June to August, 1993 to 2014.			Weekly time series regressions of net positions on accumulated rain, VIX, Oil and momentum, June to August, 1993 to 2014.		
			$CommNet_{t} = \alpha + \beta_{1} \Delta AccRain_{t} + \beta_{2} \Delta Vix_{t} + \beta_{3} \Delta Oil_{t} + \Delta \ln F_{t-1} + \epsilon_{t}$		
$\Delta lnF_{t} = \alpha + \beta_{1}\Delta AccRain_{t} + \beta_{2}\Delta Vix_{t} + \beta_{3}\Delta Oil_{t} + \Delta \ln F_{t-1} + \epsilon_{t} \text{ NonCommNet}_{t} = \alpha + \beta_{1}\Delta AccRain_{t} + \beta_{2}\Delta Vix_{t} + \beta_{3}\Delta Oil_{t} + \Delta \ln F_{t-1} + \beta_{3}\Delta Oil_{t} + \Delta \ln F_{t-1} + \delta_{3}\Delta Oil_{t} + \delta_{3}\Delta Oil_$					
		Rain < Trend			
$\Delta AccRain_t$	-0.00046*	-0.0013***	$\Delta AccRain_t$	3,554***	-3,373***
	(0.00025)	(0.0004)		(785)	(685)
$\Delta AccRain_{t-1}$	-0.00005	-0.00003	$\Delta AccRain_{t-1}$	-11	-321
	(0.00026)	(0.00045)		(1,036)	(970)
ΔVix_t	0.00041	0.0001	ΔVix_t	283	1,142
	(0.0012)	(0.0012)		(2,448)	(2,456)
ΔVix_{t-1}	0.00042	-0.0010	ΔVix_{t-1}	2,468	-311
	(0.00012)	(0.0016)		(2,758)	(2,556)
ΔOil_t	0.074	0.040	ΔOil_t	146,333	-147,496
	(0.071)	(0.092)		(182,613)	(167,515)
ΔOil_{t-1}	0.012	-0.013	ΔOil_{t-1}	237,129	-118,640
	(0.057)	(0.092)		(195,560)	(185,193)
ΔF_{t-1}	0.051	-0.095	ΔF_{t-1}	-962,238***	955,482***
	(0.069)	(0.109)		(233,646)	(217,854)
Constant	-0.0024	-0.0011	Constant	-14,402	-20,493**
	(0.0027)	(0.0044)		(9,350)	(8,272)
n	268	125	n	125	125
R^2	0.035	0.097	R^2	0.285	0.307

- positive supply shocks.
- Price response to rainfall suggests that $\eta_s + \eta_h > 0$
- Position response to rainfall suggests that $\eta_s > \eta_h$ (assuming $\beta_s \approx \beta_h$)
- These results are inconsistent with "hedging pressure" theory of commodity futures trading. Hedgers may not increase size of hedge when crop gets larger.

References

Cheng, I.H., A. Kirilenko, and W. Xiong. 2014. "Convective Risk Flows in Commodity Futures Markets." Review of Finance, 1-49. Tannura, M.A., S.H. Irwin, and D.L. Good. 2008. "Weather, technology, and corn and soybean yields in the US corn belt." Marketing and Outlook Research Report No. 2008-01, University of Illinois at Urbana- Champaign, February.

Contact: joseph.janzen@montana.edu or nmerener@utdt.edu

UNIVERSIDAD TORCUATO DI TELLA

Economic Significance of Coefficient Estimates

▶ Price impact of one inch of rain: $-0.0013 \times 25.4 \frac{mm}{inch} = -3.3\%$ • Position impact of one inch of rain: $3554 \times 25.4 \frac{mm}{inch} \times 1000$ bu = 90.2 mil bu. ► For context, average CME corn futures open interest over 1993-2014 represented 3.7 bil. bu.

Inference Regarding Structural Parameters

Coefficient estimates suggest commercials become more long (less short) after