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Abstract

Over the last years, the cellulosic biofuel mandate has not been enforced by the U.S.

Environmental Protection Agency. The uncertainty surrounding the enforcement of

the mandate in addition to high production and harvest cost contributes to farmers’

hesitation to plant bioenergy crops such as switchgrass and miscanthus. Previous lit-

erature has shown that under uncertainty and sunk cost, the investment threshold is

further increased because of the value associated from holding the investment option.

This warrants the use of a real option model. In this paper, we extend previous lit-

erature by applying a real option model to bioenergy crop production in the United

States. We show the spatial allocation of switchgrass under biomass price and agricul-

tural return uncertainty. The empirical model identifies the counties in the contiguous

United States that are most likely to change to switchgrass production. Our prelimi-

nary results indicate a very small share of land in switchgrass production even at high

biomass prices.

1 Introduction

The Renewable Fuel Standard (RFS) calls for the production of 60 billion liters (L) of cellu-

losic ethanol by 2022 (EISA, 2007). Over the past years, the U.S. Environmental Protection
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Agency (EPA) has waived the cellulosic biofuel mandate because of insufficient capacity

(Meyer and Thompson, 2012). Reasons for the absence of cellulosic ethanol production are

largely attributed to high production and harvest costs of agricultural residues and bioenergy

crops such as switchgrass and miscanthus (Babcock et al., 2011; Khanna et al., 2011). In

addition, there are several characteristics to the production of bioenergy crops that add to

the low adoption rate. First, prices and returns for traditional commodities such as corn,

soybeans, and wheat as well as bioenergy crops are stochastic and unknown at the time of

planting. This uncertainty together with costly switching creates a barrier for farmers to

adopt bioenergy crops, i.e., farmers hold a valuable option to wait (Song et al., 2011). This

characteristic has been shown to warrant the use of real option models to assess the switching

decision from one land-use to another. Second, switchgrass and miscanthus do not realize

their full yield potential in the first year, i.e., there is a multi-year establishment phase where

there is little to no revenue from bioenergy crops. During this period, the farmer would have

earned revenue if he/she had stayed in traditional crop production. This aspect has not

been modeled explicitly in the previous literature. Most analysis annualize the opportunity

cost in the establishment period as well as the first year establishment costs over the life of

the bioenergy crop which is between 10 to 15 years depending on the crop (Perrin et al.,

2008; Khanna et al., 2008; Brechbill et al., 2011; Haque et al., 2014). In reality, we have to

recognize that the timing of the outlays at the beginning of the period may influence the

farmer’s decision to grow dedicated bioenergy crops.

In this paper, we use a real options framework to assess the implications of farmers

bioenergy production decision when switching costs are paid in the first year. We extend

the previous literature by applying our theoretical model to the contiguous U.S. and identify

counties that are likely to grow bioenergy crops for cellulosic ethanol production. Given the

existing mandates and the policy discussion of potential future use of bioenergy crops, it is

important to understand the barriers of biomass production. This can inform policy makers

and other stakeholders on what influences the adoption rate and where policies might need

to be implemented to increase adoption of bioenergy crops. Our analysis is divided into a
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theoretical part and an empirical part. In a first step, we set up a real option framework to

examine the decision of a landowner to switch from conventional crops to bioenergy crops

under uncertainty and costly switching. The landowner can be in either of two regimes:

agriculture or bioenergy crops. The empirical model is at the county level and focuses on

three major field crops (corn, soybeans, and wheat) and switchgrass as the bioenergy crop.

We concentrate on the three field crops as potential acreage for switchgrass because they

represent almost 69% of total field crop area in the U.S. in 2013. We have switchgrass yield

data for each county in addition to establishment period and production cost data. Those

cost estimates are gathered from various literature sources. We can estimate the stochastic

net returns from being in traditional crop production from historic data. For the biomass

production, we simulate a biomass price processes that is consistent with previous literature.

2 Real Option Switching Model

At time t, the representative landowner of county i can be in either of two regimes k:

agriculture (A) or bioenergy crops (G). Returns in both regimes are stochastic and the

problem of the landowner is characterized by the possibility of switching from a regime

which yields one stochastic return to a new regime which results in a flow of profits with

different stochastic properties (Alvarez and Stenbacka, 2004; Décamps et al., 2006). The two

stochastic processes in our model are associated with the net return from being in agriculture

and the biomass price. Assume that the stochastic processes of agricultural returns can be

written as

dB = η(B̄ −B)dt+ σABdzA (1)

and that the price of biomass evolves according to

dP = µPPdt+ σPPdzP (2)

Our approach follows closely Dumortier (2013) with the net return process for agricultural

production following a mean reversion process. Let B be the per hectare return from agri-

culture. The parameter η is the mean reversion speed to the long-run equilibrium return in
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agriculture which is denoted B̄. Economic theory requires net returns to approach a long-run

equilibrium and cannot increase indefinitely because this would violate the zero-economic

profit condition in the long-run and thus, a mean reverting process is more likely for agri-

culture. Odening et al. (2007) and Schatzki (2003) argue that a mean reverting process is

more consistent with economic theory in the presence of competitive markets independent

of whether the price process passes a unit-root test or not. The variance in agricultural

production is denoted σA and dzA is the increment of a Wiener process. In the empirical

part of the model, we assume that long-run mean for county i, i.e., B̄i, is determined by

the number of landowners in agricultural production qt. In the absence of uncertainly, we

determine the net return from agriculture for county i as Ri(qt). Let the disturbance term

for agriculture of ε(t). We assume that B̄i = Ri(qt)× ε(t), i.e., the disturbance influences the

net return from agriculture in a multiplicative way. The disturbance ε(t) summarizes the

uncertainty associated with yield, price, and cost fluctuations. Using Itô’s Lemma and the

results from Leahy (1993), the multiplicative net return process can be written as in equation

1. Agriculture is a perfectly competitive market and hence, all agents are price takers and

do not take the effect of their acreage decision on output prices into account. In aggregate

however, the dynamics of the net revenue are endogenous to the model. If landowners decide

to move from agriculture to bioenergy, less cropland is available for production, thus increas-

ing the net returns and vice versa. Given the number of landowners that are in engaged

in agriculture production and given parameters, we can fully characterize total agricultural

production and net returns for landowner i.

For biomass production, an exponential increase in the biomass price is possible in the

short- and medium-run. In the long-run, we would expect a mean reverting process as well.

Our setup is similar to regime switching model such as used by Nøstbakken (2006), Song

et al. (2011), or (Dumortier, 2013). The drift term and the variance of the biomass price

are µP and σP , respectively. In this preliminary analysis, we assume that the correlation

between the processes is E(dzAdzP ) = 0, i.e., the shocks influencing the biomass price

are independent of the disturbances influencing the agricultural net return. We uphold
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this assumption for the moment because it reduces the computational time. The stochastic

return from bioenergyBi,G(P (t)) is determined by the biomass price in $ per dry ton P (t), the

biomass yield per hectare and the cost per ton. That is, for biomass production, we assume

Bi,G(P (t)) = (P − ci)yi where ci is the cost per ton and yi is the yield per hectare. Implicit

in this formulation are several assumptions. First, the cost per ton is held constant over the

projection period. Second, once a landowner decides to abandon agricultural production, all

the land will be put in bioenergy crop production.

Given the initial values of the state variables at t = 0 as B(0) and P (0), the maximization

problem is written as (Tegene et al., 1999; Brekke and Øksendal, 1994; Behan et al., 2006;

Vath and Pham, 2007):

JA(B(t), P (t)) = sup
τ
E

[∫ τ

0

e−rtB(t)dt+

∫ ∞
τ

e−rtBG(P (t))dt− e−rτC

]
(3)

where r represents the discount rate and C is the cost of switching from agricultural produc-

tion to biomass. The decision variable is τ which represents the switching time to bioenergy

crops. The switching time τ cannot be found explicitly but is determined by the impulses

B(t) and P (t) received by the land owner. The uncertainty in the net returns for agriculture

is introduced by ε(t) which follows a stochastic process and is the same for all spatial units.

We justify this assumption by the fact that all landowners face the same output prices, which

are correlated with yield disturbances. Idiosyncratic shocks in the competitive equilibrium

framework are possible as shown by Zhao (2003) but would increase the computational time

significantly by requiring simulation of a covariance matrix for all counties at each time step.

Note that B̄i(qt) represents the mean net return if no switching of landowners occurs, i.e., a

fixed level of production. If switching occurs from other landowners, agriculture production

decreases, and thus, prices and net return increase for landowners that stayed in agriculture

leading to B̄i(qt) being updated to account for the new production level (Leahy, 1993; Zhao,

2003).

At time t, the landowner in agriculture chooses between between staying in agriculture

or switching to bioenergy crops (Song et al., 2011; Schatzki, 2003), i.e., solves the dynamic
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stochastic programming problem:

VA(B(t), P (t)) = max
{
B(t) + e−rdtE [VA(B(t+ dt), P (t+ dt)), VG(P ) − C]

}
(4)

where the first part on the righthand side is the value from staying in agriculture and the

second part represents the value from switching to biomass crops. Brekke and Øksendal

(1994) show that the Hamilton-Jacobi-Bellman for equation (4) results in:

rVA(B) ≥ B + η(B̄ −B)
∂VA
∂B

+ µPP
∂VA
∂P

+
1

2
σ2
A

∂2VA
∂B2

+
1

2
σ2
P

∂2VA
∂P 2

(5)

where VA represents the value function when in agriculture. The necessary value matching

condition:

VA(B) ≥ VG(P ) − C (6)

The landowner determines whether to switch or not by either equation (5) or (6) holding with

equality. Both equations holding with equality defines the border of the switching region. If

equation (5) holds with equality, then the landowner stays in agriculture because the rate of

return is equal to the current return and the expected capital appreciation. The option value

is determined by the expected capital appreciation because it determines the expected future

evolution of the current use. In addition to equation (5) holding with equality, equation (6)

holding with inequality means that the value from staying in agriculture is bigger than

the value from the bioenergy crops minus the switching cost. A switch from agriculture

to bioenergy crops is triggered when the current return plus the expected rate of capital

appreciation is smaller than the rate of return from staying and if the value function from

being in agriculture is equal to the value function from bioenergy crops minus the switching

cost (Fackler, 2004; Nøstbakken, 2006; Song et al., 2011; Balikcioglu et al., 2011).

No explicit solution exists and we rely on the collocation method discussed and imple-

mented in Miranda and Fackler (2002) and Fackler (2004) to solve equations (5) and (6)

numerically. The basic idea behind the collocation method is to approximate the unknown

value function by a function which is composed of known functions. In our case, we approx-

imate the value function V k(B,P ) ≈ φ(B,P )θk where φ(B,P ) represents a set of n base
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Figure 1: Comparison of Hamilton County (IA) and Bowie County (TX)

functions and θk represents a vector of n approximating coefficients. Each regime has a set

of base functions and approximating coefficients. Note that the base functions are prede-

termined and known and that the numerical solution consists of finding the approximating

coefficients. Applying the collocation method consists of solving the problem for a fixed

number of points in the state space. In our case, we solve the problem on the interval [0,10]

for agriculture (i.e., we assume that the maximum net return from agriculture is 1000 dollars)

and [0,2] for the price of biomass, i.e., the state space of the allowance price is assumed to

be bounded at $200. The number of nodes is 40 and 25, respectively. During the simulation

process, the agricultural net return is set to the upper bound in the unlikely event that the

shocks exceed the state space. The simulation of the model is conducted in discrete time

(Song et al., 2011; Chladná, 2007).

2.1 Example

The importance of the option value is illustrated in figure 1. Both counties have similar

switchgrass yields, i.e., 13 t/ha and 15 t/ha in Hamilton and Bowie, respectively but the net
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γjm Corn Soybean Wheat
Base price ($ bu−1) 4.47 10.83 5.90
Base price ($ t−1) 175.92 397.88 216.65
Food/Consumer Demand
Corn 128.17 -0.230 - -
Soybeans 710.78 - -0.434 -
Wheat 53.80 - - -0.075
Feed Demand
Corn 46.35 -0.201 - -
Exports
Corn 672.57 -0.570 - 0.120
Soybeans 1423.93 0.030 -0.63 0.020
Wheat 7095.97 0.170 0.040 -1.230

Table 1: Prices and price elasticities for food, feed, and export.

return in Bowie County (99 $/ha) is significantly lower than Hamilton County (691 $/ha).

In order to invest in bioenergy crops, the difference between the net present value threshold

and the real option threshold is significant.

3 Data and Model Parametrization

There are four components to our model that need to parameterized: (1) crop demand, (2)

production of switchgrass, (3) production of corn, soybean, and wheat, and (4) stochastic

process governing agriculture and bioenergy crop production. This section describes the

data sources and model parametrization of those four components.

Crop Demand

The quantity Q for field crop j is determined by the demand function Qj = D(p, e) where p

represents the vector of prices (i.e., corn, soybeans, and wheat) and e represents the quantity

of used for ethanol. In our model, we include a constant demand for corn ethanol and thus,

the value for e is zero for soybeans and wheat. For each crop, there are three demand

sectors m: consumer/food, feed, and export. As in Dumortier (2016), we assume a constant

8



Low Cost High Cost

Year 1 Year 2 Rest Year 1 Year 2 Rest

Switchgrass
Cost ($ ha−1) 334.60 117.12 87.06 820.25 313.31 182.29
Cost ($ t−1) 20.75 25.59 23.74 28.58

Miscanthus
Cost ($ ha−1) 2993.29 446.85 71.85 3147.98 1397.03 147.03
Cost ($ t−1) 0.00 10.33 14.65 0.00 12.00 16.32

Table 2: Production cost for switchgrass and miscanthus (excluding harvest operation) in
2012 $.

elasticity demand function for crop j that is written as:

Qj = D(p, e) =
M∑
m=1

[
γjm

J∏
j=1

p
θjm
j

]
+ e

where γjm represents the constant and θjm is the cross/own-price elasticity (Table 1). Prices

and demand are calibrated to the 2022 long-run equilibrium as reported in FAPRI (2013).

All elasticities are from FAPRI (2011) with the exception of food/consumer demand for corn

and export demand for soybeans which are taken from Chen (2010). The demand for ethanol

e is set to 141.22 (in million metric tons). The base prices are deflated to 2012 Dollars using

the Producer Price Index.

Biomass Production

The cost of production for switchgrass and miscanthus can be subdivided into the establish-

ment period and the production period (Table 2). The studies summarized in Perrin et al.

(2008) range from $260.71 - $499.11 ha−1 year−1 for the establishment year and from $146.79

-$574.19 ha −1 year−1 for the production period (in 2012 $). Khanna et al. (2008) report

per hectare cost for miscanthus of $380.95, $192.18, and $103.66 in year 1, year 2, and years

3-10, respectively. For miscanthus, costs are reported as $862.82, $79.25, and $79.24 (3-20

years). Our cost estimates are based on Jain et al. (2010) and Dumortier (2016) and are

9
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Figure 2: Cost in year 2 for establishing switchgrass and miscanthus ($ ha−1)

summarized in table 2.

Field Crop Production

We follow the approach by Dumortier (2016) to determine the county level production of

corn, soybean, and wheat. The 2022 county-level yield is taken from the projections of

the Food and Agricultural Research Policy Institute Farm Cost and Return Tool (FAPRI

CART). We use the average area harvested for corn, soybeans, and wheat over the period

2008-2012. The National Agricultural Statistics Service (NASS) provides county-level data

on area harvested.

The area available in each county is taken from the NASS. Area and yield are set to zero

in counties where crop production occurred for less than two years in that time period. The

production cost for the three crops are obtained from the Cost and Return database of the

USDA. If the landowner is currently in agriculture, then the decision variables are the area

allocated to corn, soybeans, and wheat. The net revenue from field crops Bf
i (·) is expressed

as:

Bf
i (afij) =

3∑
j=1

(pjyij − αij)
(
afij

)
−

3∑
j=1

βij
2

(
afij

)2
(7)

The areas allocated to corn, soybeans, and wheat are denoted by afij and αij and βij are

county and crop specific cost parameters. Note that ∂Cij(·)/∂afij > 0 which represents
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increasing marginal cost. This captures either the decrease of yields because marginal land

with lower average yields is brought into production or the requirement of more fertilizer

use for the same reason. The equation (7) is subject to a binding land constraint and non-

negativity constraints. Setting up the Lagrangian and deriving the first order conditions is

straightforward. The maximum area available for crop production in county i is denoted

with Ai. Note that the maximization problem in exhibits increasing marginal cost which

guarantees a solution during the maximization procedure.

3.1 Stochastic Processes

In this preliminary analysis, we assume µG = 0.04, σG = 0.1, σA = 0.25, and η = 0.6. A

discount rate of 8% is used and the switching cost are $335 per hectare.

4 Results

Figures 4 and 5 summarize preliminary results from our model simulated for 100 different

agricultural returns and biomass price path. The figures indicate the probability of switching

to bioenergy crops during those runs. Note that landowners in the Corn Belt are very unlikely

to change production practices to switchgrass. Net returns from agricultural production,

especially corn are too high and a switch to bioenergy crops is not profitable. Note that in

this preliminary run, we do not include the forgone opportunity cost in the first year when

biomass does not achieve full yield. In subsequent analysis, we believe that the probability

of landowners will be further reduced and that switchgrass will not be profitable to grow

but in few counties in the South and Southwest. Note that the switching cost of miscanthus

is extremely high as noted in table 2. We believe that the probability of miscanthus being

grown in the U.S. is almost zero.
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Figure 3: Simulation of 100 possible paths for the biomass price (left) and agricultural returns
(right). We assume in this particular example that the long-run mean of agricultural returns
is $250.
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Figure 4: Average biomass price: approx. $60 t−1
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Figure 5: Average biomass price: approx. $90 t−1
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5 Conclusion

High production and harvest cost hinder the supply of biomass for cellulosic ethanol pro-

duction. In this paper, we extend previous literature by applying a real option framework

to switchgrass production in the contiguous United States. Our preliminary results indicate

that switchgrass production is very unlikely in the United States based not only on the

high harvest cost but also on the option value associated with waiting to switch land-uses.

Landowners planting switchgrass are faced with uncertainty in the evolution of the biomass

price, one-time switching cost associated with the establishment of switchgrass, replanting

of switchgrass every 10 to 15 years, and the cost of forgone revenue in the first year after

planting. Previous research has shown that a majority of the cellulosic mandate can be cov-

ered by agricultural residues. In general, the likelihood of switchgrass covering the majority

of the cellulosic biofuel mandate is very low.
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