
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


A generalized latent class logit model of discontinuous preferences in repeated discrete choice data: 

an application to mosquito control in Madison, Wisconsin.  
 

Zachary S. Brown1*, Katherine L. Dickinson2,3, Susan Paskewitz4 

1 Assistant Professor of Agricultural and Resource Economics, North Carolina State University 

2 Project Scientist, University Corporation for Atmospheric Research 

3 Research Scientist, University of Colorado at Boulder 

4 Professor of Entomology, University of Wisconsin at Madison 

* Corresponding author: zack_brown@ncsu.edu 

 

Selected Paper prepared for presentation at the 2015 Agricultural & Applied Economics 

Association and Western Agricultural Economics Association Annual Meeting, San Francisco, 

CA, July 26-28 

 

 

 

 

 

 

 

Copyright 2015 by the authors. All rights reserved. Readers may make verbatim copies of this 

document for non-commercial purposes by any means, provided that this copyright notice 

appears on all such copies.   

mailto:zack_brown@ncsu.edu


1 

 

Abstract 

Serial nonparticipation in nonmarket valuation using choice data is a pattern of behavior in 

which an individual always appears to choose the status quo or ‘no program’ alternative. From a 

choice modelling perspective serial nonparticipation may be viewed as belonging to a class of 

‘discontinuous preferences,’ which also includes other behavioral patterns, such as serial 

participation (never choosing the status quo), as well as lexicographic preferences (e.g. always 

choosing the alternative with the greatest health benefit). Discontinuous preferences are likely to 

be especially relevant in the context of environmental goods, due to the lack of familiarity that 

individuals have with valuing these goods in markets. In the case of discrete choice data, logit-

based choice models are ill-equipped for identifying such preferences, because conditional logit 

choice probabilities cannot take a value of zero or one for any finite parameter estimates. Here 

we extend latent class choice models to account for discontinuous preferences. Our 

methodological innovation is to specify for each latent class a subset of alternatives that are 

avoided with certainty. This results in class membership being partially observable, since we 

then know with certainty that an individual does not belong to a class if she selects any 

alternatives avoided by that class. We apply our model to data from a discrete choice experiment 

on mosquito control programs to reduce West Nile virus risk and nuisance disamenities in 

Madison, Wisconsin. We find that our ‘generalized latent class model’ (GLCM) outperforms 

standard latent class models in terms of information criteria metrics, and provides significantly 

different estimates for willingness-to-pay. We also argue that GLCMs are useful for identifying 

some alternatives for which valuation estimates may not be identified in a given dataset, thus 

reducing the risk of invalid inference from discrete choice data.  

 

Keywords: discrete choice econometrics, latent class models, partial observability, serial 

nonparticipation, serial participation, discontinuous preferences, E-M algorithm  
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Introduction 

A current challenge in using discrete choice methods to value nonmarket goods is the 

consistent treatment of alternatives which are excluded by different subgroups in a population in 

ways that are not fully observable to the econometrician. Well-studied examples of this issue 

include ‘status quo’ (SQ) effects and ‘serial nonparticipation’ in both choice experiment and 

revealed preference data. These effects arise when a substantial subset of decision-makers 

choose the ‘status quo’ or ‘opt out’ alternative repeatedly, often to the exclusion of alternatives 

whose attributes are the objects of study. The converse phenomenon – ‘serial participation’ or 

the complete avoidance of the SQ alternative – is also possible. The standard class of logit-based 

choice models are ill-suited for these situations. Yet methods for dealing with such effects are 

important for reducing bias in valuation estimates and for predicting individuals’ responses to 

new policies. In this paper we provide a novel econometric method for estimating SQ effects, 

and the broader phenomena of ‘discontinuous preferences,’ in discrete choice data. 

Preference discontinuities are important to consider in nonmarket valuation of 

environmental goods. Individuals are often not familiar with the goods under study, particularly 

in the case of nonuse values where stated preference methods are most frequently used. 

Consequently, individuals may be more likely to rely on prior attitudes and beliefs in valuing 

these goods, and in deciding whether or not to participate in hypothetical markets for such goods. 

In stated preference choice experiments, SQ effects have been conjectured to represent protest 

responses on the part of those who do not see any value in the goods or services being evaluated, 

or who reject the nature of the hypothetical choice task in the survey (von Haefen et al. 2005). It 

has also been proposed that choice task complexity gives rise to SQ effects, and that repeated 

selection of the SQ represents a lack of understanding or engagement in a choice experiment 

(Meyerhoff & Liebe 2009).  
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It is important to emphasize that the types of choice discontinuities, such as biases for or 

against the SQ, do not necessarily imply irrational choice behavior. In both a stated and revealed 

preference setting, lexicographic preferences among subgroups of individuals can give rise to a 

high frequency of SQ selection, as well as a complete avoidance of specific alternatives.1 Burton 

and Rigby (2008) illustrate this point in a hypothetical choice experiment studying preferences 

about genetically modified (GM) food in the UK. In a revealed preference setting, von Haefen et 

al. (2005) observe that serial nonparticipation is also a common phenomenon, observed as 

subgroups of the population who are nonusers of the public goods under study, e.g. respondents 

who never recreate at any of the sites studied in a travel cost survey.  

SQ effects are only one instance within a broad set of issues arising in discrete choice 

datasets which contain observations of individuals’ repeated choices. In general, as choices are 

observed more frequently, the more likely we are to notice some individuals who appear to 

completely avoid – or gravitate towards – specific alternatives (Lancsar & Louviere 2006; 

Louviere 2013). In the case of serial nonparticipation, individuals avoid the SQ alternative, 

whereas serial participants never select the SQ. Yet in general individuals may exhibit a variety 

of ‘discontinuous’ choice behaviors: in the presence of contextual factors, such as background 

risk or ambiguity, individual behavior may suggest a threshold above which individuals choose a 

risk-mitigating alternative, or below which they never choose such an alternative.  

All of these are situations which econometric models based only on logit choice 

probabilities are ill-equipped for addressing, as we illustrate later in this paper. The essence of 

the problem is that data in which one alternative is selected or avoided with certainty imply best-

                                              
1 Lancsar and Louviere (2006) note how lexicographic preferences can still satisfy the Weak and Strong 

Axioms of Revealed Preference. As such, they argue against excluding from the estimation sample respondents who 

have been labelled as irrational only on the basis of evident serial nonparticipation behavior. The method we 

introduce here can provide a post-hoc approach for dealing with these situations. 
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fit logit coefficients which are not finite. In a standard conditional logit framework, in which one 

representative set of preferences is estimated for the entire dataset, this problem rarely arises as 

long as there is a broad cross-section of individuals in the sample. However, as logit-based 

discrete choice models have been embellished to provide more detailed characterization of 

individual preference heterogeneity, researchers increasingly find situations wherein maximum 

likelihood estimates of logit model coefficients blow up to infinity. As we show below, such 

cases provide a ‘smoking gun’ that some individuals are exhibiting discontinuous preferences.  

The model we describe and estimate in this paper extends and unifies previous 

approaches – latent class models and hurdle models – for dealing with serial nonparticipation and 

status quo effects (von Haefen et al. 2005; Burton & Rigby 2008; Thiene et al. 2012). Our 

approach consists of hypothesizing the existence of subgroups of individuals who appear to 

exhibit discontinuous choice patterns. Then, once these hypotheses are clearly defined, a 

variation of a latent class choice model is used to probabilistically classify each individual as 

belonging to the hypothesized group, as well as to other groups (including a standard conditional 

logit choice model). Following Thiene et al. (2012) who note that the latent class analysis is a 

form of data imputation and thus adaptable to cases in which class membership is observable, we 

modify the standard latent class approach to treat class membership as partially observable: for 

example, in the case of serial nonparticipation, we know definitely that an individual is not a 

serial nonparticipant if she selects a non-SQ alternative. In this case, our model is almost 

identical to a double hurdle model (von Haefen et al. 2005). However, our approach is designed 

for a much larger range of preference discontinuities – including serial participation, as shown 

below – than addressed by prior approaches. Consequently, we dub our model Generalized 

Latent Class logit model (GLCM). 



5 

 

After presenting the formulation of our model, we demonstrate its estimation on a dataset 

gathered from a discrete choice experiment (DCE) examining preferences for mosquito control 

programs in Madison, Wisconsin, aimed at reducing the risk of West Nile virus as well as the 

nuisance costs associated with mosquitoes. We find that our GLCM provides the best balance 

between fit and parsimony in modeling the data (based on information criteria statistics), as 

compared to standard latent class models (which we also estimate). Our GLCM estimates imply 

that there are three partially latent classes of respondents in the data: serial participants 

(estimated at 46% of the sample), those for which a standard logit model applies (39%), and 

finally a group (the remaining 15%) who are serial nonparticipants for low and medium West 

Nile risk but who behave according to a logit model in a high risk setting. We also find relative 

willingness-to-pay values that are more reasonable and precise, due to an identifying restriction 

related to the reference alternative specified in the choice model. When we include individual 

covariates in the model as predictors of class membership, only two factors (and their interaction 

effect) are found to be statistically significant: individuals with greater mosquito densities around 

their homes (as measured via entomological surveys) and those who report spending more time 

indoors are more likely to be serial participants (i.e. those who avoid the status quo alternative 

entirely). 

Previous approaches for addressing discontinuous preferences in discrete choice data 

The vast majority of discrete choice econometric analyses are based in some way on the 

conditional logit (CL) model (McFadden 1973). When individual-level covariates are excluded 

in the regression, then utility-maximizing behavior in the CL model implies that the probability 

of choosing alternative ℎ in choice task 𝑡 for any individual is:  

𝑃ℎ𝑡
𝐶𝐿 ≡

exp 𝛼ℎ𝑡

∑ exp 𝛼ℎ𝑡ℎ∈𝑡
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The 𝛼ℎ𝑡’s are alternative-specific constants to be estimated, which are typically decomposed into 

alternative attributes, including environmental and health benefits and risks, and (in economics) 

monetary attributes such as cost.2 For identification, one of these alternative-specific effects must 

be normalized to zero; typically the SQ-specific constant serves as this reference alternative. If a 

respondent participates, the conditional logit specification implies that the likelihood of 

observing their sequence of choices is:  

𝑙𝑛
𝐶𝐿 ≡ ∏ ∏(𝑃ℎ𝑡

𝐶𝐿)𝐶ℎ𝑡𝑛

ℎ∈𝑡𝑡

 

where 𝐶ℎ𝑡𝑛 is an indicator variable for whether individual 𝑛 selected alternative ℎ in task 𝑡. 

SQ effects specifically – and discontinuous preferences more generally – pose problems 

for logit-based models for a very simple reason: logit-based choice probabilities cannot take a 

value of zero or unity over any finite values for the taste parameters 𝛼ℎ𝑡. This issue typically 

does not present itself in a CL model estimated on a sample of individuals who as a whole 

exhibit ‘well-behaved’ choices across alternatives. But the issue is common when considering 

choice probabilities at an individual level. Let 𝑃ℎ𝑡𝑛 be the predicted probability that individual 𝑛 

chooses alternative ℎ in choice task 𝑡 out of 𝑇 tasks per respondent in total. An individual level 

logit model (now subscripting by 𝑛) implies a choice probability equal to: 

𝑃ℎ𝑡𝑛 ≡
exp 𝛼ℎ𝑡𝑛

∑ exp 𝛼ℎ𝑡𝑛ℎ∈𝑡

 

                                              
2 We index the 𝛼ℎ𝑡’s by task 𝑡, to allow task-specific factors, such as background risk. Later, we consider 

monetary attributes explicitly in the model we formulate below. All logit-based models like this emerge from a 

random utility framework, in which case the 𝛼ℎ𝑡’s can be interpreted as the expected indirect utility from alternative 

ℎ in task 𝑡 and Extreme Value Type I random utility component for each alternative.  
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where 𝛼ℎ𝑡𝑛is the alternative-specific logit taste parameter for individual 𝑛. If we had a large 

number of choice tasks for each respondent, then we could estimate this choice model directly 

for each individual. 

If we did perform such an estimation, suppose some individual 𝑛 never chooses 

alternative 𝑘 in any of the many choice tasks in which 𝑘 was included in the choice set. In this 

case, it is well known that maximum likelihood estimation (MLE) will often not converge to a 

finite solution. This is because in order for 𝑃𝑘𝑡𝑛 = 0 it is necessary for 𝛼𝑘𝑛 = −∞: the log-

likehood function can be continually increased by decreasing 𝛼ℎ𝑡𝑛 (or by continually increasing 

all other 𝛼ℎ′𝑡𝑛, if ℎ is the reference alternative). Such a model is not identified. 

However, it is not standard practice to fully estimate conditional logit models at the 

individual level (Louviere 2013 describes some exceptions; also see Czajkowski et al. 2010). 

Instead, assumptions are made on how 𝛼ℎ𝑡𝑛 varies across individuals. This variation can be 

specified in terms of individuals’ observable covariates or in terms of unobservable 

heterogeneity. The latter can be modeled parametrically using mixed or generalized logit, or 

nonparametrically, for example using latent class logit (described below). But all of these models 

posit the same basic logit structure to choice probabilities. Clearly, individuals whose choices 

may not follow a logit pattern of choice behavior (as described above) could significantly bias 

the results of any logit model estimated on the full sample of data, which can have important 

consequences both for predicted choice behavior and for willingness to pay (WTP) measures 

which are the main outputs of choice modeling for economic analysis.    

A number of approaches have been considered to address this type of bias, especially in 

the case of serial participation. The most direct approach is to simply estimate the preferred 

model on the sample of those with ‘well-behaved’ choice patterns. However, Lancsar and 
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Louviere (2006) strongly advise against this approach, as doing so can introduce bias through the 

researcher having to assess ex ante whose choice patterns are ‘valid.’ Von Haefen et al. (2005) 

and Burton and Rigby (2008), hereafter VHMA and BR, each propose alternative approaches. 

VHMA propose hurdle models as a way to address the specific SQ effect of serial 

nonparticipation (the ‘hurdle’ in this case is whether a respondent chooses a non-SQ alternative 

in any of the choice tasks to which she is exposed). In contrast, BR argue that the application of 

standard latent class (LC) choice models can address not only serial nonparticipation but also 

other irregularities in choices. Our model merges these two approaches. 

The hurdle approach uses a binary probability model for participation (e.g. probit or 

logit), and then models choices using a conditional logit framework.3 The single hurdle (SH) 

model allows for correlation between the participation decision and the subsequent choice 

decision. The formulation is as follows: for each individual 𝑛, let 𝑑𝑛 be an indicator for whether 

that respondent is a nonparticipant (in which case 𝑑𝑛 = 1), and let 𝑝𝑛
𝑆𝐻 be the predicted 

probability that a respondent is a nonparticipant (which may be modeled using a binary 

probability model, such as probit or logit. The motivation behind modeling a separate 

participation process is that certain individuals may select the SQ repeatedly as a way to reject 

the entire premise of the choice task (e.g. protest responses in stated choice data) or because they 

belong to a group of people for whom the choice task is irrelevant (e.g. non-users in recreation 

demand studies). This predicted probability of serial nonparticipation is indexed by 𝑛, to allow 

for individual covariates (or, possibly, unobserved heterogeneity). The likelihood of observing 

individual 𝑛’s sequence of choices under the single hurdle model is then (𝑝𝑛
𝑆𝐻)𝑑𝑛[(1 −

                                              
3 As VHMA point out, this model could easily be extended to allow for randomly varying conditional logit 

taste parameters within the participant subsample.   
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𝑝𝑛
𝑆𝐻)𝑙𝑛

𝐶𝐿]1−𝑑𝑛. The log-likelihood function to be maximized with respect to parameters contained 

in 𝑝𝑛 and 𝑙𝑛
𝐶𝐿 can then be expressed as:  

𝐿𝐿𝑆𝐻 ≡ (1 − 𝑑𝑛) ∑ log 𝑙𝑛
𝐶𝐿

𝑛

+ ∑[𝑑𝑛 log 𝑝𝑛
𝑆𝐻 + (1 − 𝑑𝑛) log(1 − 𝑝𝑛

𝑆𝐻)]

𝑛

 

Note that the first summation is the log-likelihood function for the CL model and the 

second summation fully contains the parameters for the serial nonparticipation probability 

model. Thus the maximization of the SH log-likelihood is the same as estimating a CL model on 

a subsample of participants, and separately estimating a probability model for serial 

nonparticipation. The SH model therefore ignores correlation between the participation 

probability and the subsequent CL choice probabilities. 

VHMA thus propose the double hurdle (DH) model as one approach for allowing for 

more integration between the two processes – participation and subsequent choice. This model, 

following Shonkwiler and Shaw (1996), acknowledges that there are two ways for a respondent 

to appear as a serial nonparticipant in the dataset: one is through a separate probability process 

(as in the SH case above) and the other is for a ‘standard’ decisionmaker, subject to the CL 

choice probabilities, to repeatedly choose the SQ, perhaps due to extreme (but finite) values for 

the CL taste parameters 𝛼ℎ. Thus, the probability for serial nonparticipation in the DH model is: 

𝑝𝑛
𝐷𝐻 ≡ 𝑝𝑛

𝑆𝐻 + (1 − 𝑝𝑛)𝑆𝐻 (∏ 𝑃𝑆𝑄,𝑡
𝐶𝐿

𝑡

) 

where 𝑃𝑆𝑄,𝑡
𝐶𝐿  is the predicted probability, within the CL model, of choosing the SQ in choice task 

𝑡. The log-likelihood function for the DH model replaces the 𝑝𝑛
𝑆𝐻 terms in the 𝐿𝐿𝑆𝐻 formula 

above with 𝑝𝑛
𝐷𝐻. In this way the DH model is aimed at consistently capturing the problem of 

‘excess’ SQ choices in the way that zero-inflated Poisson models capture excess zeros in count 
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data (Shonkwiler & Shaw 1996). The DH model therefore acknowledges that, given a finite 

number of choice tasks observed per individual, there is some positive probability that serial 

nonparticipation can emerge from a standard CL model. This is a key point in the design of our 

generalized latent class model presented below. In their application (using both a stated and 

revealed preference dataset), VHMA find that the SH and DH models more parsimoniously 

represent the data than standard approaches, including the CL model and mixed logit.   

BR take a markedly different approach for studying serial nonparticipation. They use a 

latent class model (LCM) to probabilistically classify respondents across a range of logit-based 

choice models. Beyond issues of serial nonparticipation and the like, LCMs have been 

extensively used as a way to model individual heterogeneity in choice data (Morey et al. 2006; 

Boxall & Adamowicz 2002). LCMs are sometimes contrasted with mixed and generalized 

multinomial logit models as a way to nonparametrically capture preference heterogeneity (e.g. 

Greene & Hensher 2003). In BR’s application, one of the classes is hypothesized – though not 

restricted – to represent serial nonparticipants.  

LCMs posit the existence of finite number 𝑀 of latent classes, indexed throughout this 

paper by 𝑚 (for model), to which every individual belongs. Conditional on an individual 

belonging to class 𝑚, the choice probability takes the usual conditional logit form, but with the 

parameters now indexed by class: 

𝑃ℎ𝑡
𝑚 ≡

exp 𝛼ℎ𝑡
𝑚

∑ exp 𝛼ℎ𝑡
𝑚

ℎ∈𝑡

 

The above requires the usual identifying restriction of having one of the alternative-specific 

effects restricted to zero; usually this is the SQ effect (𝛼𝑆𝑄,𝑡
𝑚 = 0 ∀𝑚, 𝑡). Conditional on the 

individual belonging to class 𝑚, the likelihood of an individual’s observed sequence of choices is 

therefore: 
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𝑙𝑛|𝑚 = ∏ ∏(𝑃ℎ𝑡
𝑚)𝐶ℎ𝑡𝑛

ℎ∈𝑡𝑡

 

Let 𝑝𝑛
𝑚 be the predicted probability of individual 𝑛 belonging to class 𝑚. LCMs then use 

a separate multinomial probability model (usually also logit-based) for these predicted 

probabilities. Because class membership is assumed to be latent, LCMs impute class membership 

using Bayes’ rule. The imputed value �̂�𝑛
𝑚 for an individuals’ likelihood of belonging to class 𝑚, 

conditional on the predicted probability 𝑝𝑛
𝑚 and the conditional likelihood of their observed 

choices 𝑙𝑛|𝑚 is: 

�̂�𝑛
𝑚 ≡

𝑙𝑛|𝑚𝑝𝑛
𝑚

∑ 𝑙𝑛|�̃�𝑝𝑛
�̃�

�̃�

 

Using these imputed values in place of the ‘missing’ class membership data, the log-

likelihood function for an LCM is: 

𝐿𝐿𝐿𝐶 ≡ ∑ ∑ �̂�𝑛
𝑚 log 𝑙𝑛|𝑚

𝑛𝑚

+ ∑ ∑ �̂�𝑛
𝑚 log 𝑝𝑛

𝑚

𝑛𝑚

 

Some rough comparison can be made between the LL function for this model and the SH model 

above: if class membership were directly observable, rather than imputed in �̂�𝑛
𝑚, the first double-

summation over 𝑚 would correspond to summing over separable CL models for each class, and 

the second double-summation would correspond to the LL function for estimating a multinomial 

class membership probability model. That is, if we had observed 𝑑𝑛
𝑚 as data, rather than 

imputing �̂�𝑛
𝑚, the above would equate to estimating each CL model separately, as well as 

separately estimating the class membership model. However, imputing class membership as 

above eliminates this separability, and – as with the DH model – links the class membership and 

choice probability models.   
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Using this LC approach in an application to a DCE related to genetically modified (GM) 

food, BR find evidence for multiple classes who exhibit different types of SQ effects: one class 

appears to contain genuine serial nonparticipants, with a very high estimated SQ effect, whereas 

another class is strongly biased against GM food, and thus appears as otherwise similar to serial 

nonparticipants. This highlights a key advantage of the LC approach: it can capture a wide 

variety of behavioral patterns beyond simply serial nonparticipation. While not arising in BR’s 

analysis, serial participation can also be captured in a LC framework (as we demonstrate below).  

Econometrically, serial nonparticipation here is captured by large estimated values for 

𝛼𝑆𝑄
𝑆𝑁𝑃, the SQ effect in the serial nonparticipant (SNP) class. As BR point out, the “high and 

limiting value for that parameter” captures the fact “all those within the [SNP] class have a very 

high probability of selecting that option throughout the choice sequence, regardless of other 

attribute values.” This high, limiting value – while useful for exploratory examination of the data 

– can imply a lack of identification, for the reasons discussed at the beginning of this section. 

While BR estimate finite coefficients for the SQ effect in the SNP class, it seems reasonable that 

this effect should in fact be such that 𝛼𝑆𝑄
𝑆𝑁𝑃 = ∞, so that true members of this class select the SQ 

with probability equal to one. In terms of economic valuation, members of such a class in 

principle have an infinite willingness-to-accept (WTA) a non-SQ alternative: no amount of 

money offered to SNPs (or at least no finite amount identified within the scope of the choice 

experiment) would induce them away from the SQ.  

Another drawback of the standard LC approach is the fact that class membership is 

partially observable. In the case of serial nonparticipation, an individual who selects a non-SQ 

alternative can be classified with certainty as not belonging to the SNP class. Thiene et al (2012) 

note this observability of SNP behavior and incorporate this into a LC framework, by specifying 
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an SNP class with fully observable membership probabilities (and leaving the other preferences 

as latent and unobservable). Yet this approach does not acknowledge the fact that there is a 

positive probability (albeit decreasing with the number of observed choice tasks per respondent) 

that an SNP behavioral pattern can emerge with some positive probability from a standard 

conditional logit model of preferences. In this way, Thiene et al,’s approach can be viewed as a 

latent class extension of the single hurdle model of VHMA.  

A generalized latent class logit model 

Our approach jointly addresses this issue of unbounded valuation estimates and partial 

observability of SP or SNP for subgroups of respondents (as well as variety of other possibly 

discontinuous preferences). As with the standard latent class model, our GLCM supposes that 

there are 𝑀 classes, indexed by 𝑚, which capture individual preference heterogeneity. The 

GLCM departs from the standard approach because of one additional assumption. The GLCM 

requires the econometrician to specify a subset ∅𝑚,𝑡 of alternatives which are excluded from 

class-𝑚 individuals’ choice sets in task 𝑡. An implication of this assumption is that class 

membership is partially observable, since we then know with certainty that an individual does 

not belong to class 𝑚 if she chooses an alternative ℎ from the exclusion set ∅𝑚,𝑡.  

There are a number of causal hypotheses as to why nonempty exclusion sets may be 

justified for certain classes. Individuals may exclude alternatives from their choice sets for a 

number of reasons: members of such classes could exhibit truly discontinuous preferences (e.g. 

always choosing the alternative that offers a positive health benefit, regardless of the amount that 

it costs). Or members of these classes may have finite, logit-based taste parameters, but ones that 

are so large in relation to the excluded alternatives’ attributes that these alternatives are never 

selected in the observed tasks. (In the case of choice experiments, this would imply a failure of 
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the experimental design to properly account for individuals with more extreme – if still 

continuous – preferences.) The excluded alternative could be systematically overlooked by some 

individuals (e.g. due to a lack of survey engagement, see Hess & Stathopoulos 2013). Finally, the 

alternative could simply be inapplicable to a subset of respondents for an unobserved reason, for 

example, nonusers of recreational resources (von Haefen et al. 2005).    

The rest of this section simply carries out the mathematical formulation implied by this 

logic. With respect to nonexcluded alternatives, individuals are assumed to exhibit standard logit 

choice probabilities, as in the LC logit model. In order to retain a focus on valuation, we also 

explicitly separate monetary attributes from the alternative-specific constant (embodying the 

alternatives’ other attributes). We assume that the cost of alternative ℎ in task 𝑡 is 𝑞ℎ𝑡 and the 

marginal utility of money for class 𝑚 is 𝜂𝑚. The class-specific predicted choice probabilities for 

the GLCM are therefore: 

𝑃ℎ𝑡𝑚 ≡ {

0                           , ℎ ∈ ∅𝑚,𝑡

exp(𝛼ℎ𝑡
𝑚 − 𝜂𝑚𝑞ℎ𝑡)

∑ exp(𝛼ℎ𝑡
𝑚 − 𝜂𝑚𝑞ℎ𝑡)ℎ∉∅𝑚,𝑡

, ℎ ∉ ∅𝑚,𝑡
 

(1) 

As with LCMs, the likelihood of observing an individual 𝑛’s sequence of choices, conditional on 

them belonging to class 𝑚 is then 𝑙𝑛|𝑚 ≡ ∏ ∏ 𝑃ℎ𝑡𝑚
𝐶𝑛ℎ𝑡

ℎ∈𝑡𝑡 , which provides the basis for MLE. This 

is a general formulation that captures serial nonparticipation (with the excluded set consisting of 

everything but the SQ), serial participation (with the excluded set consisting only of the SQ), as 

well as variety of other behaviors (e.g. excluding the alternative conveying the lowest health 

improvement in a given choice task). Note that this formulation requires the econometrician to 

take extra care with identification in specifying the reference alternative (for each class). If the 

SQ is excluded from consideration, for example with serial participants, then a new reference 
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alternative must be specified. This means that WTP or WTA values within each class can only 

be estimated relative to the (potentially class-specific) reference alternative. The implications of 

this point are discussed below, in the empirical application. 

We now turn to the implied partial observability of individual class membership in the 

GLCM: if an individual is ever observed selecting an alternative ℎ ∈ ∅𝑚,𝑡, then we can be sure 

that she does not belong to class 𝑚. Nevertheless, individuals who never select an alternative 

from the excluded set ∅𝑚,𝑡 cannot be classified with certainty, because we only ever observe a 

finite number of decisions: An individual who always selects the SQ out of 9 choice tasks, for 

example, can only be probabilistically classified as a serial nonparticipant, because on the tenth 

choice task she may have chosen a non-SQ alternative. Consequently, for these individuals, we 

use the same Bayesian imputation formula as in the standard LCM. 

This logic is captured in the following specification for class membership. Let 𝑑𝑛
𝑚 be the 

observed class membership variables: 

𝑑𝑛
𝑚 ≡ {

0                            if  𝐶𝑛ℎ𝑡 = 1 for any ℎ ∈ ∅𝑚,𝑡  

missing               otherwise                                   
 

(2) 

Then we only use Bayesian imputation for the missing class membership information. The 

imputed class membership indicator when 𝑑𝑛
𝑚 is missing, using Bayes’ rule is: 

�̂�𝑛
𝑚 ≡

𝑙𝑛|𝑚𝑝𝑛
𝑚

∑ 𝑙𝑛|�̃�𝑝𝑛
�̃�

{�̃�|𝑑𝑛
�̃� missing}

 
(3) 

Then the class membership variable �̃�𝑛
𝑚 used in estimation, based on observed values where 

possible and imputation otherwise is: 
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�̃�𝑛
𝑚 ≡ {

0                                if  𝐶𝑛ℎ𝑡 = 1 for any ℎ ∈ ∅𝑚,𝑡   

�̂�𝑛
𝑚                            otherwise                                   

 
(4) 

Given this formulation, the log-likelihood for the GLCM is the same as for the standard LCM, 

except using equations (1) – (4) in place of the standard formulation:    

𝐿𝐿𝐺𝐿𝐶𝑀 ≡ ∑ ∑ �̃�𝑛
𝑚 log 𝑙𝑛|𝑚

𝑛𝑚

+ ∑ ∑ �̃�𝑛
𝑚 log 𝑝𝑛

𝑚

𝑛𝑚

 
(5) 

As in the standard LCM, 𝑝𝑛
𝑚 is the predicted probability that individual 𝑛 belongs to class 𝑚. 

Usually, 𝑝𝑛
𝑚 is parameterized using a multinomial logit probability function: 

𝑝𝑛
𝑚 =

exp 𝛾𝑚𝑋𝑛

∑ exp 𝛾�̃�𝑋𝑛�̃�

 
(6) 

where 𝑋𝑛 is a vector of respondent covariates that may predict class membership (including a 

vector of ones to allow for a regression constant), and the 𝛾𝑚’s are conformable vectors of 

coefficients to be estimated (with the identifying restriction of one class’s coefficients set to 

zero).  

 As with LCMs, estimation can use both the iterative EM algorithm, as well as direct 

maximum-likelihood estimation, employing the gradient and Hessian of the full likelihood 

function (eq. 5) to compute regular or robust standard errors (Train 2009). In supplementary 

material, we provide a formula for the analytical gradient of the above likelihood function, which 

is a minor generalization of the standard LC gradient. This greatly reduces computation time in 

estimation and in the computation of robust standard errors, as can be verified in the Matlab 

computer code implementing the model (also included as supplementary material).  
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Relationship to standard latent class and hurdle models 

The GLCM bridges the advantages of hurdle models and latent class models in 

addressing not only serial nonparticipation, but also a much broader range of ‘weird’ 

preferences. GLCM reduces to a standard LCM by setting ∅𝑚,𝑡 = ∅ for all 𝑡 and 𝑚, i.e. all 

alternatives retain a positive probability of selection in all tasks and classes. In this special case, 

we do not observe any information about class membership (since no alternatives are excluded 

from any of the choice sets), and so class membership is completely imputed via Bayes’ rule.  

In the case of serial nonparticipation (SNP), GLCM can also be reduced to a hurdle 

model. This can be seen by supposing there are only two classes 𝑚 ∈ {𝐶𝐿, 𝑆𝑁𝑃}: a normal 

conditional logit (CL) class and a SNP class, with  ∅𝑆𝑁𝑃,𝑡 = {ℎ ≠ 𝑆𝑄} for all tasks 𝑡 (i.e. all 

alternatives but the SQ are excluded from the SNP choice set). The conditional likelihood for the 

SNP class in this case is degenerate, with log 𝑙𝑛|𝑆𝑁𝑃 = 0, because 𝑙𝑛|𝑆𝑁𝑃 = ∏ (𝑃𝑆𝑄,𝑡,𝑆𝑁𝑃

𝐶𝑛,𝑆𝑄,𝑡 ×𝑡

∏ 𝑃ℎ,𝑡,𝑆𝑁𝑃
𝐶𝑛ℎ𝑡

ℎ≠𝑆𝑄 ) = ∏ (11 × ∏ 00
ℎ≠𝑆𝑄 )𝑡 = 1. Consequently, the GLCM function reduces to: 

𝐿𝐿𝐺𝐿𝐶𝑀→Hurdle = (1 − �̃�𝑛
𝑆𝑁𝑃) ∑ log 𝑙𝑛|𝐶𝐿

𝑛

+ ∑[�̃�𝑛
𝑆𝑁𝑃 log 𝑝𝑛

𝑆𝑁𝑃 + (1 − �̃�𝑛
𝑆𝑁𝑃) log(1 − 𝑝𝑛

𝑆𝑁𝑃)]

𝑛

 

(7) 

This is almost identical to the log-likelihood function for the hurdle model, presented in the 

literature review above, except that the fully observable indicator 𝑑𝑛 for SNP in the hurdle model 

is replaced with the partially observable indicator �̃�𝑛
𝑆𝑁𝑃 (defined in equations 3 and 4). This 

formulation is therefore similar in spirit to the DH model, because the hurdle/class probability 

model and the CL model must be estimated jointly. In GLC logit this joint estimation arises 

because 𝑙𝑛|𝐶𝐿 is used in Bayes’ rule to impute missing values for �̃�𝑛
𝑆𝑁𝑃, whereas the DH model 



18 

 

considers SNP classification itself to be fully observed but with two latent processes giving rise 

to SNP, one of which is determined by the CL choice model.   

Valuation estimates from the GLCM 

As with the standard LCM, WTP estimates are class-specific and the overall sample 

mean WTP is the weighted mean across classes using the posterior class membership 

probabilities as weights (e.g. Scarpa et al. 2005). Because the choice structure here assumes only 

alternative-specific constants 𝛼ℎ𝑡
𝑚  in conjunction with a monetary attribute with taste parameter 

𝜂𝑚, we estimate nonmarginal values for each alternative. This is not a necessary feature for the 

general GLCM structure, but only used because of the above setup, which was chosen for ease of 

exposition and because of the nature of the data (described below).  

To obtain aggregate, nonmarginal welfare measure across classes, we can calculate the 

compensating variation (CV) associated with making alternative ℎ available in task 𝑡. For class 

𝑚, 𝐶𝑉 is log(1 − �̃�ℎ𝑡𝑚) /𝜂𝑚 (McConnell 1995), where �̃�ℎ𝑡𝑚 is the probability of a class 𝑚 

individual selecting alternative ℎ in task 𝑡 in an appropriately specified baseline situation 

(defined below). Averaging over the sample, accounting for heterogeneous preferences, the mean 

CV across the sample is then:  

𝐶𝑉̅̅ ̅̅
ℎ𝑡 ≡ −

1

𝑁
∑ ∑ �̃�𝑛

𝑚
log(1 − �̃�ℎ𝑡𝑚)

𝜂𝑚
𝑚

𝑁

𝑛=1

 

(8) 

Care is required in defining the baseline situation. A key point of the GLCM is that the data 

simply may not permit estimating valuation estimates which are of most interest to the 

researchers, due to discontinuities in preferences. Consider the case of serial participants (𝑚 =

"SP"): in this case 𝑃0,𝑡,𝑆𝑃 = 0, i.e. the probability of SPs selecting the status quo is zero. If we are 

considering a valuation scenario in which any alternative ℎ is made available relative to a 
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baseline case of no alternatives being available, then the probability of selecting any alternative 

is one and the CV for this class is infinite, which carries through to the whole sample so that 

𝐶𝑉̅̅ ̅̅
ℎ𝑡 = ∞. Thus, when the data support the existence of SPs, then we can only obtain the value 

of alternative ℎ’s availability relative to other, non-SQ alternatives. This is not a limitation of the 

GLCM (we argue). Rather it is a limitation implied by the data, which the GLCM can uncover. 

 Therefore the appropriate conditional choice probability to be used in computing CV is: 

�̃�ℎ𝑡𝑚 =
exp 𝛼𝑡ℎ

𝑚

∑ exp 𝛼𝑡ℎ
𝑚

ℎ∈�̃�𝑡

 
(9) 

where �̃�𝑡 is some appropriately specified baseline set of all alternatives common to all classes. 

The only rule on �̃�𝑡 required to maintain a finite CV estimate is that there are at least two 

alternatives in �̃�𝑡 that are not in any of the exclusion sets ∅𝑚,𝑡 (i.e. which have a nonzero 

predicted probability of selection by members of all latent classes).  

Model selection 

An additional consideration is how the econometrician should choose between competing 

specifications for the GLCM and LCMs. There is a growing literature on the unresolved question 

of how to choose the ‘right’ number of classes in standard LCMs, as well as how to choose 

between an LC specification or another parametric specification for preference heterogeneity 

(such as mixed logit, Strazzera et al. 2013). What continues to be the typical approach for 

selecting the number of classes in LCMs is to use the various information criteria statistics such 

as the AIC, CAIC and BIC (Morey et al. 2006; Rungie et al. 2012). 

For the purposes of testing different specifications of our GLCM, it is important to note 

that a GLCM can be viewed as a restriction of a standard LCM. This is because a standard LCM 

can be written as a GLCM with empty exclusion sets (∅𝑚,𝑡 = ∅ for all 𝑚, 𝑡). In other words a 
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GLCM can be viewed as a LCM with some alternative-specific constants restricted to −∞. Such 

an observation would motivate the use of a likelihood ratio (LR) test of the restricted GLCM 

against the more general (though possibly unidentified) LCM. Such a test applied to our case 

would take the GLCM as the null hypothesis and test whether this could be rejected in favor of 

its unrestricted LCM counterpart. Unfortunately, the GLCM restrictions lie at the boundary of 

the parameter space, making a standard LR test using a 𝜒2 distribution invalid (Greene 2011).4 

Furthermore, using a standard 𝜒2 distribution in such a test has been found to be too conservative 

in structural equation models (Stoel et al. 2006): in our case this would mean that such a test 

would too frequently fail to reject the GLCM. We therefore set aside for future work the 

derivation of the distribution of the LR statistic in this nonstandard case, and settle for comparing 

the log-likelihood and information criteria of GLCMs against comparable LCMs (and alternative 

GLCM specifications).     

Empirical application: Mosquito control in Madison, Wisconsin 

We demonstrate application of the GLCM by analyzing data from a stated discrete choice 

experiment (DCE) analyzing the value of hypothetical mosquito control programs designed to 

reduce mosquito abundance in Madison, Wisconsin. In particular, the DCE was designed to 

measure the value of two types of mosquito-related disamenities: (1) nuisance and (2) disease 

risk associated with exposure to West Nile virus (WNV). The average risk of WNV at the time 

of data collection (2009) was one illness in 250,000 per year. Because nuisance and WNV-

transmitting mosquitoes are distinct species in Madison, mosquito control programs could be 

designed to differentially target the different mosquito types. The DCE was conducted as part of 

                                              
4 A Vuong test (of the differences in BIC) could in principle be used to test between the GLCM and LCM 

without specifying either as the null or alternative, though a nonstandard distribution for this statistic would still be 

required.  
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a web-based survey of homeowners in Madison in 2009. Mosquito abundance in the vicinity of 

the surveyed households was also measured. This mosquito exposure data, along with 

respondents’ characteristics in the survey, are used below as the predictor 𝑋𝑛 variables in the 

class membership model (according to equation 6 above). Complete data for 257 respondents 

was obtained, and this is the sample we analyze here. Details on the overall survey are included 

in the supplementary material of the paper. 

 The format of the choice experiments was as follows. Respondents read a short 

background section informing them of the fact that there are multiple types of mosquitoes in 

Madison, some of which are simply a nuisance while others are capable of transmitting WNV. 

We explained that a hypothetical citywide mosquito control program, which would use 

environmentally-friendly methods to control mosquito larvae, could target nuisance mosquitoes, 

WNV mosquitoes, or all mosquitoes. Respondents were told that the cost of the program would 

be funded through an increase in property taxes of between $10 and $200 per household. We 

also told respondents the level of West Nile disease risk (set at the current level of 1 in 250,000 

for the first three choice tasks, then increased to 10 in 250,000 and then 100 in 250,000), and 

then asked respondents to choose between pairs of hypothetical control programs. The attribute 

descriptions and levels are presented in Table 1. A representative choice task is shown in the 

supplementary material. Importantly, respondents were allowed to “opt out” and choose neither 

program, which defines the status quo (SQ) alternative.  

[ Table 1 here. ] 

Results from the survey pre-test and focus group discussion suggested that it was possible 

to conduct nine choice tasks with respondents in the final survey, where each task consisted of a 

comparison of two hypothetical mosquito control programs under a specified disease risk level. 
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To generate these choice sets, we used a fractional factorial design (Johnson et al. 2007). First, 

we constructed all of the unique programs consisting of 1) type of mosquito controlled, and 2) 

cost. Since there were three different mosquito types (nuisance, vector, both) and four cost 

levels, this produced 12 possible programs. The set of choice tasks was further reduced by 

eliminating dominated alternatives. This included eliminating tasks with any alternative which 

controlled all mosquitoes at lowest cost, as well as any tasks in which two alternatives were 

identical except for one being cheaper. This narrowed the number of unique, undominated 

program pairs down to 28. Of these, we selected 18 pairs in which 6 compared nuisance and 

WNV programs, 6 compared nuisance programs with programs controlling all mosquitoes, and 6 

compared WNV and all mosquito programs, and verified that the resulting attribute matrix had 

full rank and was orthogonal (Johnson et al. 2007).  We then interacted these 18 program pairs 

with the three WNV risk levels (current risk, slight increase, large increase) to create 54 total 

choice pairs, and divided these into six unique sets of nine choice tasks. That is, we created six 

different versions of the survey in which each version contained three choice tasks at each of the 

three West Nile risk levels.  Finally, in distributing the survey, we ensured that recruits from 

each of the six targeted neighborhoods were distributed across the six survey versions (described 

in the supplementary material). 

[ Table 1 here. ] 

Summary inspection of respondents’ behavioral patterns (Figure 1) in the choice 

experiment reveal that 47% of the sample are potential serial participants: these respondents 

avoided the SQ in all nine of their choice tasks. Potential serial nonparticipants (always selecting 

the SQ) comprise 9% of the sample. However, an additional 6% always selected the SQ in the 

low- and medium risk scenarios (comprising six of the nine choice tasks), but did opt for some 
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control program in the three tasks pertaining to the high-risk scenario. This ‘quasi-SNP’ behavior 

is found to be important for reasons discussed below.  

[ Figure 1 here. ] 

Econometric analysis and estimation results 

The recommended approach to implementing the GLCM is not only to visually inspect 

the data, but to also first implement a standard LC estimation routine. Such estimation is 

exploratory. In considering application of a GLC approach the researcher is searching the 

standard LCM for very large coefficient estimates (as well as nonconvergence of the estimation 

routine). A rigorous LC analysis is likely to be more systematic than ad hoc visual inspection at 

identifying segments of the population who appear to behave according to discontinuous 

preference structures. In point of fact the non-logit choice patterns illustrated in Figure 1 were 

originally discovered in the dataset by estimating an LCM. Once these preference patterns are 

revealed, the GLCM is implemented by imposing the implied restrictions on the excluded sets 

and reference alternatives. 

Table 2 presents the regression diagnostics for the standard LCM (along with those for 

GLCMs, which are discussed below). These diagnostics suggest that the three- and four-class 

specifications, according to the AIC, CAIC and BIC, provides the best balance between model fit 

and parsimony. In choosing between the three and four class model, we opt for parsimony and 

focus on the three-class specification, buoyed by support from the CAIC and BIC criteria (which 

both give more weight to model parsimony).  

[ Table 2 here. ] 

Coefficient estimates from the three-class standard LCM are shown in the first three 

columns of Table 3. Roughly speaking, coefficient magnitudes greater than three or four in our 
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experiment raise concerns that the LCM is converging to a boundary solution, suggesting 

discontinuous preferences.5 Class 1 in the LCM, estimated to comprise 35% of the sample, 

appears to exhibit continuous preferences that are well-captured by a conditional logit 

representation. Class 2 (estimated at 48% of the sample) appears to exhibit preferences 

suggesting serial participation: all alternative-specific constants (ASCs) are greater than four. 

Moreover, the ASCs for the low WNV risk scenarios are essentially unbounded, suggesting a flat 

likelihood function, difficulty in the convergence of the optimization routine and a lack of 

identification.6 Similarly, Class 3 (18% of the sample) suggests serial nonparticipation, except in 

the high-risk scenarios, where there appears to be a slight preference for programs which reduce 

abundance of both nuisance and WNV-transmitting mosquitoes.  Note how closely the estimated 

class shares for this model correspond to the raw frequencies of these behaviors observed in the 

data (Figure 1).   

[ Table 3 here. ] 

The LC logit results therefore suggest three behavioral patterns, two of which are 

discontinuous and not representable by a conventional conditional logit model. The first 

discontinuous class is serial participants (SPs). The second is comprised of individuals who are 

serial nonparticipants (SNPs), except evidently in situations of high WNV risk (where the 

coefficient magnitudes are within normal ranges).   

                                              
5 For example, an alternative-specific constant (ASC) equal to four implies behavior in which that 

alternative is selected relative to the SQ option 98% of the time. Statistically, such an individual would need to be 

observed 50 times before one selection of the SQ is observed, whereas respondents in the analyzed DCE only 

completed nine choice tasks. An ASC equal to three would imply the alternative is selected over the SQ 95% of the 

time so that a task would need to be repeated 20 times before observing one SQ selection.  
6 All estimates shown in this paper are generated from the authors’ own Matlab code, provided as 

supplementary material to this paper. The LCM code was compared to estimation output from standard software 

packages, such as the ‘lclogit’ package in Stata (Pacifico & Hong il Yoo 2013). The Matlab output was identical 

with the Stata output in all cases, except when the models had trouble converging (though when either the Matlab or 

the Stata implementation did not converge, neither did the other).   
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Table 4 shows how these discontinuities may be represented using a GLCM. What is 

required is first to specify the exclusion sets ∅𝑚,𝑡 for each class 𝑚 and then to specify the 

reference alternatives as needed (i.e. when the SQ alternative is excluded). For example the 

excluded set pertaining to the SP class is ∅𝑆𝑃,𝑡 = {𝑆𝑄} ∀𝑡, i.e. the SQ option is by assumption 

selected with probability zero by members of this class. Furthermore, since the subsequent 

conditional logit model for this model is estimated without the SQ alternative, a new reference 

alternative must be specified by the researcher. We specify the ‘Nuisance-only’ program as the 

reference alternative whenever the SQ is excluded, in which case its ASC is restricted to zero 

(e.g. 𝛼𝑁𝑢𝑖𝑠,𝑡
𝑆𝑃 = 0 ∀𝑡 for the SP class).    

[ Table 4 here. ] 

Results from this estimation are presented in Table 3, alongside the GLC estimates. 

Based on the regression diagnostics in Table 2, we present estimates for the best-performing, 

three-class GLC specification, with one class corresponding to ‘normal’ CL preferences over all 

alternatives, the second class corresponding to SPs and the third corresponding SNPs except in 

the high-risk scenario. For robustness we also estimated an alternative GLCM with SNPs over 

all scenarios. The summary statistics for this regression are presented in the last column of Table 

2, which shows (based on all three reported information criteria) that this specification is overly 

restrictive.  

A number of insights emerge from Table 3, when comparing the LCM and GLCM. In 

qualitative terms, Class 1 in the LCM corresponds most closely to the unrestricted class in the 

GLC specification (the ‘CL group’). For example, in the tasks with low WNV risk, both of these 

classes value the ‘nuisance only’ program more than the ‘WNV only’ program, which is in turn 
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valued more than the ‘Both’ program. This preference ordering essentially reverses in the high-

risk choice tasks.  

Class 2 in the LCM is comparable to the SP class in the GLCM. Note that the SP class 

specification in the GLCM uses the ‘nuisance only’ program as the reference alternative, so that 

the coefficient estimates in this column are only interpretable relative to this program. Seen from 

this perspective, the results are in fact similar to the Class 2 estimates: for example, if we look at 

the high-risk scenarios and look at the difference between the ‘WNV only’ and ‘Nuisance only’ 

programs (5.46 – 5.05 = 0.41), we see that the coefficient estimate lines up nicely with the GLC-

SP ‘WNV only’ estimate of 0.426. Similar patterns emerge in comparing the other coefficient 

estimates, though clearly the lack of identification in the LCM with respect to Class 2 warrants 

caution in any interpretation of these coefficients (which is precisely the motivation for the 

GLCM). Also that in both the LCM and GLCM the SP class is the only one for which the 

program cost attribute is statistically insignificant (though still negatively signed).  

The last column in the GLCM corresponds to the class whose preferences are most akin 

to a serial nonparticipant, the only difference being that this class does appear to participate in 

high-risk scenarios (a specification supported by the model fit comparisons in Table 2). As such 

we can only estimate logit preference parameters for the high-risk choice tasks (hence the blank 

entries for all the parameters in the low- and medium-risk scenarios). This ‘quasi-SNP’ class is 

most comparable to Class 3: both classes appear to prefer the ‘Both’ program over either the 

‘WV only’ or ‘Nuisance only’ programs, though these differences are not statistically significant. 

Even in this scenario with high WNV risk, support for any of the programs among members of 

this class appears weak.  
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Comparing the class membership probabilities between the GLCM and LCM also 

confirms the clear mapping of classes between the two models. The class membership shares 

(the means of the posterior class membership variables in eq. 4) in the LCM classes and their 

counterparts in the GLCM are within a few percentage points of each other. Notably, the GLCM 

produces class membership shares which are respectively 2% smaller for the SP class (class 2 in 

the LCM) and 4% smaller in the quasi-SNP class (class 3 in the LCM). This arises precisely 

because of the partial observability of class membership in the GLCM: for example, respondents 

who select the SQ in any of their nine choice tasks are excluded from the SP class with certainty, 

whereas respondents who do appear to behave as SPs still have some small positive probability 

in the GLCM of belonging to the ‘well-behaved’ CL class (class 1 in the LCM). Examining the 

full distribution of the posterior class membership variables (Figure 2), we again see an 

extremely tight parallel between the LCM (panel a) and GLCM (panel b). However, we can also 

see that the GLCM produces posterior membership variables which convey greater certainty:  

only 16% of respondents in the GLCM have posterior membership probabilities which are 

between 0.01 and 0.99, compared to 23% of respondents in the LCM. 

Valuation 

We compute mean CV from the results of the GLCM, and compare to the LCM model 

and conditional logit. Results are presented in Figure 3. As noted above, computing a valuation 

estimate for the full sample requires care, because values can only be estimated relative to a 

reference alternative not excluded by any classes. We therefore estimate CV for the addition of a 

‘WNV only’ or ‘Both’ program as an option in the choice set, relative to a baseline situation in 

which a ‘Nuisance only’ program is in effect. Across all three choice contexts (low, medium and 

high risk) and models (CL, LCM and GLCM), the mean CV for the ‘Both’ alternative is always 
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greater than the ‘WNV only’ alternative. Relative to the basic conditional logit model, the 

GLCM model CV estimates are significantly lower in all programs and contexts. Relative to the 

LCM specification, the GLCM estimates are qualitatively similar for most risk-program 

combinations, with around a 10 to 20 percent difference in magnitude (the GLCM estimate being 

sometimes higher or lower than the LCM estimate for different alternatives).  An exception to 

this pattern is in the low-risk, ‘WNV only’ program: In this scenario the LCM CV estimate is 

nine times higher than the GLCM estimate. Looking back at the regression results in Table 3, we 

can see that this discrepancy is most likely related to the very large (and clearly poorly 

identified) regression estimates for LCM model in the low-risk scenario, the result of the serial 

participation behavior of this class. Examining the 90% confidence intervals around the mean 

CV estimates in Figure 3, we also see that mean CV estimates for the GLCM are more precise 

than the CL model.  

[ Figure 3 here. ] 

Predicting class membership with respondent characteristics 

We also estimate a GLCM otherwise identical to that in Table 3, but which uses 

respondent characteristics as regressors in the class membership model. This model uses a 

multinomial logit specification, as in equation (6). Table 5 presents multinomial logit coefficients 

from this class membership model (the choice coefficients are omitted because they are nearly 

the same as the last three columns of Table 3). Only two characteristics are found to predict class 

membership (and only at a statistical significance of 10%). These are the number of hours the 

respondent spent outside on a typical day in the summer and mosquito abundance, as measured 

via entomological sampling in the respondent’s neighborhood. In general, respondents who 

spend more time outside and who have more mosquitoes around their homes are more likely to 
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belong to the SP class in the GLCM model, relative to the standard CL class and the quasi-SNP 

class. The SP class generally has a higher willingness-to-pay for mosquito control across all 

programs: hence the estimated average marginal effect of a 1% change in hours spent outside is 

estimated at roughly a $0.70 increase in the CV associated with the ‘Both’ alternative in the low-

risk scenario (for example). Similarly, an increase in mosquito abundance of 1% is associated 

with an increase of $0.60 increase in CV for the ‘Both’ alternative in the low-risk scenario 

(again, relative to a ‘Nuisance only’ program).7 

Discussion  

 This paper develops and demonstrates the application of a generalized latent class model 

(GLCM) for dealing with and identifying behavioral patterns reflecting a variety of 

discontinuous preferences in discrete choice data.  

The core element of the proposed methods lies in permitting the analyst to restrict the 

modelled choice probabilities for some respondents to zero for a subset of alternatives. By first 

conducting an exploratory estimation of a standard LCM and conjecturing from the results as to 

which alternatives are systematically avoided by some individuals, a confirmatory GLCM can 

then be estimated which overcomes the identification problem. In this paper we compare the 

GLCM to the LCM using information criteria.8 In the application to the West Nile virus choice 

experiment in Madison, results imply that overall valuations for specific programs can only be 

accurately obtained from these data relative to a non-SQ program. Moreover, while following the 

                                              
7 The details on this computation and full table of average marginal effects for alternative-specific CV are 

available on request to the authors. 
8 Ideally, because the GLCM can be viewed as a restriction of an LCM, a likelihood ratio test would be 

used to test the (less restricted, but possibly unidentified) LCM against the GLCM. However, the restrictions 

imposed by the GLCM lie at the boundary of the parameter space (i.e. effectively setting some alternative-specific 

constants to negative infinity in some classes), which precludes the use of a standard chi-squared distribution in such 

a test. Deriving the distribution of the likelihood ratio in such circumstances is therefore a topic for future research. 
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same qualitative pattern across programs, even the relative valuation estimates differ 

significantly in magnitude between the GCLM and LCM. Given the identification challenges for 

the standard LCM, we argue that it is preferable to use the GLCM estimates and to take seriously 

the apparent lack of identification of mean absolute program values (i.e. relative to the ‘no 

program’ status quo option).      
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Tables 

Table 1: Mosquito program attribute descriptions and levels 

Attributes Description Levels 

Mosquitoes Targeted 

Type(s) of mosquitoes that would 

be targeted by the mosquito control 

program 

All 

Nuisance only 

WNV vectors only 

 

Cost 

Increase in annual property taxes 

used to fund the mosquito control 

program 

$10 

$50 

$100 

$200 

 

West Nile Virus risk 

(task-spanning 

attribute) 

Risk of contracting West Nile virus 

in Madison, WI 

Low risk (Madison status quo): 1 in 

250,000, or 1 case per year 

Medium risk: 10 in 250,000, or 10 cases 

per year 

High risk: 100 in 250,000, or 100 cases 

per year 
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Table 2: Regression summary statistics 

 

Conditional 

logit 

 

Standard LCMs 

 GLCMs 

 

  with serial 

participants 

(SPs) 

with SPs & 

Quasi-SNPs  

with SPs & 

SNPs 

Number of Classes 1  2 3 4  3 3 3 

Log-likelihood -2,405  -1,960 -1,847 -1,829  -1,849 -1,851 -1,877 

Deg. of freedom 10  21 32 43  29 23 20 

Respondents 257  257 257 257  257 257 257 

Respondents X Tasks 2,313  2,313 2,313 2,313  2,313 2,313 2,313 

AIC 4,790  3,878 3,630 3,572  3,640 3,656 3,714 

CAIC 4,875  4,051 3,890 3,920  3,875 3,840 3,872 

BIC 4,866  4,037 3,872 3,897  3,859 3,830 3,936 
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Table 3: Generalized and standard latent class logit choice model estimates, 3 classes. Robust standard errors, clustered at the 

individual level, in parentheses. SP = serial participant, SNP = serial nonparticipant. For the GLCM, see companion Table 4 on the 

restriction of reference alternatives. Class membership probabilities here estimated with a constant-only model. *, ** and *** 

indicate statistical significance respectively at the 10%, 5% and 1% levels. 

WNV 

risk level 

Program 

alternative 

 
Conditional 

logit 

 Standard latent class model (LCM)  Generalized latent class model (GLCM) 

  
Class 1 Class 2 Class 3  

CL group (all 

alternatives)  
SPs Quasi-SNPs 

Low risk 

1/250K 

WNV only  0.014   0.52** 236 -2.66**  0.342 -1.05*** -- 

  (0.144)  (0.229) (1.78 x 103) (1.31)  (0.216) (0.177)  

Nuisance only  0.956***  1.5*** 237 -14.4***  1.26*** - ref. alt. - -- 

  (0.144)  (0.261) (1.78 x 103) (0.842)  (0.236)   

Both  0.732***  0.0557 237 -14.6***  0.209 -0.159 -- 

  (0.187)  (0.508) (1.78 x 103) (2.84)  (0.411) (0.232)  

Medium 

risk 

10/250K 

WNV only  0.491***  1.05*** 4.3*** -2.31***  0.842*** 0.187 -- 

  (0.139)  (0.218) (1.16) (0.794)  (0.195) (0.156)  

Nuisance only  0.35**  0.813*** 4.14*** -3.09***  0.662*** - ref. alt. - -- 

  (0.146)  (0.235) (1.15) (1.12)  (0.207)   

Both  1.25***  1.84*** 5.24*** -13.0***  1.71*** 1.01*** -- 

  (0.181)  (0.378) (1.08) (1.08)  (0.317) (0.188)  

High risk 

100/250K 

WNV only  0.928***  1.3*** 5.46*** -0.896  1.21*** 0.426*** -1.97 

  (0.152)  (0.287) (1) (0.618)  (0.263) (0.152) (1.87) 

Nuisance only  0.676***  1.31*** 5.05*** -0.982*  1.15*** - ref. alt. - -1.34** 

  (0.160)  (0.27) (1.01) (0.508)  (0.234)  (0.522) 

Both  1.59***  2.68*** 5.89*** 0.998  2.49*** 0.829*** 0.116 

    (0.181)  (0.31) (1.03) (0.753)  (0.284) (0.24) (0.604) 

Program cost ($)  -0.00593***  -0.0177*** -0.00243 -0.0218***  -0.0172*** -0.00206 -0.0134** 

   (0.001)  (0.0021) (0.00151) (0.00667)  (0.00202) (0.00143) (0.0052) 

Predicted class prob.  --  0.32 0.49 0.19  0.36 0.48 0.15 

Imputed class shares  --  34% 48% 19%  39% 46% 15% 
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Table 4: Parameterizing the GLCM for behaviors observed in the choice experiment 

Class / Behavior Exclusion sets (∅𝑡,𝑚) Identification restrictions 

Standard conditional 

logit (CL) behavior 
∅𝐶𝐿,𝑡 = ∅ ∀𝑡 𝛼𝑆𝑄,𝑡

𝐶𝐿 = 0 ∀𝑡 

Serial participants (SPs) ∅𝑆𝑃,𝑡 = {𝑆𝑄} ∀𝑡 𝛼𝑁𝑢𝑖𝑠,𝑡
𝑆𝑃 = 0 ∀𝑡 

Serial nonparticipants 

(SNPs) 
∅𝑆𝑁𝑃,𝑡 = {ℎ ≠ 𝑆𝑄} ∀𝑡 (degenerate case) 

SNPs, except in high-

risk scenarios 

∅𝑆𝑁𝑃,𝑙𝑜𝑤 = {ℎ ≠ 𝑆𝑄} (degenerate case) 

∅𝑆𝑁𝑃,𝑚𝑒𝑑𝑖𝑢𝑚 = {ℎ ≠ 𝑆𝑄} (degenerate case) 

∅𝑆𝑁𝑃,ℎ𝑖𝑔ℎ = ∅ 𝛼𝑆𝑄,ℎ𝑖𝑔ℎ
𝑆𝑁𝑃 = 0 
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Table 5: Class membership model with covariates. GLCM estimated as in Tables 3 and 4, but additionally including respondent 

covariates in a multinomial logit class prediction model (choice model coefficients from this specification not presented but very 

similar to GLCM presented in Table 3, available from authors on request). *, ** and *** indicate statistical significance respectively 

at the 10%, 5% and 1% levels. Statistical significance of the log-likelihood value obtained from a likelihood ratio test of this model 

against the GLCM specification in Table 3 (which contains a constant-only model for class membership).  

 Latent class membership model 

  All alternatives class SP class 

 Coeff. (Std. Err.) Coeff. (Std. Err.) 

Constant -3.68 -9.56* 

 (5.49) (5.50) 

Kids 0.206 0.313 

 (0.55) (0.50) 

Female 0.202 0.487 

 (0.42) (0.40) 

Married -0.489 -0.238 

 (0.58) (0.60) 

Age 0.0231 0.00239 

 (0.02) (0.02) 

log(income) 0.309 0.322 

 (0.38) (0.37) 

Post-secondary degree 0.0536 0.422 

 (0.56) (0.53) 

log(1 + hours outside) 0.253 3.45* 

 (1.86) (2.02) 

log(1 + mosquitoes) 0.261 1.54* 

 (0.74) (0.79) 

log(1 + hours outside) 

X log(1 + mosquitoes) 

-0.219 -0.821* 

(0.46) (0.48) 

Log likelihood (full model) -1,835** 

Deg. of freedom (full model) 41 



37 

 

Figures 

Figure 1: Frequency of different choice patterns in the sample data 
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Figure 2: Posterior class membership probabilities 

a) LCM (3 class) model 

 

b) GLCM (3 class) model 
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Figure 3: Compensating variation (CV) estimates across models. Alternative-specific 

estimates presented relative to a condition in which the nuisance only program is already 

assumed available. 90% confidence intervals presented in brackets.  
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