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Confronting Price Endogeneity in a Duration Model of Residential Subdivision 

Development 

Abstract 

Spatial equilibrium implies that distant factors are correlated with proximate locations through 

market mechanisms. Using this logic, we develop a novel approach for handling price endogeneity in 

reduced-form land use models. We combine a control function approach with a duration model of 

land development to shed new light on the role of price and supply-side factors that influence 

subdivision development at a micro level. We find that failure to control for endogeneity results in 

large differences in estimates of residential land supply price elasticities. Specifically, we find an 

elasticity of 2.06 compared to 0.67 in a model that ignores potential endogeneity.  
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I. Introduction 

Over the past several decades state and local planning agencies have become concerned about urban 

sprawl and its impact in terms of loss of farmland, congestion, and the degradation of urban 

ecosystems (Nechyba and Walsh, 2004; Glaeser and Kahn, 2004; Hansen et al. 2005).1 Urban land 

use patterns are the result of supply and demand forces that determine urban development patterns 

and give rise to market clearing prices and influence individual landowner development decisions to 

alter the observed urban spatial structure (Irwin and Wrenn, 2014). Although a significant amount of 

empirical research has focused on the role of demand-side factors (schools, crime, and 

environmental amenities) in determining urban spatial structure, the recent literature on modeling 

the supply side of the housing and residential land market has been limited (Glaeser et al. 2006).  

 Addressing this deficiency is critically important from an academic as well as a policy 

perspective. Many smart growth policies are focused on limiting development in specific areas and 

redirecting it into designated development corridors. While there are many regulatory and market-

based policy options designed to achieve this goal, price-based policies such as impact fees or green 

taxes are becoming increasingly popular as an option for growth management in practice and have 

been favored in lieu of regulatory approaches (Bruecker, 2000). The design and effectiveness of 

these policies, however, depends critically on knowing how responsive agents’ land conversion 

decisions are to changes in prices. 2  
                                                           
1 By the 1990s, concerns about sprawl had translated into a number of statewide smart growth 

policies (Florida, Maryland, New Jersey, and Oregon) aimed at managing urban sprawl (Ingram et 

al., 2009). 

2 Of the recent research that has analyzed supply-side issues, most has focused on more aggregate 

measures of housing supply elasticity and the impact of regulation and geographic restrictions on the 

price and quantity of housing units supplied (Mayer and Somerville, 2000; Glaeser at al. 2006; Saks, 
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 The aggregate supply of housing is a complex function of individual decisions made by 

landowners and developers.3 This supply, however, must necessarily begin with the decision of an 

individual landowner to convert a previously undeveloped parcel to residential use, which effectively 

primes residential lots for future housing supply. The use of duration models to analyze land 

development decisions is rooted in the dynamic urban growth literature, where landowners with 

perfect foresight choose the optimal timing of land development (Anas, 1978; Arnott, 1980). 

Structuring the decision to develop land as an intertemporal problem allows these models to 

approximate the sequential development patterns observed in the real world while giving rise to the 

notion that changes in parcel and neighborhood-level factors over space and time influence the 

optimal timing of one’s own development decisions. Reduced-form duration models have been used 

to examine the influence of land use externalities (Irwin and Bockstael, 2002), zoning and other 

growth management policies (McConnell et al. 2006; Newburn and Berck, 2006; Cunningham 2007), 

open-space conservation policies (Lewis et al. 2009; Towe et al. 2008), and regulatory costs (Wrenn 

and Irwin, 2014). 

Duration models have also been used to test real options theory for land development with a 

focus largely on house price uncertainty (Cunningham, 2006, 2007; Bulan et al. 2009; Towe et al. 

2008). These models are attractive as they operate at a micro level, easily incorporate temporal 
                                                                                                                                                                                           
2008; Saiz, 2010). See Murphy (2014) and Klaiber and Phaneuf (2014) for the two recent exceptions 

to the rule. 

3 While there is often a distinction between landowners and land developers, this distinction is not 

always clear as original landowners may sell the property to a land developer, develop their own 

land, or form a contract for a shared partnership with the developer. Because this distinction is not 

the focus of our research, here we assume the terms developer and landowner are synonymous 

throughout the remainder of the paper.  
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dimensions of choice, and avoid making explicit assumptions on underlying profit or cost functional 

forms. In the vast majority of the literature, however, covariates are typically included without 

instrumentation. One potential reason for this is that the nonlinear duration framework makes 

instrumentation inherently challenging.  

 Recently, a number of papers have attempted to address endogeneity concerns on the 

demand side of the housing market by applying the spatial equilibrium theory from Tiebout’s (1956) 

model of urban sorting to estimate empirical structural models of household location choice (Bayer 

and Timmins, 2007; Klaiber and Phaneuf, 2010). Using the logic of long-run spatial equilibrium, 

these papers estimate the primal parameters from the household maximization problem and use 

these values along with the logic of the random utility model to conduct counterfactual policy 

analyses. One limitation of this demand-side approach to structural modeling is the difficulty in 

accounting for dynamics and the intertemporal optimization on the supply side of the market. While 

the estimation of dynamic, structural supply-side models is emerging in the literature (Murphy, 

2014), these models largely operate at the level of the individual housing lot and have not considered 

the subdivision nature of the residential land conversion decision.  

In this paper, we model the landowner conversion decision on whether to subdivide a 

developable land parcel to residential use while simultaneously instrumenting for housing price using 

the logic of spatial equilibrium underlying urban real estate markets. Our proposed method 

combines a control function (CF) approach to instrumentation (Rivers and Vuong, 1988; Papke and 

Wooldridge, 2008; Petrin and Train, 2010) with the spatial equilibrium logic used for the 

development of instruments in the demand-side literature of urban housing markets (Bayer and 

Timmins, 2007). The fundamental insight of our instrumentation approach is that variation in prices 

that reflects exogenous land supply characteristics of distant locations can serve as an instrument for 

price and can be captured easily using a control function approach suitable for use in a duration 
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model. This approach builds on the instrumentation ideas present in structural models of housing 

markets where equilibrium levels of endogenous attributes at each location are influenced by the 

attributes of all other locations through the market equilibrium – i.e., distant factors are likely 

correlated with proximate locations through the market equilibrium (Epple and Sieg, 1999; Bayer 

and Timmins, 2007; Klaiber and Kuminoff, 2014). We apply our method to a unique data set where 

we have reconstructed the panel of residential subdivision events from 1994-2007 using historic plat 

archives from three counties in the Baltimore metropolitan region. Combining these data with 

quality-adjusted hedonic estimates for neighborhood housing prices, we estimate an instrumental 

variables (IV) duration model of residential subdivision development. 

This paper makes several important contributions to the literature. First, by combining 

spatial equilibrium insights with a reduced-form duration model, we develop a novel methodology to 

control for price endogeneity in reduced-form land use models. As the results from our proposed IV 

model demonstrate, accounting for the endogeneity of price produces an estimate of the long-run 

price elasticity of residential land supply that differs significantly from the estimate in a model 

without instruments. Specifically, we recover an estimate of the price elasticity of residential land 

supply of 2.06 when using our preferred IV model compared to an estimate of 0.67 in a model 

without instrumentation. This contribution also has much broader appeal. Our results demonstrate 

that endogeneity is significant in reduced-form land use models, and our general modeling 

framework to control for it is flexible enough to be used to control for other endogenous variables 

that may arise in a variety of different contexts.  

Second, this research contributes to the urban economics literature on housing and land 

supply. Research on housing and land supply has been historically limited (Mayer and Somerville, 

2000; Glaeser et al., 2006; Gyourko 2009; Saiz 2010). Of these papers, all have estimated models of 

housing supply that focus on the supply of individual housing units – i.e., building the structure after 
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the subdivision conversion decision has already been made. However, the supply of new housing is a 

multistep process, which begins with the initial subdivision decision to create residential lots. Our 

paper makes a unique contribution to this literature by developing the first consistent estimate of the 

price elasticity of residential land supply. Our results on land supply are not directly comparable to 

the previous literature that focuses only on housing supply, though our estimated elasticity measure 

appears reasonable relative to previous estimates of the supply elasticity of housing. Saiz (2010), for 

example, uses aggregate data on geographic land restrictions and regulation from the Baltimore, 

Maryland MSA, and estimates a supply elasticity of housing of 1.23. This suggests our estimated 

elasticity of residential land supply of 2.06, which accounts for endogeneity, is at least consistent in 

that it shows a more elastic response of landowners to changes in price relative to the elasticity 

estimate of 0.67 for our non-IV model that ignores endogeneity. Finally, we make a contribution to 

the literature on land use policy analysis and design. Our results demonstrate that ignoring the 

endogeneity of housing prices results in large biases in price elasticity estimates. Analysis of price-

based land use policies designed to manage residential development and urban spatial structure must 

account for landowner responsiveness to price and the potential endogeneity of price, which 

otherwise would provide misleading assessments for the effectiveness of these policies.  

II. Econometric Model 

Our econometric model extends previous reduced-form duration models and places it within the 

context of the urban spatial structure described by structural demand-side models (Walsh, 2007; 

Klaiber and Phaneuf, 2010). We assume that in each period 𝑡 the landowner of an undeveloped 

parcel 𝑖 located in neighborhood 𝑗 decides whether or not to convert her parcel to a residential 
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subdivision.4 The decision to convert is based on factors that vary at the parcel level 𝐼𝑖𝑡 as well as 

factors that vary at the neighborhood level 𝑋𝑗𝑡, where neighborhoods in our application are defined 

at the census tract level. Parcel-level variables represent factors such as soil quality and slope, which 

affect the expected profitability of converting to residential use. Meanwhile, neighborhood-level 

variables represent broader-scale factors, which affect the average profitability of converting a given 

parcel in the neighborhood such as house and land prices or the amount of inventory in terms of 

previously approved residential lots. The intuition is similar to the urban sorting literature where 

parcels are individual observations nested within neighborhoods affected by neighborhood-level 

characteristics (Klaiber and Kuminoff, 2014).  

 Because we do not observe the actual profits and costs for an individual parcel, we use fine-

scale data on the factors most likely to affect profitability on a given parcel and specify the following 

reduced-form profit model 

 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑢𝑖𝑡 , (1) 

where Π𝑖𝑡
∗  is the latent profitability on parcel 𝑖, 𝐼𝑖𝑡 and 𝑋𝑗𝑡 are parcel and neighborhood 

characteristics affecting profitability, respectively, 𝑃𝑗𝑡 is the quality adjusted price of housing at the 

neighborhood level, and 𝑢𝑖𝑡 is an idiosyncratic parcel-level error term.  

Given the dynamic nature of the land development process, we model the optimal timing 

decision using a discrete-time duration model (Beck et al., 1998). Duration models take account of 

the fact that an action taken in period 𝑡 implies the action was not taken in any previous period 

                                                           
4 We only model the decision of landowners to subdivide their parcel to single-family residential use. 

While other land use types (e.g., commercial, industrial, apartments etc.) are important in 

determining the urban spatial structure, residential land use accounts for the majority of the 

developed land area in most urban and suburban areas. 
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(𝑇 < 𝑡), which is the essence of an optimal stopping investment decision inherent in residential 

subdivision development (Capozza and Helsley, 1989; Dixit and Pindyck, 1994; Capozza and Li, 

2002). The random variable, 𝑡, is the time until a subdivision event occurs, where we are interested 

in the effect of a set of covariates, including price, on an individual conversion decision.  

The observations in our data are spells over time of the same parcel unit and realizations are 

characterized by the following density function 

 𝑓(𝑡) = 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡). (2) 

with a corresponding cumulative density function of  

 
𝐹(𝑡) = ∫ 𝑓(𝑠)𝑑𝑠 = 𝑃(𝑇 ≤ 𝑡)

𝑡

0

, 𝑡 ≥ 0. (3) 

Combining equations (2) and (3) produces the following hazard function 

 
ℎ(𝑡) = 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡|𝑇 ≥ 𝑡) =

𝑓(𝑡)

1 − 𝐹(𝑡)
. (4) 

This function represents the instantaneous probability of a subdivision event occurring in the time 

interval 𝑑𝑡 given that it has not occurred prior to that time. Based on equation (4), the parametric 

proportional hazard we adopt is 

 ℎ(𝑡) = ℎ0(𝑡)ℎ(𝐼𝑖𝑡
′ 𝛽 + 𝑋𝑗𝑡

′ 𝛼 + 𝑃𝑗𝑡
′ 𝛾), (5) 

where ℎ0(𝑡) is the baseline hazard, which is shifted proportionally by changes in the variables in the 

model. Given that our subdivision data are only available at a yearly time step, we use the discrete-

time duration model proposed by Beck et al. (1998). This paper demonstrates that a simple binary 

probability specification with time fixed effects provides the same fit to the data as a piece-wise 

exponential duration model when the data is only observed at interval time steps.5  

                                                           
5 Beck et al. (1998) show that, while a complementary log-log (cloglog) specification is the statistical 

equivalent to a continuous-time parametric survival model, any binomial probability model – i.e., a 
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By including a spatially and temporally varying housing price covariate in our duration 

model, we are able to estimate the impact of price on the timing of parcel-level land conversions. 

Our IV method follows from the CF approach developed by Rivers and Vuong (1988) and later 

extended by Papke and Wooldridge (2008) and Petrin and Train (2010). The CF approach uses a 

two-step estimation procedure to instrument for endogenous variables in the main equation using 

residual variation derived from a first-stage linear regression. Our model builds on this approach and 

extends it by providing a framework for controlling for price endogeneity in a parcel-level discrete-

time duration model using the spatial equilibrium properties of the housing market (Bayer and 

Timmins 2007; Klaiber and Phaneuf 2010).  

 To make explicit the potential endogeneity of price in our duration model, we specify the 

neighborhood price vector 𝑃𝑗𝑡 as a function of our set of exogenous neighborhood variables 𝑋𝑗𝑡 and 

a set of excluded instrumental variables 𝑍𝑗𝑡 that control for the correlation between price and the 

error term as  

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

′ 𝛿 + 𝑣𝑗𝑡 , (6) 

where the exogenous neighborhood variables are as specified above, 𝑍𝑗𝑡 are a set of excluded 

variables that affect price but not latent profit Π𝑖𝑡
∗ , and 𝑣𝑗𝑡 is an idiosyncratic error term.6 

 Endogeneity of house price arises if unobserved factors not accounted for in the latent 

profit equation are correlated with neighborhood house prices. For example, unobservable factors at 

the neighborhood level that positively affect the propensity to convert a parcel may include the 

                                                                                                                                                                                           
probit or logit – provides a reasonable fit to interval data. We use the probit specification here to 

maintain the joint normality assumption in the first and second stage of the control function model. 

6 As is the case in a standard 2SLS IV models, identification depends on having at least as many 

excluded variables in the first stage (𝑍𝑗𝑡) as there are endogenous regressors in the main model. 
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expected waiting time for subdivision approval or natural landscape features. If these factors 

influence the rate and number of parcels developed, it will result in a negative correlation between 

the unobservables and the price of housing at the neighborhood level yielding inconsistent estimates 

of the price coefficient 𝛾 in equation (1). 

 In the presence of endogeneity, the error term from equation (1) may be written as 

 𝑢𝑖𝑡 = 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡. (7) 

Assuming we have a properly specified first-stage regression in equation (6) and joint normality 

between 𝑢𝑖𝑡 and 𝑣𝑗𝑡 , price is endogenous if 𝑢𝑖𝑡 and 𝑣𝑗𝑡 are correlated, meaning if 𝜃 ≠ 0. To 

confront this endogeneity concern, we follow the two-step procedure in Papke and Wooldridge 

(2008). The first step is to estimate a reduced-form linear regression model for price with a set of 

excluded instruments added to control for endogeneity. The residual vector, 𝑣𝑗𝑡 , from this first-stage 

regression model is added to the second-stage duration model as an additional covariate. Assuming 

that the instruments in the first stage are valid, a simple t-test of the coefficient on 𝜃 provides a valid 

test of the null hypothesis that 𝑃𝑗𝑡 is exogenous.  

  We now rewrite our original latent profit model as  

 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡. (8) 

Assuming joint normality between the errors in both stages of the CF model, we can model equation 

(8) as a discrete-time duration model as follows 

 𝑃(Π𝑖𝑡
∗ = 1|𝐼𝑖𝑡, 𝑋𝑗𝑡, 𝑃𝑗𝑡 , 𝑣𝑗𝑡) = ℎ(𝑡|𝐼𝑖𝑡, 𝑋𝑗𝑡, 𝑃𝑗𝑡 , 𝑣𝑗𝑡)

= Φ [
𝐼𝑖𝑡
′ 𝛽 + 𝑋𝑗𝑡

′ 𝛼 + 𝑃𝑗𝑡
′ 𝛾 + 𝑣𝑗𝑡

′ 𝜃 + 𝜏𝑡−𝑡0

√1 − 𝜌2
]. 

(9) 

Equation (9) makes explicit the role that price plays and the potential endogeneity that arises by 

ignoring correlation between price and the error. Using a discrete-time duration model also allows us 
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to nest our methodology of instrumenting for price in a parcel-level land use model in the context of 

the CF econometric model described above, while including a set of time fixed effects 𝜏𝑡−𝑡0 to 

model the baseline hazard and account for the censored nature of the data.  

A key requirement of our CF approach and its application in the estimation of the duration 

model in equation (9) is the existence of a set of excluded variables 𝑍𝑗𝑡 that are sufficient to control 

for the endogeneity of price. As in all IV models, sufficiency requires that: (1) the instruments have a 

direct and significant impact on the endogenous variable (i.e., the instruments must not be “weak”); 

and (2) they must not have a direct influence on the outcome variable in the main equation nor be 

correlated with the error term in that equation. Overcoming each of these requirements has been 

historically difficult in land use models as price is simultaneously determined as part of the spatial 

equilibrium outcome of the housing market.  

Recent structural empirical models of residential location choice provide an approach to 

develop a credible set of instruments for price. Bayer and Timmins (2007) demonstrate that by 

exploiting the logic of the Nash equilibrium outcome of the residential housing market it is possible 

to form an optimal instrument for price. The intuition is that exogenous variables in distant 

neighborhoods should influence the price variable in a given focal neighborhood as a result of the 

spatial equilibrium in the market, but that those same exogenous variables are unlikely to be 

correlated with the error or influence the outcome variable directly in the focal neighborhood. 7  

                                                           
7 Recently, this method was extended by Klaiber and Phaneuf (2010) in a horizontal sorting model 

with multiple time periods. In their model, Klaiber and Phaneuf (2010) use a BLP (Berry et al., 1995) 

estimation technique and develop a per-period instrumental variable for use in the second stage of 

the model based on exogenous residual variation in the data outside a specified distance ring around 

each neighborhood. 
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 We exploit a similar methodology and develop the price instrument in our model based on 

the spatial equilibrium of the housing market. We assume that in each time period the price in a 

focal neighborhood is influenced by the exogenous neighborhood characteristics in distant 

neighborhoods in space, but that those same exogenous attributes have no direct impact on the 

latent profitability of a given parcel in that focal neighborhood. Thus, by adding exogenous variables 

from proximate neighborhoods to the right-hand side of equation (6), we can effectively net out all 

local variation and use the residual from equation (6), which represents exogenous variation in 

distant neighborhoods, as an instrument for price in a manner similar to the urban sorting models.8  

 While spatial equilibrium theory does suggest a general method for developing an instrument 

for price, it does not reveal exactly what distant means in terms of developing the excluded variables 

in equation (6). We follow the previous literature (Klaiber and Phaneuf, 2010) and combine the 

theory of spatial equilibrium with a set of statistical tests for testing the validity of our instruments. 

For each focal neighborhood, we develop our set of excluded instruments based on the number of 

proximate neighbors in space. Specifically, for each model we use an increasing number of nearest 

neighbors in forming our IV matrix 𝑍𝑗𝑡
𝑛 , where the superscript 𝑛 indexes the number of proximate 

tracts used in forming the 𝑍 matrix. Then, using each of these models we run overidentification tests 

and choose the optimal model based on the Chi-squared values from these tests (Stock et al, 2002; 

Wooldridge, 2010). As our results show, by adding more proximate neighbors to form the 

instruments in the first stage we retain the power of the instrument and pass all tests for IV validity; 

a result that is exactly predicted by urban spatial theory. The description of our data and the 

                                                           
8 In developing our instrumentation method, we define the tract of interest in equation (6) as the 

“focal” tract, the nearest neighbor tracts used in estimating equation (6) as “proximate” tracts, and 

the residual variation for tracts outside of our nearest-neighbor cutoff as “distant” tracts.  
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development of our instruments are given in the next section, and the results of our statistical tests 

are given in the results section. 

III. Data and Construction of Variables  

The parcel-level data used in our duration model comes from three counties in the Baltimore 

metropolitan area – Baltimore, Carroll, and Harford counties. Each of these counties has 

experienced substantial population growth and residential development over recent decades. Figure 

1 shows a map of our study region displaying both the county boundaries and census tract 

boundaries in 2000. We use the census tract boundaries to define neighborhoods. We selected this 

particular region because of the availability of micro-level data on residential subdivisions to model 

land conversion decisions. Data on residential land-use conversion in the three counties was derived 

from parcel data obtained from the Maryland Department of Planning. Using this data, we manually 

reconstructed the panel of residential subdivisions using historic archives for all recorded plats from 

1994 through 2007. The year of subdivision approval from the historic plat maps is used for the 

timing of the residential conversion events.9 By identifying all parcels in the same subdivision, we 

determine the original “parent” parcel and, thus, reconstruct the landscape for parcel boundaries in 

1994.  

We determined the baseline data set of developable parcels in 1994 as including those 

parcels that were eligible for residential development as of 1994 and could be subdivided into two or 

more buildable residential lots according to the parcel size and zoning. Because we are focused 

exclusively on modeling the subdivision conversion process for single-family residential 
                                                           
9
 While some development activity takes place outside of residential subdivisions (i.e., development 

of single lots), over 85% of the single-family houses in our data are located in a subdivision with two 

or more lots. As a result, we focus exclusively on residential subdivision conversion events in this 

paper. 
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development, we have screened out parcels that are zoned for commercial, industrial, multi-family 

dwellings (apartments), institutional, and protected areas. Parcels that are put into land preservation 

easements are considered developable from 1994 until the date of easement, after which they are not 

considered developable. The final data set consists of 14,576 parcels that were developable at the 

beginning of 1994. These parcels experienced 2,385 subdivision events during our study period of 

1994 through 2007. As a demonstration of the unique nature of our data, Figure 2 shows 

development activity during 1994 to 2007 (light grey) and parcels remaining developable in 2007 

(dark grey) for a single neighborhood or census tract. At the beginning of 1994, there were 75 

developable parcels in this tract, with 27 residential subdivisions occurring between 1994 and 2007 

and 48 parcels remaining undeveloped (or censored) at the end of the study period in 2007. The 

other parcels (white) in Figure 2 are either already developed prior to 1994 or zoned to not allow 

residential development. 

For our model, we include a census tract in our data set if it is “active” such that it has at 

least one land conversion event occurring during our study period. There are 277 total census tracts 

in our three-county study region. However, only 229 experienced a subdivision event during our 

study period in 1994-2007. The majority of the tracts that did not have an event were: (1) located in 

very high-density residential areas with mostly apartment building development; (2) were completely 

developed with no remaining development potential; or (3) were located in areas zoned exclusively 

for commercial or industrial development. Figure 3 shows the data set of census tracts included in 

our model, which includes 229 census tracts over 14 years (or 3,206 tract-by-year observations). 

Hence, the final panel data set contains 183,580 parcel-by-year observations nested within 3,206 

tract-by-year observations. 

 Summary statistics for variables used in our model are given in Table 1. The top portion of 

the table lists the variables that control for parcel-level characteristics. First, to control for the 
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locational attributes of the parcel, we include the distance in kilometers to the City of Baltimore 

(Dist), which reflects accessibility to the largest employment center in the region. We also include 

the distance to the closest major highway (DistMajRoad) as a local measure of accessibility to 

transportation infrastructure. Both of these variables are expected to increase the value of the parcel 

and its propensity to develop the closer the parcel is to the central business district (CBD) or major 

highway.  

 Zoning is also expected to play a role in determining the likelihood of conversion as the 

more densely zoned a parcel is the more individual lots that are allowable when the parcel is 

developed. We obtained historic zoning maps for each of the three counties from the Maryland 

archives and overlaid these maps with the parcel boundary data. The variable, ZndLots captures the 

zoned lot capacity for each parcel based on the parcel size, proportion of the parcel in each zoning 

type, and maximum density regulations by zoning type. While zoning has changed in the region 

during our study period, these changes were relatively small with the vast majority of the study area 

zoned in the mid-1970s. Since this time, zoning boundaries and rules have remained virtually 

unchanged for Carroll and Harford counties. Baltimore County had relatively minor changes to 

zoning boundaries between 1996 and 2008. To account for these changes, we obtained historic 

zoning boundary maps for Baltimore County that enabled us to accurately calculate the zoned 

capacity for each parcel and each year for our study period. We expect that parcels that have more 

development rights are likely more valuable and, thus, more likely to develop.  

The final set of parcel-level variables control for the physical features of the parcel. These 

include variables for the size of each parcel and soil quality characteristics derived from the 

SSURGO data provided by the Natural Resource Conservation Service (NRCS). We expect larger 

parcels are more likely to develop due to economies of scale. The NRCS soil classifications capture 

the hydrology, slope, percolation rate, and permeability of the soil. By combining these factors, we 
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are able to determine variables for development suitability on each parcel. First, to proxy for the 

ability of a parcel to install residential septic systems and basements, we develop a septic suitability 

indicator (SepticSuit) based on the permeability and percolation classification of each parcel. We 

expect that parcels with value of one will be more likely to develop as the soils on the parcel are 

more suitable for installation of septic systems and basements. Second, we use the slope 

classification for each parcel to development an indicator (Slope) for whether the majority of the 

parcel has a slope of more than 15%. We also intersect our parcel data with maps for 100-year 

floodplains from the Federal Emergency Management Agency (FEMA) and create an indicator 

variable for whether or not the parcel is located in a floodplain zone (FloodPlain). We expect that 

parcels with steeper slopes or located in floodplains are less likely to develop, due to development 

limitations. Third, we use sewer boundary maps for each county and create an indicator variable 

(Sewer) for parcels with municipal sewer services. Finally, we include an indicator variable for 

whether the parcel has an existing structure (ExHouse).  

 The bottom portion of Table 1 describes the neighborhood-level variables that represent 

characteristics for each census tract. The first tract-level variable in our model controls for the 

amount of the census tract that is covered by farmland preservation (Preservation). Maryland has an 

extensive farmland preservation program, and we were able to obtain data on these preservation 

events. Using these data, we develop time varying variable of the total percentage of land area in 

each tract that is preserved in each time period. We also control for the percentage of land area in 

each tract that remains developable in each period (UDArea).  

 The next two variables control for the tract-level impact of zoning and local competition. 

The first variable, ZndLots, represents the total zoned capacity for number of allowable residential 

lots on undeveloped parcels in each census tract for each time period. This variable is similar to the 

parcel-level zoned capacity variable but aggregated to the census tract. While we expect zoned 
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capacity to have a positive impact at the parcel level, the sign of this variable at the neighborhood 

level is ambiguous. Higher zoned capacity may increase the rate of development if it represents more 

development potential. However, after controlling for price and other factors, increased zoned 

capacity may also signal lower potential profit potential, which would decrease the likelihood of 

conversion. The variable, ApprvLots, controls for local competition using a one-year lag on recent 

subdivision activity at the tract level. Using our historical subdivision data, we create a lagged 

measure of the number of approved lots in residential subdivisions in each period. For example, in 

1994 the model includes the number of approved lots in 1993 for each tract. This variable is updated 

in each time period and census tract based on recent development activity in the prior year. 

 The last two variables control for land (LandPrice) and housing (HousePrice) prices at the 

neighborhood level. Both variables were created by applying hedonic land and housing-price models 

to arms-length transactions we obtained from Maryland Property View (MDPV). MDPV is a 

statewide GIS database which has yearly snapshots of all parcels and land and housing transactions 

in Maryland. In addition to the sale price for each transaction, the data sets also include detailed 

information of the characteristics of the houses and land parcels including lot area, structure size in 

square feet, structural quality, numbers of bathrooms, age of the structure, garage, and other 

attributes. We follow Sieg et al. (2002) and estimate a series of hedonic models that permit us to 

separate out the price of housing services at the neighborhood level from the quantity index of 

housing that is determined by structural and lot-specific characteristics of the house. Similarly, we 

estimate a hedonic regression to obtain a tract level measure of land prices included as an additional 

control variable. Details of this procedure are in the appendix. 

 To develop our instrumental variables for housing price, we create a set of instruments 𝑍𝑗𝑡 

used in equation (6) based on the exogenous tract-level variables located in proximate census tracts 

in a given time period. The intuition is that for each focal tract in each time period, we take the area-
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weighted average of the exogenous tract-level variables in a given number of proximate census tracts 

surrounding the focal tract in each time period and add these variables to the right-hand side of 

equation (6) as follows 

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

𝑛𝛿 + 𝑣𝑗𝑡 , (10) 

where superscript 𝑛 on the 𝑍 matrix specifies the number of proximate tracts used to form the 

matrix of excluded instruments. We estimate equation (10) as a pooled OLS regression and include 

both time and county-level fixed effects in the model.10  

 By controlling for the effect of proximate and focal tract-level determinants of price, the 

error term in equation (10) effectively accounts for residual variation in the exogenous attributes 

located outside of the nearest-neighbor cutoff. This exogenous variation in distant tracts serves as a 

sufficient instrument for price.11 To examine the robustness of this method and choose the optimal 

second-stage model, we use a varying number of proximate tracts, ranging from seven to eleven 

neighbors, in each time period and take the average value for a set of exogenous tract-level variables 

in each of the proximate tracts.  

 Summary statistics for the IVs used in the first-stage OLS model are shown in Table 2. We 

use the average values of preservation, zoned lot capacity, and undeveloped area as our excluded 

instruments. Figure 1 shows an example focal tract as well as the specification of the census tracts 

                                                           
10 County fixed effects are included in both stages of the model to account for county-level 

unobservables. In Maryland, most land use policies are established and applied at the county level, so 

it is important to proxy for any time-invariant county-level effects not accounted for by the 

covariates in the model. 

11 This method is also related to the Hausman-style instrument used to control for price endogeneity 

in structural empirical demand and IO models (Hausman, 1997; Petrin and Train, 2010).  
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used to create the IV matrix for the model with eleven nearest neighbors as proximate tracts. 

Because each of the IVs changes over time, there is both temporal and spatial variation in the 

excluded variables. To account for any nonlinear impacts of our instrument, we also include a 

quadratic term for the residual in the main model (Papke and Wooldridge, 2008). 

IV. Results 

Before discussing our primary results, we begin by describing the process to determine the optimal 

IV model. Based on the nature of our IV strategy, adding more neighbors to generate the excluded 

variables in equation (10) will net out more of the local variation in the spatially lagged exogenous 

variables, with the remaining variation contained in the residual representing exogenous variation 

outside the nearest-neighbor cutoff. In order for this method to work, and the first-stage residuals to 

serve as an instrument for price in the duration model, the excluded variables must both be 

significant in the first-stage OLS model and be reasonably excluded from the main duration model. 

 Table 3 reports the results for the first-stage OLS model in equation (10) for five different 

nearest-neighbors specifications, ranging from seven to eleven neighbors. Based on these results, it 

is clear that our instruments pass the first-stage exclusion test in all five models. Previous work 

(Stock et al. 2002) on 2SLS IV estimation has suggested that, in models with one endogenous 

regressor, the F statistics should exceed 10 for inference based on the 2SLS estimator. Our F 

statistics are well above this level suggesting that the residuals from these models serve as a valid 

instrument for price in the duration model. 

 To gauge the appropriateness of the residuals as instruments in our duration model, we 

perform overidentification tests for each of the nearest-neighbor specifications. Following the 

methodology described in Wooldridge (2010), in addition to the residuals from the first-stage OLS 

model we add two of the three excluded IVs from the first-stage OLS model to the right-hand side 

of the duration model and perform Chi-squared tests of the joint significance of these variables. 
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Wooldridge (2010) shows that this procedure provides a consistent overidentification test in cases 

where the number of excluded variables in the first stage is larger than the number of endogenous 

variables. We use the variable on undeveloped area as our excluded IV to perform overidentification 

tests. 

 Table 4 presents the results of the overidentification tests for each of the nearest-neighbor 

model specifications as well as the coefficient values for the house price variable and the IV residuals 

in the duration model. For each of these models, results are based on nonparametric bootstrapped 

standard errors (300 replications) with errors clustered at the parcel level.12 Table 4 shows that for 

models (1) and (2) we reject the hypothesis that the excluded variables are uncorrelated with the 

error term in the duration model. In model (3), however, after adding the ninth neighbor to generate 

the first-stage IVs, the Chi-squared test is no longer significant at the 10% level. Furthermore, as we 

continue to add more neighbors, the coefficient on price falls and becomes stable in models (4) and 

(5). 13   

 This result is intuitive when we consider the spatial equilibrium nature of our IV strategy. As 

more neighbors are added, more of the local variation is removed that may be correlated with the 

error term; however, the residual variation outside the nearest-neighbor cutoff is still correlated with 

price via spatial equilibrium of the housing market. These results suggest that our method of 

instrumentation is both consistent with spatial equilibrium theory and statistically valid as an IV 

                                                           
12 Because the residuals used as IVs in the duration model are estimated values from the first-stage 

model, it is necessary to bootstrap the standard errors in order to obtain consistent estimates of the 

standard errors and the covariance matrix in the duration model. 

13 We also estimated our duration model for specifications with 12 or more nearest neighbor, and 

the estimates were similar to those in the model with 11 nearest neighbors.  
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strategy in providing a general framework to control for price endogeneity in reduced-form land use 

models. 

 The results from both the standard non-IV discrete-time duration model and our preferred 

IV discrete-time duration model are shown in Table 5. We separate the results into parcel and 

neighborhood characteristics. Standard errors are, once again, based on a nonparametric panel data 

bootstrap method sampled at the parcel level. Examining the results from both model specifications, 

we find similar signs and significance across models with and without instruments and the estimates 

have the expected signs.  

For parcel-level characteristics, the coefficient estimate on distance to a major road is 

negative and significant, implying that being closer to the highway transportation network increases 

the probability of development. We find that while the coefficient on distance to the CBD is 

positive it is statistically insignificant. As expected, we also find that parcels with higher zoned 

capacity and larger parcel area are significantly more likely to develop, suggesting that economies of 

scale exist for larger development projects. Parcels located in floodplains are less likely to develop, 

presumably due to limitations on development in sensitive floodplain areas. Parcels that have soil 

conditions suitable for septic systems and basements are more likely to develop. Meanwhile, parcels 

located within municipal sewer service areas are less likely to develop, suggesting an increase in the 

likelihood of exurban development on septic systems which is a common form of development in 

our study region.   

 For time-varying census tract characteristics, we find that an increase in prior approved lots 

has a positive impact on the likelihood of development while an increase in zoned capacity at the 

neighborhood level has a negative impact on development. For the lot approvals, the positive sign 

suggests that increased approvals in the previous period may serve as a signal to other landowners 

that potential profits are high in a given neighborhood, which increases the probability of 
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conversion. This result is also similar to previous work in the Baltimore region (Towe et al., 2008). 

For the zoned capacity variable, our results suggest that, after controlling for zoning at the parcel 

level, increased capacity may signal a reduction in overall neighborhood profitability, which reduces 

development propensity. The coefficient on preservation is negative in both models but is not 

significant for the non-IV model and only significant at the 10% level for the IV model. The 

coefficient on land price is negative and significant in both models, which is as expected if land 

serves as an input in the production of housing. 

 Finally, our estimated coefficients on the housing price variables are positive and significant, 

as expected, with the estimate being of larger magnitude in the IV model. Specifically, we find that 

the estimate in the IV model is over three times larger than the estimate in the non-IV model (Table 

5). Moreover, the coefficients on the price residuals are negative and significant indicating a 

downward bias in the model without instruments, which corresponds with what would be expected 

in a supply-side model where unobservable factors are negatively correlated with price.  

To provide additional context on the role of our IV strategy in identifying the residential 

land price elasticity, Tables 6 and 7 report implied price elasticity estimates for all of our nearest-

neighbor models and the duration model without instrumentation. Table 6 simply converts the 

parameter estimates from Table 4 to elasticity values. As was the case in Table 4, the values decrease 

with each additional neighbor and settle to value of 2.06 in the model with 11 nearest neighbors.  

Table 7 reports estimates of the implied price elasticity for both duration models with and 

without instruments. These elasticity estimates reflect a long-run price elasticity of land supply given 

the long time dimension of our model. For the non-IV model, the implied price elasticity is 0.6747, 

which is low compared to the long-run price elasticities on housing supply (Gyourko, 2009) and near 

the bottom range relative to the more recent estimates for price elasticities of housing supply that 

take account of both land-use regulations and geographic restrictions (Saiz, 2010). This previous 
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literature has placed the long-run elasticity of housing supply in range of 0.6 to 5.45. For our IV 

model, we find an estimate of 2.0587 for the price elasticity of land supply, which is within the range 

of estimates in this previous work focused on housing supply. That said, our elasticity measure is not 

directly comparable to these estimates as we aim to provide a unique estimate for the elasticity of 

land supply, and not the supply of individual housing units. Moreover, the prior literature on 

estimates of housing supply elasticity relies on aggregate data, whereas our proposed method has the 

advantage of being estimated using micro-level data for the actual parcel-level conversion decision 

of landowners.  

V. Discussion and Conclusions 

In this paper, we estimate a parcel-level duration model of subdivision development and apply an 

innovative method of instrumentation based on theory from the urban sorting literature to control 

for price endogeneity (Bayer and Timmins, 2007). Many previous papers have included some form 

of price as a variable in parcel-level duration models of land development (e.g., Cunningham, 2007; 

Towe et al. 2008; Bulan et al. 2009; Wrenn and Irwin, 2014), but have not addressed the potential 

endogeneity of price and its impact on the model estimation. Our results demonstrate that the 

potential endogeneity bias in much of this existing work could be substantial.  

The results from our model show that, by controlling for price endogeneity, we recover a 

price elasticity estimate that is more than three times larger than the value estimated in a model 

without instrumentation. Hence, our results demonstrate that not accounting for the endogeneity of 

price is likely to provide misleading results when duration models of land development are used for 

the policy analysis. Given the growing availability of fine-scale parcel and house price data, our 

method is particularly useful both as a method for controlling for endogeneity in reduced-form land 

use models and as means of analyzing current and future price-based policies aimed at managing 

urban growth. Beyond our context, we demonstrate a novel approach to confront endogeneity 
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concerns in the growing body of literature on land supply using nonlinear duration models. Our 

price instrumentation strategy is generic in the sense that other instruments could be obtained from 

either traditional exclusionary assumptions or through additional exploitation of the logic of spatial 

equilibria.  
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Figure 1: Map of Baltimore Metro Region 
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Figure 2: Subdivision Development Activity in 1994-2007 and Parcels Remaining Developable in 2007 in Given Focal Tract 
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Figure 3: Map of Census Tracts with Subdivision Development Activity between 1994 and 2007 
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Table 1: Summary Statistics  

 

Variable Mean S.D. Min. Max.

Parcel Characteristics

Dist Kilometers to Baltimore City 31.13 16.67 0 76.31

DistMajRoad Kilometers to closest major highway 0.37 0.54 0 4.37

Area Parcel area in acres 19.93 37.12 0.07 946.95

ZndLots Count of zoned lots allowed 9.65 32.28 2.00 1378.00

Sewer Indicator for municipal sewer service 0.45 0.50 0.00 1.00

FloodPlain Located in 100-year flood plain 0.17 0.38 0.00 1.00

SepticSuit Indicator for septic suitability 0.54 0.50 0.00 1.00

Slope % of parcel with slope > 15% 10.10 23.47 0.00 100.00

ExHouse Has an existing structure 0.54 0.50 0.00 1.00

Neighborhood Characteristics

Preservation % of neighborhood in preservation 6.22 9.02 0.00 47.99

UDArea % of neighborhood undeveloped 25.72 14.23 0.20 67.78

ZndLots Total zoned lot capacity 903.31 737.63 3.00 4808.00

ApprvLots Count of lots approved - 1-year lag 74.80 83.41 0.00 800.00

LandPrice In $1,000s per acre 71.59 59.89 7.47 708.93

HousePrice In $1,000s 128.04 41.95 41.08 370.17

PriceResids IV regression residuals 1.43 28.83 -111.31 172.19

PriceResidsSqrd Residuals squared 833.14 1902.81 0.00 29649.19

Baltimore Located in Baltimore County 0.57 0.47 0.00 1.00

Carroll Located in Carroll County 0.24 0.43 0.00 1.00

Harford Located in Harford County 0.19 0.39 0.00 1.00

Note: The parcel characteristcs are from 14,576 parcels that are developable during the 14-year study period; the neighborhood characteristics are from 229 

active census tracts. The IV residuals are from the first-stage OLS model (11-nearest-neighbors specification).
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Table 2: Summary Statistics for Instrumental Variables 

 

 

 

 

 

 

 

 

 

 

Variable Mean S.D. Min. Max.

Excluded Instruments

PreservationAvg 4.47 4.73 0.00 22.02

UDAreaAvg 22.08 10.34 4.60 47.48

ZndLotsAvg 662.56 319.35 104.18 1651.18

Note: Values are for the first-stage OLS (11-nearest-neighbors specification).
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Table 3: First-Stage IV Tests 

 

 

 

 

 

 

HousePrice Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err.

Excluded Instruments

PreservationAvg 1.218 *** 0.203 1.386 *** 0.220 1.718 *** 0.231 1.701 *** 0.238 1.928 *** 0.249

UDAreaAvg -0.255 * 0.143 -0.178 0.154 -0.253 0.163 -0.035 0.169 -0.322 * 0.176

ZndLotsAvg -0.011 *** 0.003 -0.017 *** 0.003 -0.020 *** 0.004 -0.028 *** 0.004 -0.027 *** 0.004

F-Stat p-value F-Stat p-value F-Stat p-value F-Stat p-value F-Stat p-value

F -Statistics 21.13 *** 0.000 28.91 *** 0.000 38.65 *** 0.000 44.92 *** 0.000 53.19 *** 0.000

(5)

11 Neighbors

Note: Coefficients are for the first-stage pooled OLS price regression. All models include tract-level exogenous variables and time and county fixed effects. The excluded instruments are 

based on weighted average values of the exogenous regressors in neighboring census tracts in each time period. The F-statistics are for the joint hypothesis test that the excluded 

instruments are significant in the first-stage OLS regression model. 

10 Neighbors

*     Significant at 10% level.

7 Neighbors 8 Neighbors 9 Neighbors

***  Significant at 1% level.

(1) (2) (3) (4)

**   Significant at 5% level.
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Table 4: Overidentification Tests 

 

 

Variable Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err.

HousePrice (1K) 0.0080 *** 0.0016 0.0076 *** 0.0014 0.0067 *** 0.0013 0.0062 *** 0.0012 0.0062 *** 0.0012

Residual -0.0049 *** 0.0016 -0.0046 *** 0.0014 -0.0037 *** 0.0013 -0.0032 *** 0.0012 -0.0032 *** 0.0012

ResidualSqrd -2.9E-05 *** 5.8E-06 -2.8E-05 *** 5.8E-06 -2.8E-05 *** 5.8E-06 -2.8E-05 *** 5.9E-06 -2.9E-05 *** 6.0E-06

Chi2 p-value Chi2 p-value Chi2 p-value Chi2 p-value Chi2 p-value

c2 - Statistic for 

Overidentification
6.53 ** 0.0383 5.44 * 0.0660 4.18 0.1238 3.56 0.1688 3.62 0.1665

***  Significant at 1% level.

(1) (2) (3) (4) (5)

11 Neighbors

Note: This table presents the tests of endogeneity based on the second-stage probit model and the Chi-squared overidentification tests (Wooldridge, 2010). The IV for average undeveloped 

area is the excluded instrument in the overidentification test (2 df). All models include time and county fixed effects. The standard errors are bootstrapped with 300 replications and clustered 

at the parcel level.

10 Neighbors9 Neighbors

**   Significant at 5% level.

7 Neighbors 8 Neighbors

*     Significant at 10% level.
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Table 5: Estimation Results for Duration Models  

 

Variable Coef. St. Err. Coef. St. Err.

Parcel Characteristics

Dist (km) 0.0007 0.0012 0.0012 0.8000

DistMajRoad (km) -0.0382 * 0.0207 -0.0426 ** 0.0208

Area (acres) 0.0005 ** 0.0002 0.0005 ** 0.0002

ZndLots 0.0021 *** 0.0002 0.0021 *** 0.0002

Sewer -0.0666 *** 0.0257 -0.0577 ** 0.0263

FloodPlain -0.0545 ** 0.0239 -0.0517 ** 0.0240

SepticSuit 0.0614 *** 0.0186 0.0453 ** 0.0186

Slope -0.0005 0.0003 -0.0006 * 0.0003

ExHouse -0.0072 0.0185 -0.0039 0.0185

Constant -2.4457 *** 0.0623 -2.8072 ** 0.1131

Neighborhood Characteristics

Preservation (%) -0.0006 0.0012 -0.0029 * 0.0016

UDArea (%) 0.0004 0.0009 -0.0012 0.0012

ZndLots -6.2E-05 *** 1.7E-05 -4.1E-05 ** 1.9E-05

ApprvLots 0.0007 *** 9.5E-05 0.0004 *** 0.0001

LandPrice (1K) -0.0008 *** 0.0002 -0.0008 *** 0.0002

HousePrice (1K) 0.0020 *** 0.0003 0.0062 *** 0.0012

Residual -0.0032 *** 0.0012

ResidualSqrd -2.9E-05 *** 6E-06

Log-Likelihood

N = 183,580

***  Significant at 1% level.

**   Significant at 5% level.

Non-IV Model IV Model

-12322.676
Note: All models include time and county fixed effects. The IV results are for model with 11 nearest 

neighbors. The standard errors are bootstrapped with 300 replications and clustered at the parcel level.

-12340.186

*     Significant at 10% level.
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Table 6: Price Elasticity Estimates 

 

 

 

 

 

 

 

 

 

 

 

 

Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err. Coef. St. Err.

Price Elasticity 2.6625 *** 0.5290 2.5437 *** 0.4715 2.2461 *** 0.4297 2.0767 *** 0.4101 2.0587 *** 0.3917

***  Significant at 1% level.

(1) (2) (3) (4) (5)

*     Significant at 10% level.

**   Significant at 5% level.

10 Neighbors 11 Neighbors

The standard errors for the price elasticity estimates were calculated using the Delta Method.

9 Neighbors8 Neighbors7 Neighbors
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Table 7: Price Elasticity Estimates 

 

 

 

 

 

Coef. St. Err. Coef. St. Err.

Price Elasticity 0.6747 *** 0.0880 2.0587 *** 0.3917

***  Significant at 1% level.

The standard errors for the price elasticity estimates were calculated using the Delta 

Method.

IV ModelNon-IV Model

*     Significant at 10% level.

**   Significant at 5% level.
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Appendix: Creation of Housing and Land Price Variables 

To create our variable for land price, we select all arms-length land transactions occurring between 

1994 and 2007. We further refine these data by excluding any parcels that already had a farmland 

preservation easement on the property, which may preclude it from being sold for development at 

the market value or observations that were clearly not land sales based on the improvement value of 

the parcel. Finally, we exclude the top and bottom 1% of the sample based on the sale price per acre 

of the parcel to reduce the potential influence of outliers. The final data set on land transactions 

includes 10,669 arms-length land sales from 1994 to 2007.  

 To create our land price variable, we run the following hedonic regression 

 𝑙𝑛(𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒𝑙𝑡) = 𝑃𝑎𝑟𝑙𝑡
′ 𝛽 + 𝛿𝑗 + 𝜏 + 𝑒𝑙𝑡, (A1) 

where 𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒 is the real price per acre of land in $2000 for land parcel 𝑙, 𝑃𝑎𝑟𝑙𝑡 is a set of parcel-

level controls, and 𝛿 and 𝜏 are tract and year fixed effects, respectively. The set of parcel-level 

controls includes the size of the parcel in acres as well as an indicator for whether the sale was for a 

previously subdivided lot, which controls for any differences in price between subdivided and 

unsubdivided parcels. Ideally we would run the model in equation (A1) for the transactions in each 

year and use the tract-level fixed effects as a measure of quality-adjusted land price per acre. 

However, because of the limited number of individual land sales over our study period, we estimate 

the model using the full data set and, after controlling for land parcel characteristics, use the time 

and tract-level fixed effects to predict the mean price per acre of land in each census tract and year. 

For tracts and years without a sale, we use a distanced weighted average of the predicted values of 

the closest five tracts in space. Since land is an input in the production of housing, we expect land 

prices to negatively affect latent profitability. 

 The data we use to generate our house-price variable also comes from MDPV. As was the 

case with the land price data, we use only arm’s-length single-family housing transactions between 
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1994 and 2007 and create a set of yearly housing transactions data sets. The entire sample for 1994-

2007 has 187,497 individual transactions, after excluding the top and bottom 1% of the sample to 

remove potential outliers and any transactions that do not appear to be of single-family dwellings, 

such as multi-family dwellings and commercial structures. We convert the nominal sale price of each 

house to 2000 dollars using the consumer price index (CPI) for the Baltimore metropolitan region. 

 Given the sample size of our housing transactions data, we are able to run separate hedonic 

models for each year to generate our neighborhood-level house price indices. To construct our 

housing prices indices, we follow Sieg et al. (2002) and estimate a series of hedonic models that 

permit us to separate out the price of housing services at the neighborhood level from the quantity 

index of housing that is determined by structural and lot-specific characteristics of the house. To do 

this, we estimate the following house-price hedonic for each year  

 𝑙𝑛(𝑟𝑙ℎ𝑠𝑝𝑟ℎ) = 𝑃𝑗 + 𝐻ℎ
′𝛽 + 𝜖ℎ, (A2) 

where𝑟𝑙ℎ𝑠𝑝𝑟ℎ is the real transaction price for house ℎ in census tract𝑗, 𝑃𝑗 is a fixed effect for the 

census tract in which the house is located, and 𝐻ℎ
′  and 𝜖ℎ are the observable and unobservable 

attributes for houseℎ, respectively. We control for structure and lot-specific attributes of each house 

by combining our house price data with the tax assessor’s data for each house. As shown in Sieg et 

al. (2002), 𝑃𝑗 represents the price of housing services for each census tract. Repeating the estimation 

process in equation (A2) for each of the 14 years in our data gives a value for the price of housing 

services for each census tract and year in our model.14 This tract and year house price value is used in 

both our duration model and the first-stage regression as our measure of neighborhood house price. 

                                                           
14 A similar method for estimating the price of housing services has been applied in other structural 

models (see Klaiber and Phaneuf 2010 and Walsh 2007; among others). 


