ESTIMATION OF AN OPTIMAL TOMATO CONTRACT
BRENT HUETH! AND ETHAN LIGON*

ABSTRACT. This paper estimates an agency model of contracts used in Cal-
ifornia’s processing-tomato industry. Model estimation proceeds in three
stages. We first estimate growers’ stochastic production possibilities, and
then, for a given vector of preference parameters, compute an optimal com-
pensation schedule. Finally, we compare computed compensations with
actual compensations and choose preference parameters to minimize dis-
tance between the two. Assuming perfect competition and risk neutrality
for processors, we obtain an estimate of .08 for growers’ measure of constant
absolute risk aversion (where returns are measured in units of $100/ton),
and find that growers’ effort cost is 1.8% of total operating cost. Welfare
losses from information constraints are estimated at .59% of mean com-
pensation, and quality measurement improves efficiency (measured as a
percentage increase in expected quality) by 1.08%.

1. INTRODUCTION

Theoretical study of contracts has progressed a great deal in recent years.
Advances in this area have significantly improved our understanding of the
role information constraints play in shaping various kinds of market and non-
market institutions. Unfortunately, attempts to empirically test contract the-
ories, and to measure the magnitude of welfare losses arising from information
constraints, remain scarce. Moreover, much of the evidence that has been
accumulated seems inconsistent with the risk and incentives tradeoff present
in the standard principal-agent model (Prendergast 1999).

This paper uses data from California’s tomato-processing industry to esti-
mate the primitives of an agency model that captures the essential features of
contracts between growers and processors in this industry. Unlike most previ-
ous empirical work employing agency theory, our data are sufficiently rich to
allow for estimation of agents’ (stochastic) production possibilities. Using this
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estimated technology, we choose preference parameters—agent risk aversion,
and the cost of effort—to compute optimal compensation using the nonlinear
program developed by Grossman and Hart (1983). Finally, we perform a global
search over feasible parameters to minimize distance between the computed
and observed compensation schedules.

In what follows, we briefly describe the tomato contracting environment
that is the subject of our investigation. We then present a simple principal-
agent model that captures the essential features of this environment. In the
subsequent two sections we estimate the primitives of our model and conduct
two counter factual experiments: efficiency gains from removal of incentive
constraints in the principal’s contract design problem, and changes in expected
quality when contracts are conditioned on only a single performance measure.
The final section concludes.

2. ToMATO CONTRACTING

Two important institutions exist in California that mediate exchange be-
tween growers and processors. The California Tomato Growers Association
(CTGA) is a bargaining entity that negotiates contract terms with proces-
sors on behalf of member growers. Membership in this organization fluctuates
from year to year, but generally accounts for between 65% and 70% of growers.
The Processing Tomato Advisory Board (PTAB) performs third-party qual-
ity measurement and is jointly funded by processors and growers. All loads
delivered by growers must be inspected at a certified PTAB grading station.

In California, there are 25-30 processors who buy tomatoes in any given
year, and each uses a unique contract with its growers. Contracts are based
on acreage allocations and correspond to specific plots within each grower’s
total acreage. For growers who are CTGA members, there is also a “master
contract” that governs incentive structures and dispute resolution procedures.
Although each processor’s contract is unique, all tomato contracts have a sim-
ilar structure. Compensation is awarded on the number of tons delivered and
is adjusted based on the outcome of one or more quality measures. These
include (primarily) color, “limited use”, soluble solids, and various measures
of damage (e.g., %worms, and %mold).

For future reference, it will be useful to represent a typical tomato contract
formally. Let y denote gross tons delivered. A piecewise linear function ¢(d)
aggregates some vector of damage measures d into a percent “deduct” (this
is used to convert y into net tons). A base price b is then awarded based on
net tons, in addition to a premium that is computed with a piecewise linear
schedule 3(q) that depends on the outcome of the vector of quality measures
g. Compensation w is then given by

w = y[l = o(d)][b+ B(q)]-
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Table 1 displays the deduct and premium schedules for the contract we es-
timate later in the paper. The contract conditions payment on only a single
quality measure (soluble solids). Though the contracts of other processors
have a similar structure, they vary widely in the specific deduct and premium
parameters used, and in the quality measures that are employed. Interestingly,
limited use sometimes shows up as both a quality measure and a damage mea-
sure (i.e., it enters compensation via ¢(-) and 3(-)). Also, though agricultural
contracts seem a near perfect example of a setting where relative performance
incentives ought to be observed, they’re used explicitly by only a single pro-
Cessor.

TABLE 1. Processing Tomato Contract with Soluble Solids “In-
centive Program”; Base Price=$51 per net ton.

Damage Measures Deduction (%)
(Multiply integer by percentage in brackets)
mot! 3[0,1]
Tu? 0[0,5] 1[5.5,8] 1.5[8.5,14]  2[14,100]
green 1[0,2] 2[2.5,1]
mold 1[0,1]
worms 1[0,1]
Quality Measure
soluble solids (%) 051 52 53 54 55 56 57 58 59 [6.0,100]
premium ($/(net ton)) | 0 S5 1 15 2 25 3 37 45 525

!Material other than tomatoes. Includes “dirt and extraneous material (detached stems,
vines, rocks or debris)”.

2Limited use. A limited use tomato is “i.) whole but has a soft, watery condition under
the skin so that more than 25% of the skin is separated from the underlying flesh; ii.) is
more than 50% soft and mushy or iii.) is broken completely through the wall so the seed
cavity is visible.”

(source: Processing Tomato Advisory Board. http://www.ptab.org/order.htm)

In the next section we briefly present a simple principal-agent model that
will provide the basis for our estimation in the subsequent section.

3. MODEL

Our model is of a processor and a single grower, and governs production and
exchange of a single “load” of tomatoes. For simplicity, we represent a load
of tomatoes in three dimensions: the size of the load y € Y = [y1,... ,Yn, ],
one minus the fraction of damaged tomatoes r € R = [ry,...,7,,]| (in Table
1, r is one minus an aggregation of all “deducts”), and some other quality
attribute ¢ € @ = [q1, - - . , ¢n,] (in Table 1, g represents soluble solids). We let
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s = (y,r,q) represent the full vector of signals, and define S = {(y,r,q) | y €
Y,r € R,q € Q} to be the set of all possible realizations of s. The notation
s > s’ has the usual componentwise meaning.

The processor is assumed risk neutral and values a load of size y according
to some increasing and concave function V(ry, q).

The grower conditions the joint distribution of s with his choice of action
a € A=la,...,a,], assumed unobservable to the processor, and other pro-
duction inputs that for notational simplicity we suppress. The probability of
outcome s is denoted by p(s|a) > 0 with > cp(s|la) = 1 for all « € A. For
action a and compensation ﬁ?,N grower utility is given by some von Neumann-
Morgenstern utility function U(a, W) = G(a) + K (a)U(w) satisfying Assump-
tion Al in Grossman and Hart (1983). Reservation utility for the grower is
denoted by U.

Denote compensation given a particular outcome s by @(s), and let u(s) =
U(w(s)). Then for any action a that is implementable, a Pareto optimal
contract solves

(1) min__ > " p(s|a)h(u(s|a))
subject to

G(a) + K(a) Zp(s|a)u(s|a) >U
G(a) + K(a) > _p(sla)u(s|a) >

G(d) + K(a') Zp(s|a’)u(s\a’) for all a’' € A.

where h = U ! (see Grossman and Hart (1983)). Because U(-) is concave,
h(-) is convex and problem (1) is a simple nonlinear program with a convex
objective function, and a finite number of linear constraints. Let C'(a) denote
the value of the objective function at the solution for action a. If for some
a, there is no feasible solution, then we set C'(a) = —oo; such an a is not
implementable. The Pareto optimal action a* is the one that maximizes the
expected value of V (ry, q) — C(a), and the optimal wage schedule is obtained
by computing @w(s|a*) = h(u(s|a*)).

In the empirical section that follows, we assume the grower chooses between
two actions, A = {ar,ay} with ag > ar. Assuming the principal wishes to
implement ag, it is straightforward to verify that a solution to problem (1)
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satisfies

(2) R (u(slag)) = (A + p) K (ag) — pK(ag) p(slar)

p(slan)’

where A > 0 and g > 0 are the Lagrange multipliers for the first and second
constraints, respectively. Consider two possible outcomes s and s < s for
the grower’s vector of signals. Since h(-) is a convex function, the grower
receives higher utility in state s if and only if choosing ay increases the relative
likelihood of observing s. That is, a contract will be monotonic if and only
if p(s|a) satisfies the monotone likelihood ratio property. We know that the
contract w is monotonic, so any attempt to match up predictions from problem
(1) with actual compensations must be monotonic.

Given some arbitrary technology p(-), one way to ensure monotonicity is to
simply impose it as a constraint. This simply requires an additional set of
linear constraints u(s|a) > u(s'|a) for s > s'. Depending on the context, this
may or may not be a reasonable thing to do.

Equation (2) makes clear that the grower’s compensation is determined
entirely by the informational content of the signals in s. In particular, the
processor’s objective function only determines which action is implemented,
and therefore only has an indirect influence on the shape of the optimal com-
pensation schedule.

4. EMPIRICS

In this section we use data on quality outcomes for processing tomato grow-
ers to estimate the likelihoods p(s|a), and preference parameters in U(a, W).
We then compare the optimal contract computed from problem (1) with the
compensation schedule outlined in Table 1.

__ For simplicity, we assume growers have exponential utility with

U(a, @) = —el=P(@=9)  where p is the grower’s measure of constant absolute
risk aversion. To estimate p(s|a) we assume all growers are identical, and that
they choose between two actions a;, = 0 and ay > 0. We use data collected
from a processor who uses quality incentives, and from a processor who does
not, and assume the processor using quality incentives induces ay for growers
delivering under her contract. We interpret ay as the extra (effort) cost a
grower incurs when producing under a contract with quality incentives.

4.1. Technology Estimation. Unfortunately, our data do not include infor-
mation about y. We therefore treat y as fixed, and focus on the joint distri-
bution of r and ¢. Figure 1 displays estimated marginal quality distributions
for growers delivering tomatoes under the contract in Table 1 and for grow-
ers delivering to processors who offer an identical “deduct” schedule, but no
soluble solids incentives. We denote the marginal distribution for r by p(r|a),
and similarly for ¢q. Quality incentives on ¢ induce the expected shift in its



AN OPTIMAL TOMATO CONTRACT 6

015 F " jow action AN
— — high action

0.1

p(rla)

0.05

=l=)
©
o
©
a
[

0.02

0.015

p(ala)

0.01

0.005

Ficure 1. Estimated Marginal Distributions for r and gq.

marginal distribution, but also induce higher average r. This is not surpris-
ing given the structure of w: the expected return from higher r is greater for
higher ¢q. Figure 2 displays the estimated joint distribution of r and q for loads
delivered to the processor who uses quality incentives.

From the previous section, we know that likelihood ratios are critical for
determining the optimal compensation schedule. Denote the conditional likeli-
hood ratio of r given some g by L(r|q) = p(r, q|aL)/p(r, qlan), and similarly for
g. Figure 3 presents these conditional likelihood ratios. As is visually apparent
from the figure, the likelihood ratios associated with our estimated technology
are not everywhere monotonic. Also, r seems to be more informative since its
conditional likelihood has greater variance (Kim 1995). It’s noteworthy that
all processors use r in their contracts, while only some processors use gq.

4.2. Contract Estimation. With an estimated technology in hand, we can
now proceed to solve problem (1) for our chosen parameterization of grower
preferences. We have three free parameters in our model: the grower’s mea-
sure of constant absolute risk aversion p, the cost of high effort ay, and the
grower’s reservation utility U. Though in principal these three parameters
can be estimated jointly, in practice it is difficult to separately identify U and
ag. Both act on the grower’s participation constraint in a similar fashion.
We therefore set reservation utility at 0.96, which is approximately equal to
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FIGURE 4. Actual and Predicted Compensations, p = .0797
and ag = .0059.

expected utility obtained under the no-incentives contract for a grower with
p = .08.

In our sample n, = 31 and n, = 17. This makes 527 possible outcome states.
Solving problem (1) for this many variables is not practicable. We therefore
begin with only two outcomes for each quality measure, and then increase the
number of possible outcomes to evaluate the sensitivity of our estimates to
grid spacing. Because we don’t have information on y, w is compensation per
gross ton. We put units in $100 per gross ton. Figure 4 displays actual and
predicted compensations for p = .0797 and @y = .0059. This is the parameter
pair that minimizes the mean squared error between the two compensation
schedules given by

After some initial experimentation, parameter estimates were obtained by
searching over an equally space grid of 100 values for each parameter ranging
from [.07,.09] for p and [.004,0.2] for ay.

Evaluating the magnitude of our estimate for the grower’s measure of con-
stant absolute risk aversion is difficult. Few studies have attempted estimates
of this coefficient. Nevertheless, an individual with a coefficient of absolute
risk aversion equal to .0797 would be willing to accept $8.66 in return for an
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even odds gamble that offers an expected return of $50. We will come back to
the magnitude of this parameter in the next section when we evaluate welfare
losses from private information. Our estimate of effort cost translates into
approximately $.60 per ton. Average yields for processing tomato growers are
35 tons per acre, so estimated effort cost per acre is approximately $21. This
is roughly 1.8 percent of total operating costs for a typical processing tomato
grower (May et al. 2001).

Table 2 reports parameter estimates when we use a finer grid for our outcome
states. Our estimate of ay is somewhat variable, but in general the parameter
estimates do not seem very sensitive to grid spacing.

TABLE 2. Estimation Results and Gridsize

Unconstrained Monotonic
Gridsize p ay mse (x10*) p axy mse (x10 %)
2 .08 .0051 5.03
3 .08 .0038 2.58 .08 .0051 1.81
4 .08 .0042 1.99
5 .08 .0049 2.56 .08 .0049 3.50

Figure 5 displays predicted and actual compensation schedules for a grid
with four possible outcomes for each quality measure. As in Figure 4, the
model does well predicting compensation when both r and ¢ are low, and
when they are both high. The model does less well in intermediate ranges.
Perhaps an alternative parameterization of grower preferences could perform
better. Also, estimation of the technology p(-) could be carried out jointly
with estimation of preferences. In any case, given that the model is unable
to more closely match actual compensation, it seems that some aspect of the
parameterization we choose is misspecified. An alternative interpretation is
that some type of “transaction cost” limits the processor’s use of an optimal
contract. Ferrall and Shearer (1999) adopt this interpretation and measure
the magnitude of these transaction costs by computing the difference between
expected surplus under optimal and actual contracts.

5. AGENCY COSTS AND QUALITY MEASUREMENT

Having estimated our model, it’s possible to carry a number of interesting
counter factual exercises. We report the outcome of two such exercises in this
section.

5.1. Agency Costs. Private information constrains the set of contracts that
are feasible. In particular, a full information contract in the environment
we consider would not expose the grower to any risk. Using the parameter
estimates obtained when n, = n, = 4, the grower would receive $.51 with
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FIGURE 5. Actual (solid line) and Predicted (dashed line) Com-
pensations, p = .08 and ay = .0052.

certainty. The grower obtains the same expected utility under both the full
and private information contracts. The welfare cost of private information
is therefore given by the grower’s risk premium under the private information
contract, and this exactly equals the difference in expected compensation under
the two contracts. For U = —.96 and p = .08, full information compensation is
.5103. Expected compensation under the private information contract is .5155,
yielding a welfare cost of $.0052/ton. This yields a small, almost insignificant,
welfare cost from private information of $55,640 for the entire industry (total
production in 1998 was 10.7 million tons).

There are two reasons why our estimate of this welfare cost represents an
extreme lower bound. First, we’ve assumed there are only two actions: assum-
ing the high action is implemented under both the full and private information
contracts, there is no efficiency loss from private information in our estimate.
Losses are only due to the risk that’s imposed on growers in the private infor-
mation contract. Second, to simplify estimation of our model, we ignored and
important part of the actual compensation schedule: the part where growers
get no compensation because a load is rejected. Including this possibility adds
substantial additional risk to growers’ compensation. As a rough indication of
how this might affect our estimate of welfare cost, suppose that growers face
a 10% chance of having any load rejected. Total operating costs for a load are
roughly $36/ton, which a grower has to pay regardless of whether his load is
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rejected. Adding this amount (measured in units of $100) to our computed
private information compensation schedule, and normalizing p(r, ¢|a) to in-
clude a 10 percent chance of rejection, an additional .086 would have to paid
to achieve an expected utility of —.96. Adding this to our original estimate
yields a total welfare cost of .0912, which amounts to an industry wide cost of
$975,840. Though extremely rough, this estimate is suggestive of the possible
increase in estimates of welfare costs from private information when extreme
penalties (that wouldn’t be necessary under full information) are considered.

5.2. Quality Measurement. Performance measurement can be an extremely
costly undertaking. In the processing tomato industry, growers and processors
combined pay roughly $.30/ton of tomatoes to PTAB (the charge is split evenly
between the two parties and is assessed on a per-load basis), amounting to over
$2 million dollars per year. With our estimated model we can evaluate quality
improvements that result from this expenditure. One way to do this is simply
by measuring the increase in expected quality that results when incentives are
present. In our model, quality outcomes under the low action ay, are obtained
when there is no performance measurement with respect to ¢. For this ac-
tion, F(q|lay) = 6.204, and for the high action F(q|ay) = 6.271, resulting in
a 1.08% increase. Similarly, 7 increases by .5497% from E(r|a;) = .9263 to
E(r|lag) = .9314. These percentage increases seem small, which means (given
the expenditures on quality measurement noted above) that small increases in
quality must yield substantial benefit.

6. CONCLUSIONS

This paper estimates an agency model of contracting in California’s process-
ing tomato industry. Quality outcomes for growers under contract are used
to estimate outcome-state probabilities under two contracts: one that uses an
explicit set of quality incentives for soluble solids, and another that does not.
We presume that these two contracts implement different grower “actions” and
use the ratio of our estimated likelihoods as an estimate of the likelihood ratio
that appears in our agency model. We then use the nonlinear program devel-
oped by Grossman and Hart (1983) to compute an optimal contract assuming
constant absolute risk aversion for growers. We jointly estimate growers’ risk
aversion and the cost of high effort by minimizing distance between computed
and actual compensation schedules.
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