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Unit root testing is one of the most important procedures when
performing time series analysis and it is crucial to test the
stationarity of the time series in hand accurately and efficiently.
Two paths can lead researchers to achieve this goal: obtaining more
data, or improving the unit root test. This paper addresses both
approaches.

For collecting more data, one can either collect data from a
longer time period or use higher frequency data while keeping the
same time span. Some research has said increasing the frequency
while keeping the sample period constant does not change the
mean reversion within the sample (Boswijk and Klaassen 2012).
However this is not the case if the low frequency data is
constructed by systematic sampling, i.e., skipping certain
intermediate observations from high frequency sample, and this
type of sampling is usually seen in stock market or asset market
variables. For example, researchers sometimes pick the price of
one day each week to construct weekly data from daily data.

Choi (1992) demonstrated by simulation that this kind of data
aggregation will lower the power of augmented Dickey-Fuller and
Phillps-Perron tests, although Chambers (2004) showed that this is
a finite sample effect and asymptotically it is still possible to
consistently test for a unit root when sampling frequency varies.
Recently, Boswijk and Klaassen (2012) proved that the effects of
systematic sampling on unit root testing is not negligible when a
high-frequency sample has volatility clustering with fat-tailed
innovations, which are the typical characteristics of financial
market data. They simulated data sets and using likelihood ratio-
based tests and conclude that these tests can have more power than
the traditional ADF test on data processes holding the
aforementioned behavior characteristics.

Figure 1. Systematic Sampling**

Although these tests increased the power when testing the
financial data, one of the common issue for the existing testing
methods is that they all require some specific model specification
assumption, either for the functional form (e.g., the ADF test
requires the number of lags to be specified in the model) or the
error term distribution (Gaussian distribution, GARCH, etc).

However, model misspecification may lead to erroneous
conclusions since the unit root test results may well depend on the
particular model considered (Moral-Benito 2013).

Introduction

5 commodity futures prices series are used to test and compare 
the unit root results: corn, soybean, cotton, live cattle and lean hog. 
To evaluate the effect of data frequency on the testing result, 3 
different frequencies are used for each series: daily, weekly and 
monthly. 

The high-frequency sample is the real daily settled price of each 
commodity from Chicago Board of Trade (corn, soybean, live 
cattle and lean hog) and Intercontinental Exchange (cotton).

Each daily data sample size is 2,000 which is from March, 2007 
to March, 2015. The low-frequency sample is constructed from the 
daily data by what is usually referred to as systematic sampling.

Assume the daily sample is       , we skip certain observations to 
achieve the low-frequency data (Boswijk and Klaassen 2012):

For weekly data we take m=5 and m=20 for monthly data, which 
can be treated as end-of-week and end-of-month price given 5 
trading days in a week and 20 days in a month. Since the daily data 
sample size is 2000, the constructed weekly sample size is 400 and 
the monthly data size is 100. 

A robust numerical Bayesian unit root test for model uncertainty
is adopted to analyze the data. Unlike the traditional unit root
methods which all require a certain level of model specification,
this newly developed approach allows us to fully consider model
uncertainty through Bayesian model averaging technique.

The basic idea is generalized from Dorfman (1993) who
presented some early Bayesian unit root tests. We specify priors on
the moduli of the eigenvalues of the following matrix which
fundamentally drives the dynamic behavior of the system.

Data

For each data series the robust test is based on averaging 24
models. For each model, we used 51,000 Monte Carlo iterations of
the Gibbs with MH algorithm and discarded the first 21,000 draws
to achieve better convergence and better posterior sample mixture.
The Geweke test (Geweke 1992) is adopted to examine the
convergence of each posterior sample.

Generally speaking the results vary across different commodities
as well as different data frequencies, which is the focus of this
paper. First, notice that with our the BMA result, although the
probability of having a unit root varies for different frequency
samples, the test conclusions are basically consistent except for
cotton, which might be thought as “marginally stationary” and
could be caused by sampling error.

Another result to notice is that for each commodity, the
probability of a dominant root greater than 1 computed by
averaging 24 models using BMA method increases as the
frequency of tested data decreases. This indicates that more mean-
reversion information is provided by using the high frequency data.
To be more specific, high frequency samples carry more
information through high volatile and fat-tail behavior which can
be captured by GARCH and ARCH models with Student’s t
distributions in the BMA method. This information will be lost
when constructing low frequency sample through systematic
sampling and will be ignored by traditional methods like ADF or
PP test.

The most desirable property of our BMA method is it can handle
model specification uncertainty in a unit root test. Sometimes
model uncertainty causes contradictory results which could lead to
a misspecified model. Take soybean monthly data as an example.
Using the ADF test on the monthly data and under a commonly
used 10% significance level, it is confirmed nonstationary if the
model specification is AR (1), AR (3) or AR (4). In contrast, for
AR (2), AR (5) and AR (6) the test indicates stationarity of the
data, opposite to the result using other lags as well as daily and
weekly data. So the model specification uncertainty problem is
important here since improper specification of the lag will lead to
completely different results which will affect the following
analysis. The BMA method confronts this problem by averaging all
6 possible lag specification (or more if the researcher needed) and
reaching a final, more robust conclusion.
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In this paper, we will devote efforts in the two aforementioned 
directions in hopes of improving unit root test results.
Using data on 5 commodity futures prices (corn, soybean, cotton, 
live cattle and lean hog), which all display typical financial series 
characteristics, we first show that systematic sampling does have 
effects on the results of unit root testing by testing three different 
frequency samples: daily, weekly, and monthly. 
Then, more importantly, we will test the stationarity of these series 
by averaging 24 models using a Bayesian Model Averaging unit root 
test method derived in the previous chapter to confront the model 
specification uncertainty issue, and compare results with traditional 
unit root tests to show the performance of the BMA methods, as well 
as its ability to handle the model specification issue.

To incorporate model uncertainty in the mean function as well as 
the variance structure, 24 models are averaged to come to a final 
comprehensive conclusion, which can be categorized into 4 groups 
by variance structure:

1. GARCH (1, 1) with Student’s t distribution
2. GARCH (1, 1) with Normal distribution 
3. ARCH (1,1) with Student’s t distribution
4. AR model with Student’s t distribution

And for each of the error specifications, the mean function is
specified as an autoregressive model with maximum lag varying
from 1 to 6.
The priors are specified as follows:

1. Dominant root: Beta (30,2), all other root: Beta (1.1,1.1);
2.GARCH/ARCH Coefficients: N(0, 3) with indicator function to 

make      sure positive variance structure;
3. Variance of normal likelihood: Inverse gamma
4. Degrees of freedom of Student’s t distribution: truncated 

exponential distribution with following form:

Table 1. Test Results of Five Commodity Futures Prices Data

Then the averaged probability of a unit root across the model space 
is:
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Result

BMA DF 1 DF 2 DF 3 DF 4 DF 5 DF 6 PP

CORN

Day 0.503 0.576 0.538 0.475 0.339 0.390 0.315 0.54

Week 0.717 0.530 0.535 0.497 0.577 0.648 0.622 0.55

Mon 0.784 0.576 0.538 0.475 0.338 0.390 0.315 0.52

SOY

BEAN

Day 0.372 0.271 0.312 0.282 0.332 0.359 0.357 0.30

Week 0.406 0.346 0.381 0.319 0.296 0.277 0.256 0.32

Mon 0.481 0.227 0.098 0.163 0.113 0.043 0.026 0.26

COT

TON

Day 0.498 0.622 0.627 0.628 0.624 0.579 0.647 0.62

Week 0.535 0.593 0.651 0.662 0.641 0.550 0.499 0.62

Mon 0.685 0.489 0.320 0.216 0.468 0.463 0.402 0.52

LIVE 

CAT

Day 0.222 0.537 0.570 0.545 0.559 0.546 0.553 0.54

Week 0.254 0.530 0.535 0.497 0.577 0.648 0.622 0.55

Mon 0.408 0.576 0.538 0.475 0.338 0.390 0.315 0.52

LEAN 

HOG

Day 0.141 0.084 0.060 0.010 0.010 0.010 0.010 0.01

Week 0.188 0.010 0.010 0.010 0.010 0.010 0.018 0.01

Mon 0.396 0.010 0.010 0.010 0.010 0.010 0.026 0.01

The posterior density cannot be integrated directly so a numerical
technique, so Gibbs sampling with a Metropolis–Hastings (MH)
step is adopted to generate a sample from the posterior probability
distribution of the dominant root.
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