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FOOD SAFETY AND THE DEMAND FOR LEAFY GREENS 

ELINA TSELEPIDAKIS 

Unsafe contaminated foods are responsible for millions of illnesses and lead to significant losses 

in life and productivity. The Centers for Disease Control and Prevention (CDC) estimate that 

foodborne disease is the cause of approximately 48 million illnesses, 128,000 hospitalizations, 

and 3,000 deaths annually within the United States (Scallan et al. 2011a and 2011b). Only 20 

percent of illnesses (9.4 million illnesses) can be attributed to a specific pathogen. In fiscal terms, 

these 9.4 million illnesses impose an estimated annual cost of 15.5 billion dollars covering 

medical expenditures, lost productivity, and quality of life losses (Hoffman et al. 2015). Leafy 

green safety has been of particular concern for consumers, producers, and regulators, especially 

following an unprecedentedly large, multi-state E. coli O157:H7 outbreak linked to contaminated 

bagged spinach. In all, the September 2006 outbreak resulted in 205 known illnesses, 104 

hospitalizations, and three deaths. While the 2006 spinach outbreak is a dramatic example of a 

food safety incident involving leafy greens, bacterial contamination cases of lettuce and spinach 

continue to occur on a regular basis. Using data from outbreak-associated illnesses from 1998 to 

2008, the CDC recently determined that more foodborne illnesses were attributed to leafy 

vegetables (22 percent) than to any other commodity, including meat, poultry, dairy, and eggs 

(Painter et al. 2013).  

 The increasing prevalence and prominence of incidents of foodborne illness linked to 

leafy greens has the strong potential to undermine consumer confidence in the national supply, 

especially the supply of packaged and bagged leafy green products. Inevitably, concerns of 

bacterial contamination and foodborne disease can significantly influence demand for leafy 

green products. Perceived risk of bacterial contamination is particularly heightened following 

recalls of leafy green products as consumers often perceive recall events to be an unbiased proxy 
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for low quality (Marsh et al. 2004). Using a Bayesian learning model to motivate how recalls 

impact a consumer’s perception of risk (and in turn consumer demand), the primary objective of 

this research is to investigate the effect of food safety recalls on the demand for leafy green 

products. 

 There is already an extensive and growing body of literature investigating the impact of 

food safety information on the demand for food products. Many of these studies have measured 

the impact of food safety information by analyzing media indices (Smith et al. 1988; Brown and 

Schrader 1990; Burton and Young 1996; Kinnucan et al. 1997; Dahlgran and Fairchild 2002; 

Piggott and Marsh 2004; Coffey et al. 2011), singular events (Foster and Just 1989; Shimshack et 

al. 2007; Schlenker and Villa-Boas 2009), and/or aggregate data. Generally, these studies have 

found statistically significant evidence of own-effects on the demand for the contaminated 

product involved, and some have even found evidence of cross-effects on the demand for other 

products. However, analyses of media indices and singular events do not necessarily capture the 

impact of actualized recurrent food safety events, and analyses of data that have been aggregated 

across households and across time often ignore household heterogeneity, localized impacts of 

regional events, and any immediate short-run effects. 

Specifically concerned with the spinach contamination event of 2006, several authors have 

investigated the impact of the outbreak on leafy green demand. Arnade et al. (2009), using 

aggregate expenditure data for spinach, bagged salads, and other leafy greens, showed that the 

2006 spinach recall led to a substantial decrease in purchases of bagged spinach and a marginal 

decrease in purchases of bulk spinach, with impacts persisting for over a year.  Similarly, Arnade 

et al. (2011), using an error correction model to estimate the rate of adjustment from 
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disequilibrium after the shock to equilibrium, found that it took consumers 8.5 weeks to return to 

the equilibrium for bagged spinach demand.  

The proposed present study contributes to the leafy green demand literature, and the food 

safety literature overall, by analyzing disaggregated household-level data to estimate the effect of 

multiple leafy green recall events that vary over time and space. By using disaggregated 

household demographic and purchasing data, this study effectively takes advantage of the 

geographic and temporal variability of leafy green product recalls in order to accurately measure 

the impact of multiple food safety signals on the demand for leafy green products. That is, 

temporal variability allows for the analysis of multiple recall events over time, and geographic 

variability allows for the analysis of a regional recall on the impacted region as compared to the 

rest of the nation. Additionally, the present study considers the impact of individual household-

level characteristics on purchasing behavior and accounts for heterogeneity amongst households. 

And lastly, assuming recall events serve as a signal for product safety, the study considers 

varying levels of signal strength; for example, recalls prompted by consumer illness 

investigations are considered stronger signals than recalls prompted by microbial testing or 

inspection. 

BACKGROUND: FOOD PRODUCT RECALLS 

Within the United States, the two federal authorities responsible for food safety are the 

Department of Agriculture’s (USDA) Food Safety and Inspection Service (FSIS) and the 

Department of Health and Human Services’ Food and Drug Administration (FDA). The FSIS 

inspects and regulates meat, poultry, catfish, and processed egg products, while the FDA inspects 

and regulates all other food products, including leafy greens. In order to ensure that the nation’s 

food products are safe, wholesome, and accurately labeled, both the FSIS and FDA coordinate 
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and oversee the recalls of products that may cause increased health risks. Examples of possible 

health risks include pathogen contamination, foreign object contamination, undeclared allergens, 

and undeclared sulfites. 

Health risks are usually discovered one of four ways: the manufacturer or distributer 

discovers the presence of a health risk through testing or inspection and contacts the FDA or 

FSIS; a USDA or FDA inspector discovers the presence of a health risk through testing or 

inspection; a state agency discovers the presence of a health risk through testing or inspection; or 

a consumer illness prompts an investigation and the source of illness is traced back to a specific 

product and manufacturer. As soon as the threat is discovered and the manufacturer decides (or is 

mandated) to recall the contaminated product,
1
 the FSIS or FDA determines the severity of the 

threat posed by the marketed product and assigns the recall one of three classifications: Class I, 

II, or III. Class I represents a health hazard situation in which there is reasonable probability that 

consuming the product will cause health problems or death; Class II represents a potential health 

hazard situation in which there is a remote probability of adverse health consequences from the 

consumption of the product; and Class III represents a situation in which consuming the product 

will not cause adverse health consequences. The same classification system is used by both the 

FDA and FSIS. 

Once the recall is assigned a severity classification, the FSIS, the FDA, or the manufacturer 

issues a press release to vendors and media outlets in the areas where the product was 

distributed. For recalls overseen by the FDA, the press release includes the date of the FDA 

recall announcement, a description of the product recalled, the reason for the recall and the 

health risk involved, the distribution of the contaminated product, and information on how the 

                                                           
1
 Under the Food Safety Modernization Act of 2011, the FDA, for the first time, has the authority to impose a 

mandatory recall and shut down operations at food production facilities if it deems that there is a significant threat to 

public health. 
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health risk was discovered. In addition, the press release usually includes information as to 

whether the contaminated product was available for retail purchase, or distributed to restaurants 

and institutional facilities (schools, prisons, nursing homes, etc.).  However, the FDA does not 

issue a press release for every recall under its authority; they will only seek media publicity when 

the situation warrants widespread and public awareness, for example, the nationwide distribution 

of a Class I recalled product. 

Following a press release or notice from the manufacturer, vendors of the contaminated 

product are instructed to remove the product from the market so that it is no longer available for 

purchase or consumption. Likewise, consumers are instructed to check any products they may 

have purchased before the recall announcement and determine whether their products match the 

description of the contaminated product. If the description is a match, consumers are strongly 

encouraged to discard the product or return the product for a refund. If a consumer has already 

consumed the product, the consumer is instructed to closely monitor his or her health and seek 

any necessary medical attention.  

While not all FDA recalls are issued press releases, they all are included in FDA's weekly 

Enforcement Report once they are classified according to the level of hazard involved.  Press 

releases often include more information about the discovery of the health risk and the 

distribution of the product (retail, foodservice, institutions, etc.), while Enforcement Reports 

include more information about the quantity of the product recalled and the severity 

classification. As this study is primarily concerned with household purchases of retail goods in 

response to recalls, only publicized food recalls will be considered (i.e., recalls with press 

releases), and Enforcement Reports will be used to verify the information contained in the 

corresponding press releases. 
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The present study focuses on the years between 2008 and 2012, and the products chosen 

for analysis are packaged leafy greens, specifically lettuce and spinach. Between 2008 and 2012, 

there were over 2,500 food product recalls overseen by the FDA,
2
 41 of which were leafy green 

(lettuce or spinach) product recalls due to microbial contamination. Details of these recalls are 

summarized in table 1. The most common microbial pathogen associated with these recalls was 

Salmonella; however, other pathogens include E. coli O157:H7, E. coli O145, and Listeria 

monocytogenes. 

Table 1. Number of Leafy Green Recalls, 2008-2012 

 2008 2009 2010 2011 2012 Total 

Leafy Green Recalls 0 4 14 16 17 51 

Publicized Leafy Green Recalls 0 3 8 13 17 41 

Publicized Lettuce Recalls 0 1 5 7 14 27 

Publicized Spinach Recalls 0 2 3 6 3 14 

Publicized Nationwide Leafy Green 
Recalls 

0 1 0 0 1 2 

Source: FDA Press Releases and Enforcement Reports. Computed by author. 

As mentioned in the previous section, the greatest advantage of using multiple recall events 

to measure the impact of food safety information is the temporal and geographic variability. Of 

the 41 publicized leafy green products recalled between 2008 and 2012, only two were 

distributed nationwide. The remaining recalled products were distributed to regions identified by 

the FDA, and the size of the affected regions ranged from a single state to several dozen states. 

Specifically, the average regional recall impacted 11 states, while the most expansive regional 

recall impacted 26 states. Additionally, recalls with varying discovery origins may impact 

consumers differently; that is, recalls prompted by a consumer illness investigation may have a 

                                                           
2
 While the FDA also oversees the recalls of drugs, medical devices, pet food, and dietary supplements, the data 

collected for this project only covers food and beverages.  
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stronger impact on purchasing behavior than a recall prompted by sample testing. Of the 41 

publicized leafy green products recalled, two were prompted by a consumer illness investigation. 

ECONOMIC FRAMEWORK 

Risk Perception 

Fundamental to the present analysis is the assumption that consumers derive value from food 

safety because it signals a lower degree of health risk. Yet consumers often face imperfect 

information; that is, they are mostly uncertain regarding the safety of available food products. If 

a consumer had perfect information, the safety of the food product would be no different than 

other quality attributes, such as taste, appearance, source, etc. And the consumer would make a 

purchase decision based on his or her preferences, income, and price of the product. Without 

perfect information, however, consumers must assess a food product’s safety based on their 

personal experience and communications. Often, when purchases are supported by satisfactory 

experiences, a consumer will form routine shopping behaviors (Hoyer 1984). Established routine 

purchases will continue until the consumer receives a signal strong enough to revise prior risk 

perceptions and decision rules.  

The learning process by which consumers process information and update their risk 

perceptions can be expressed with a Bayesian revision process (see Viscusi and O’Conner 1984; 

Viscusi 1989; Liu et al. 1998; Böcker and Hanf, 2000). Following Viscusi (1989) and Liu et al. 

(1998), let 𝑟𝑡 denote perceived risk, i.e., the perceived probability that a given good is unsafe at 

time 𝑡, and let 𝑠𝑡 denote a negative information signal on the safety of a good, e.g., a recall. The 

updated perceived risk (posterior risk) can then be expressed as the weighted average of the prior 

perceived risk and the sample risk: 

 𝑟𝑡+1 = 𝜔𝑡+1𝑟𝑡 + (1 − 𝜔𝑡+1)𝑓(𝑠𝑡+1), (1) 

file:///C:/Users/Elina/Downloads/Economic%20Framework%20v3%20(1).docx%23_ENREF_5
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where 𝑓(∙) is a function that converts the signal into a sample risk and 𝜔𝑡 is a weight for 

combining the prior perceived risk and the sample risk. For simplicity, assume no news is good 

news so that 𝑠𝑡 ≥ 0, 𝑓(𝑠𝑡 = 0) = 0, and 𝑓(𝑠𝑡 > 0) > 0. That is, when no signal is observed, the 

consumer perceives the food product to be safe and the sample risk is zero.
3
 Under this 

assumption, were the consumer never to receive a signal, the posterior risk would eventually 

converge to zero. However, given the ubiquity of information signals such as food product 

recalls, convergence to zero is an unlikely scenario. This Bayesian framework illustrates 

frequently observed behavior following the release of negative information: an immediate 

change in behavior, followed by a gradual return to previous, routine behavior. Through a 

dynamic adjustment process, perceived risk may eventually return to initial levels. 

How long the return to baseline behavior takes depends on the strength of the negative 

signal. Stronger signals will inevitably require a longer recovery period than weaker signals, for 

example, recalls prompted by a consumer illness investigation will likely require more recovery 

time than recalls prompted by product testing. To demonstrate this, assume the weight 𝜔 is 

constant throughout time. Suppose the baseline perceived risk is 𝑟0 and there is a negative shock 

in period 1. Assuming no more shocks, the perceived risk at time 𝑇 is  

𝑟𝑇 = 𝜔𝑇(𝑟0 + 𝜔−1(1 − 𝜔)𝑓(𝑠1)). (2) 

To determine an expression for the length of time to recovery, set 𝑟0 = 𝑟𝑇 and solve for 𝑇. 

𝑇 =
ln(𝑟0)−ln(𝑟0+𝜔−1(1−𝜔)𝑓(𝑠1))

ln(𝜔)
 (3) 

Taking the derivative with respect to the signal, 𝑠1, the expression becomes 

                                                           
3
 The assumption that consumers may perceive no news as good news is not unfounded. A study of consumer 

attitudes towards food safety showed that individuals often display ‘optimistic bias’ and hold an illusion of personal 

invulnerability with regard to food safety hazards (Redmond and Griffith 2004). 
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𝜕𝑇

𝜕𝑠1
= −

(1−𝜔)𝑓′(𝑠1)

ln (𝜔)(𝜔𝑟0+(1−𝜔)𝑓(𝑠1))
. (4) 

Assuming 𝑓′(∙) > 0 (stronger signals translate to greater risk) and because 0 < 𝜔 < 1, then 

𝜕𝑇 𝜕𝑠1⁄ > 0. Therefore, stronger negative signals require greater recovery times. 

 Now consider the possibility of multiple negative signals. Suppose a shock occurs every 

period between 1 and 𝜏, followed by periods where no shocks are observed between 𝜏 + 1 and 𝑇 

(1 < 𝜏 < 𝑇). The posterior risk perception in time 𝑇 would then be 

𝑟𝑇 = 𝜔𝑇(𝑟0 + ∑ 𝜔−𝑡𝜏
𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡)) (5) 

Again, we set 𝑟0 = 𝑟𝑇 and solve for 𝑇. 

𝑇 =
ln(𝑟0)−ln(𝑟0+∑ 𝜔−𝑡𝜏

𝑡=1 (1−𝜔)𝑓(𝑠𝑡))

ln (𝜔)
 (6) 

Now define 𝜏2 as period of time greater than 𝜏1, and again shocks occur every period between 1 

and 𝜏1 or 𝜏2. Because 𝜏2 > 𝜏1, then the length of time to recovery following 𝜏2shocks, 𝑇2, will 

be greater the length of time to recovery following 𝜏1 shocks, 𝑇1 ; that is,  𝑇2 − 𝑇1 > 0. To prove 

this, assume otherwise: 𝑇2 − 𝑇1 ≤ 0. 

ln(𝑟0)−ln(𝑟0+∑ 𝜔−𝑡𝜏2
𝑡=1 (1−𝜔)𝑓(𝑠𝑡))

ln (𝜔)
−

ln(𝑟0)−ln(𝑟0+∑ 𝜔−𝑡𝜏1
𝑡=1 (1−𝜔)𝑓(𝑠𝑡))

ln(𝜔)
≤ 0  

− ln (𝑟0 + ∑ 𝜔−𝑡𝜏2
𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡)) + ln (𝑟0 + ∑ 𝜔−𝑡𝜏1

𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡)) ≥ 0  

ln (𝑟0 + ∑ 𝜔−𝑡𝜏2
𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡)) − ln (𝑟0 + ∑ 𝜔−𝑡𝜏1

𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡)) ≤ 0  

∑ 𝜔−𝑡𝜏2
𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡) − ∑ 𝜔−𝑡𝜏1

𝑡=1 (1 − 𝜔)𝑓(𝑠𝑡) ≤ 0  

∑ 𝜔−𝑡𝜏2
𝑡=𝜏1+1 (1 − 𝜔)𝑓(𝑠𝑡) ≤ 0  
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This leads to a contradiction because each term in the summation expression is positive: 

0 < 𝜔 < 1 and 𝑓(𝑠𝑡 > 0) > 0. Therefore, 𝑇2 − 𝑇1 > 0, which proves that multiple signals only 

lengthen the time necessary for recovery. Alternatively, this can be demonstrated by redefining 

the length of period 𝑡 to be inclusive of multiple shocks. Multiple shocks in a single period can 

be interpreted as stronger signals than a single or fewer shocks in a period, and because we’ve 

already shown that stronger signals lead to greater recovery times, we can also conclude that, 

similarly, multiple shocks also lead to greater recovery times. 

Demand 

 Now consider a consumer who derives utility directly from the consumption of good, 𝑦, 

and the quality or safety of that good, 𝑞.
4
 Assume that the quality of the potentially risky good, 

𝑞, has a binary distribution. That is, the product is either contaminated with a harmful pathogen, 

𝑞𝐶, or not, 𝑞𝑁𝐶. However, as previously stated, although quality enters a consumer’s utility 

function, the exact quality or safety of a particular good is not known to the consumer prior to 

purchase. The consumer only has formed a perception of risk (the probability that a good is 

unsafe), previously defined as 𝑟. At this stage, several additional plausible assumptions are 

necessary regarding utility. Namely, the quantity of goods and the consumer’s utility are 

positively correlated: 𝑈𝑦 > 0; quality and utility are positively correlated: 𝑈𝑞 > 0; and lastly, the 

consumer’s utility function is concave with respect to 𝑦. Ultimately, the consumer’s utility can 

be expressed as 

𝑈(𝑦, 𝑞) = (1 − 𝑟)𝑈(𝑦, 𝑞𝑁𝐶) + 𝑟𝑈(𝑦, 𝑞𝐶) (7) 

                                                           
4
 Several authors have modeled demand for food safety by including a health function in the theoretical framework, 

where health in turn is a function of quality and other factors (see van Ravenswaay and Howehn, 1996; Antle, 

2001). Alternatively, others have modeled demand for food safety by incorporating quality directly into the utility 

framework (see Piggott and Marsh, 2004; Coffey et al., 2011). For simplicity, the latter method is applied here.  
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To determine the comparative statistic 
𝑑𝑦

𝑑𝑟
, the change in demand in response to a change in 

perceived risk, we use the implicit function theorem upon calculating the first-order and second-

order conditions. 

𝑑𝑦

𝑑𝑟
=

𝑈𝑦(𝑦,𝑞𝑁𝐶)−𝑈𝑦(𝑦,𝑞𝐶)

(1−𝑟)𝑈𝑦𝑦(𝑦,𝑞𝑁𝐶)+𝑟𝑈𝑦𝑦(𝑦,𝑞𝐶)
< 0 (8) 

Assuming that the marginal utility from a non-contaminated good is greater than the marginal 

utility of a contaminated good (numerator) and knowing that 𝑈𝑦𝑦(∙) < 0 because utility is 

concave (denominator), then as perceived risk for a good increases, demand for the good 

decreases, 
𝑑𝑦

𝑑𝑟
< 0. Note that the comparative statistic  

dy

dr
  is derived here from a simple one-good 

utility maximization problem without an income constraint. This derivation was chosen because 

leafy green expenditures presumably represent a very small fraction of a household’s income and 

therefore any income effect would be very small or non-existent. However, it is also possible to 

demonstrate a similar result from a two-good (one no-risk good and one risky good) utility 

maximization problem with an income constraint. 

Next, linking food safety signals, 𝑠, to demand is straightforward. Applying the chain rule, 

the relationship becomes 

𝑑𝑦𝑡

𝑑𝑠𝑡
=

𝑑𝑦𝑡

𝑑𝑟𝑡

𝜕𝑟𝑡

𝜕𝑠𝑡
 (9) 

and because 
𝑑𝑦𝑡

𝑑𝑟𝑡
< 0 and 

𝜕𝑟𝑡

𝜕𝑠𝑡
> 0, then 

𝑑𝑦𝑡

𝑑𝑠𝑡
< 0. That is, as a consumer receives stronger negative 

signals thereby increasing perceived risk, the likelihood of purchasing potentially contaminated 

food products declines. Additionally, we can further deduce that  

𝑑𝑦𝑡

𝑑𝑠𝑡
<

𝑑𝑦𝑡+1

𝑑𝑠𝑡
< 0. (10)  
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To prove this, assume otherwise: 
𝑑𝑦𝑡

𝑑𝑠𝑡
≥

𝑑𝑦𝑡+1

𝑑𝑠𝑡
. 

𝑑𝑦𝑡

𝑑𝑟𝑖,𝑡

𝜕𝑟𝑖,𝑡

𝜕𝑠𝑖,𝑡
≥

𝑑𝑦𝑖,𝑡+1

𝑑𝑟𝑖,𝑡+1

𝜕𝑟𝑖,𝑡+1

𝜕𝑟𝑖,𝑡

𝜕𝑟𝑖,𝑡

𝜕𝑠𝑖,𝑡
  

𝑑𝑦𝑖,𝑡

𝑑𝑟𝑖,𝑡
≥

𝑑𝑦𝑖,𝑡+1

𝑑𝑟𝑖,𝑡+1
𝜔  

Assuming that the change in demand in response to a change in risk perception does not vary 

from period to period, that is, 
𝑑𝑦𝑖,𝑡

𝑑𝑟𝑖,𝑡
=

𝑑𝑦𝑖,𝑡+1

𝑑𝑟𝑖,𝑡+1
, then 

𝜔 ≤  0. 

This leads to a clear contradiction because 𝜔 is already defined as 0 < 𝜔 < 1. Therefore, we can 

conclude that the impact of a negative information signal on demand diminishes over time. 

Similarly, given the direct link between information signals and demand, we can posit that 

stronger signals and multiple signals will lead to longer recovery times. 

 Empirically estimating simple demand functions for leafy greens will be an informative 

exercise in order to determine whether these relationships hold in reality. Of particular interest is 

the impact of negative signals on the quantity demanded of leafy greens and the estimated time 

to recovery. 

DATA 

The primary dataset used in this analysis is the Information Resources, Inc. (IRI) Consumer 

Network™ - a nationwide panel of households that provide a detailed account of their retail food 

purchases. The panel is selected to be geographically and demographically representative of the 

United States population. Households participating in the panel were provided with a handheld 

scanner to scan the Universal Product Code (UPC) on all their purchases and upload all 



 

13 
 

information through the Internet or a landline telephone. The data of household leafy green 

purchases include a detailed product description, product brand, leafy green type, date of 

purchase, total quantity, and total expenditure for every item purchased. Households also provide 

demographic data on an annual basis including county of residence, household composition, 

household size, income, education, age, and race.  

 As previously stated, the years of interested are 2008 through 2012 and a monthly 

periodicity was selected. The products chosen for analysis are packaged iceberg and iceberg-

based products (iceberg with shredded cabbage and/or carrot), romaine and romaine-based 

products (romaine with shredded cabbage and/or carrot), spinach products, other leafy green 

products (other lettuces, arugula, kale, chard, cabbage, etc.), and mixed green products (products 

containing more than one type of leafy green). Leafy green products containing dressing, 

toppings (croutons, nuts, berries, etc.), and other vegetables were not considered for this analysis. 

Preliminary summary statistics of household purchases of leafy greens are presented in table 2. 

Table 2. Household Leafy Green Purchases, 2008-2012 

 2008 2009 2010 2011 2012 

No. of Leafy Green Purchases 411,746 503,088 514,846 532,846 523,666 

No. of Households Purchasing 
 Leafy Greens 

42,528 50,070 51,076 51,767 50,452 

Average No. of Leafy Green  
Purchases per Household 

9.68 10.05 10.08 10.29 10.38 

Total No. of Static5 Households  
Participating in IRI Panel 

53,610 62,674 63,593 64,330 62,503 

Source: IRI Consumer Network. Computed by author. 

 

  

                                                           
5
 The static panel only includes households that reported purchases at least once every four weeks for 80 percent of 

the year (11 of 13 four-week periods) and reported average weekly expenditures of 25 dollars for one member 

households, 35 dollars for two member households, and 45 dollars for three or more member households. 
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EMPIRICAL METHODOLOGY 

The popular Almost Ideal (AI) demand system, first proposed by Deaton and Muellbauer (1980), 

is employed for this analysis. Consistent with microeconomic theory, the AI system is derived 

from a generalized consumer expenditure function with given prices and a predetermined level 

of utility. Moreover, the linear AI system is favored for empirical estimation because it satisfies 

the axioms of choice, allows for a flexible functional form of the indirect utility and expenditure 

function, and is generally simple to estimate. 

 A central issue in disaggregated demand analysis is the high proportion of zero 

expenditures for individual commodities in any given time period. The censored nature of the 

data inevitably makes it difficult to estimate large, theoretically consistent, disaggregated 

consumer demand models. To address this issue, there is a large empirical literature offering 

feasible estimation techniques (see Wales and Woodland, 1983; Lee and Pitt, 1986; Heien and 

Wessels, 1990; Shonkwiler and Yen, 1999; Perali and Chavas, 2000; Golan et al., 2001; Yen et 

al., 2003; Dong et al., 2004; Meyerhoefer et al., 2005; Yen and Lin, 2006).  

 This study adopts the two-step estimation approach of Meyerhoefer, Ranney, and Sahn 

(2005) so as to address possible corner solutions and control for heterogeneous preferences 

amongst household. This approach is similar to the two-stage estimator first proposed by Perali 

and Chavas (2000) in that the reduced form parameters are estimated in the first stage followed 

by the imposition of demand theory restrictions and identification of structural parameters in the 

second stage. Meyerhoefer et al. extended this specification to make use of panel data and 

control for household heterogeneity. 
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In the first stage, the econometric model for the household share (𝑤𝑖ℎ𝑡) of the 𝑖-th leafy 

green at time 𝑡 is 

 𝑤𝑖ℎ𝑡 = 𝛼̅𝑖ℎ𝑡 + ∑ 𝛾𝑖𝑗 log(𝑝𝑗ℎ𝑡)𝑁
𝑗=1 + 𝛽𝑖 log (

𝑥ℎ𝑡

𝑃ℎ𝑡
) + 𝜀𝑖̃ℎ𝑡 (11) 

where 𝑝𝑗ℎ𝑡 denotes the price of good 𝑗 at time 𝑡 faced by household ℎ, 𝑥ℎ𝑡 denotes the total 

household expenditure on leafy green products in time period 𝑡, 𝑃ℎ𝑡 denotes a leafy greens price 

index for household ℎ in time period 𝑡, and 𝜀𝑖̃ℎ𝑡 is the error term that is heteroskedastic within 

the share equation for one good and correlated across the share equations for different goods: 

𝜀𝑖̃ℎ𝑡 = 𝜀𝑖ℎ𝑡 − 𝛽𝑖 ∑ log(𝑝𝑗ℎ𝑡𝜀𝑗ℎ𝑡)𝑗 .
6
 The price index, 𝑃ℎ𝑡, is the geometrically weighted average of 

prices, calculated as log(𝑃ℎ𝑡) = ∑ 𝑤𝑖ℎ
0 log(𝑝𝑖ℎ𝑡)𝑖  where 𝑤𝑖ℎ

0 =
1

𝑇
∑ 𝑤𝑖ℎ𝑡

𝑇
𝑡=1 . Demographic factors 

of interest, such as household size, and other demand shifters, including recall events and 

seasonality, are incorporated in the intercept term, 𝛼̅𝑖ℎ𝑡, where 

 𝛼̅𝑖ℎ𝑡 =  𝛼𝑖 + ∑ 𝜌𝑖𝑘𝑑𝑘ℎ𝑡𝑘  (12) 

given 𝐾 different demand shifters, 𝑑𝑘ℎ𝑡. 

 Following a heteroskedastic Tobit model estimation of equation 11, the first-stage 

reduced form parameter estimates can be denoted as row vector 𝝅𝑖𝑡 = (𝝅𝑖𝑡1
′ , … , 𝝅𝑖𝑡𝑇

′ )′ for 

demand equation 𝑖 in time period 𝑡 of length (𝐾 + 𝑁 + 2). As previously stated, the second 

stage of estimation consists of imposition of demand theory restriction and identification of 

structural parameters. As outlined by Meyerhoefer et al., define 𝝍  as a 𝑄-dimentional vector of 

structural parameters. To solve for 𝝍, the following minimum distance estimator is solved using 

a generalized methods of moments (GMM) estimation procedure  

min
𝝍

[𝝅̂ − ℎ(𝝍)]′𝛀̂−1[𝝅̂ − ℎ(𝝍)] 

                                                           
6
 This empirical analysis is based on the assumption that leafy greens are weakly separable from all other consumer 

goods. 
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where ℎ(∙) is a nonlinear function mapping 𝝍 onto 𝝅 that is used to impose demand theory 

restrictions on the reduced form parameters. 

RESULTS & DISCUSSION 

Preliminary analysis is ongoing. 

REFERENCES 

Antle, J.M. 2001 "Economic Analysis of Food Safety." Handbook of Agricultural Economics: 

1083-136.  

Arnade, C., L. Calvin, and F. Kuchler. 2009. “Consumer Response to a Food Safety Shock: The 2006 

Food-Borne Illness Outbreak of E. coli O157: H7 Linked to Spinach.” Applied Economics 

Perspective and Policy 31(4):734-750. 

Arnade, C., F. Kuchler, and L. Calvin. 2011. “Food Safety and Spinach Demand: A Generalized Error 

Correction Model.” Agricultural and Resource Economics Review 40(2):251-265.  

Böcker, A., and C.-H. Hanf. 2000. "Confidence Lost and — Partially — Regained: Consumer 

Response to Food Scares." Journal of Economic Behavior & Organization 43(4): 471-85.  

Brown, D.J., and L.F. Schrader. 1990. “Cholesterol Information and Shell Egg Consumption.” American 

Journal of Agricultural Economics 72(3):548-555. 

Burton, M., and T. Young. 1996. “The Impact of BSE on the Demand for Beef and Other Meats in Great 

Britain.” Applied Economics 28(6):687-693. 

Coffey, B.K., T.C. Schroeder, and T.L. Marsh. 2011. “Disaggregated Household Meat Demand with 

Censored Data.” Applied Economics 43(18):2343-2363. 

Dahlgran, R.A., and D.G. Fairchild. 2002. “The Demand Impacts of Chicken Contamination Publicity – 

A Case Study.” Agribusiness 18(5):459-474. 

Deaton, A., and J. Muellbauer. 1980. "An Almost Ideal Demand System." American Economic 

Review: 312-26. 

Dong, D., B.W. Gould, and H.M. Kaiser. 2004. "Food Demand in Mexico: An Application of the 

Amemiya-Tobin Approach to the Estimation of a Censored Food System." American 

Journal of Agricultural Economics 86(4): 1094-107.  

Foster, W., and R.E. Just. 1989. “Measuring Welfare Effects of Product Contamination with Consumer 

Uncertainty.” Journal of Environmental Economics and Management 17(3):266-283. 



 

17 
 

Golan, A., J.M. Perloff, and E.Z. Shen. 2001. "Estimating a Demand System with Nonnegativity 

Constraints: Mexican Meat Demand." Review of Economics and Statistics 83(3): 541-50.  

Heien, D., and C.R. Wesseils. 1990. "Demand Systems Estimation with Microdata: A Censored 

Regression Approach." Journal of Business & Economic Statistics 8(3): 365-71.  

Hoffmann, S., B. Maculloch, and M. Batz. May 2015. Economic Burden of Major Foodborne 

Illnesses Acquired in the United States, EIB-140, U.S. Department of Agriculture, 

Economic Research Service. 

Hoyer, W.D. 1984. "An Examination of Consumer Decision Making for a Common Repeat 

Purchase Product." Journal of Consumer Research 11(3): 822-29.  

Kinnucan, H.W., H. Xiao, C.J. Hsia, and J.D. Jackson. 1997. “Effects of Health Information and Generic 

Advertising on U.S. Meat Demand.” American Journal of Agricultural Economics 79(1):13-23. 

Lee, L.-F., and M.M. Pitt. 1987. "Microeconometric Models of Rationing, Imperfect Markets, 

and Non-Negativity Constraints." Journal of Econometrics 36(2): 89-110.  

Liu, S., J.-C. Huang, and G. Brown. 1998. "Information and Risk Perception: A Dynamic 

Adjustment Process." Risk Analysis 18(6): 689-99.  

Marsh, T.L., T.C. Schroeder, and J. Mintert. 2004. “Impacts of Meat Product Recalls on Consumer 

Demand in the USA.” Applied Economics 36(9):897-909. 

Meyerhoefer, C.D., C.K. Ranney, and D.E. Sahn. 2005. "Consistent Estimation of Censored 

Demand Systems Using Panel Data." American Journal of Agricultural Economics 87(3): 

660-72.  

Painter, J.A., R.M. Hoekstra, T. Ayers, R.V. Tauxe, C.R. Braden, F.J. Angulo, and P.M. Griffin. 2013. 

“Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by using 

Outbreak Data, United States, 1998-2008.” Emerging Infectious Disease 19(3):407-415. 

Perali, F., and J.-P. Chavas. 2000. "Estimation of Censored Demand Equations from Large 

Cross-Section Data." American Journal of Agricultural Economics 82(4): 1022-37.  

Piggott, N.E., and T.L. Marsh. 2004. “Does Food Safety Information Impact U.S. Meat Demand?” 

American Journal of Agricultural Economics 86(1):154-174. 

Redmond, E.C., and C.J. Griffith. "Consumer Perceptions of Food Safety Risk, Control and 

Responsibility." Appetite 43.3 (2004): 309-13.  

Scallan, E., R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, and P.M. 

Griffin. 2011a. “Foodborne Illness Acquired in the United States—Major Pathogens.” Emerging 

Infectious Disease 17(1):7-15. 



 

18 
 

Scallan, E., P.M. Griffin, F.J. Angulo, R.V. Tauxe, and R.M. Hoekstra. 2011b. “Foodborne Illness 

Acquired in the United States—Unspecified Agents.” Emerging Infectious Disease 17(1):16-22. 

Schlenker, W., and S.B. Villas-Boas. 2009. “Consumer and Market Responses to Mad Cow Disease.” 

American Journal of Agricultural Economics 91(4):1140-1152. 

Shimshack, J.P., M.B. Ward, and T.K.M. Beatty. 2007. “Mercury Advisories: Information, Education, 

and Fish Consumption.” Journal of Environmental Economics and Management 53(2):158-179. 

Shonkwiler, J.S., and S.T. Yen. 1999. "Two-Step Estimation of a Censored System of 

Equations." American Journal of Agricultural Economics 81(4): 972-82.  

Smith, M., E.O. van Ravenswaay, and S.R. Thompson. 1988. “Sales Loss Determination in Food 

Contamination Incidents: An Application to Milk Bans in Hawaii.” American Journal of 

Agricultural Economics 70(3):513-520. 

van Ravenswaay, E.O., and J.P. Hoehn. 1996. "The Theoretical Benefits of Food Safety Policies: 

A Total Economic Value Framework." American Journal of Agricultural Economics 

78(5): 1291-96.  

Viscusi, W.K. 1989. "Prospective Reference Theory: Toward an Explanation of the Paradoxes." 

Journal of Risk and Uncertainty 2(3): 235-63.  

Viscusi, W.K., and C.J. O'Connor. 1984. "Adaptive Responses to Chemical Labeling: Are 

Workers Bayesian Decision Makers?" The American Economic Review 74(5): 942-56. 

Wales, T.J., and A.D. Woodland. 1983. "Estimation of Consumer Demand Systems with Binding 

Non-Negativity Constraints." Journal of Econometrics 21(3): 263-85.  

Yen, S.T., and B.-H. Lin. 2006. "A Sample Selection Approach to Censored Demand Systems." 

American Journal of Agricultural Economics 88(3): 742-49.  

Yen, S.T., B.-H. Lin, and D.M. Smallwood. 2003. "Quasi- and Simulated-Likelihood 

Approaches to Censored Demand Systems: Food Consumption by Food Stamp 

Recipients in the United States." American Journal of Agricultural Economics 85(2): 

458-78.  

 

 


