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Abstract

Optimal hedging strategies are analyzed for a cooperative operating a price pooling system in the

presence of price and quantity risk.  A three-period model, accounting for default risk and storage,

is developed.  Hedging allows the cooperative to increase the pool price offered to the farmers by

2.8 - 4% for moderate risk parameters.
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student, and Andersson is Professor in the Department of Economics, Swedish University of Agricultural Sciences,
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1. Introduction

ODAL is a farmer-owned cooperative, representing about 30,000 farmers in central

Sweden1.  As a result of recent mergers, ODAL now markets about 70 percent of Swedish wheat.

ODAL operates a price pooling system on behalf of its members: all farmers who commit wheat to

the pool earn the same price, based on the prospective average of sale prices.  Price pooling is a

feature of other grain-marketing systems, notably Canada’s.  However, the Swedish case differs in

two important aspects.  First, participation is voluntary, as Swedish wheat-farmers have access to

other market outlets.  Second, ODAL announces its pool price before the bulk of its wheat has

been sold.  This is in contrast to the practice of the Canadian Wheat Board, which fixes its final

pool price up to 18 months after the start of a marketing year.

Although ODAL has not yet incorporated wheat futures in its trading strategy, it is

beginning to examine the potential gains from hedging in offshore futures markets (i.e., CBOT,

LIFFE and MATIF).  Future liberalization of the CAP, induced by expanding EU membership and

budget constraints, is likely to bring about higher levels of volatility in European grain markets

(Brassley, 1997).  In this environment, gains from hedging are likely to become more pronounced.

This paper analyzes optimal hedging strategies in the context of a price pooling system.  A

conceptual model is used to derive optimal marketing strategies, with and without hedging.  Using

empirical price data, the model is used to quantify the potential impact of hedging on the pool

price offered by ODAL to Swedish farmers.

The analysis is based on a three-period optimization problem.  The cooperative can market

cash wheat in each period.  In the first period, corresponding to pre-harvest, the quantity of wheat

handled by the pool is unknown; in the second period this uncertainty is resolved and the

cooperative announces its pool price.  Hedge positions can be established in either of the first two

                                               
1 ODAL was founded in 1996 by a merger of three small-sized cooperatives in the middle part of Sweden.  In
January 1, 2001, ODAL merged with seven other farmer-owned cooperatives into the Swedish Farmers’
Cooperative, (Svenska Lantmännen). Their core competency remains the same, which is to supply patrons with
production inputs (seeds, fertilizers, feed, etc) and to market grains and oilseeds. This study focuses on the grain
intake market area originally served by ODAL.
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periods.  In the third period hedge positions are closed and remaining grain inventories are

liquidated at prevailing cash prices.  The cooperative seeks to maximize the pool price offered to

farmers subject to a risk constraint.  This limits the chance that the cooperative will default on its

obligation to farmers due to adverse price movements.

The plan of the paper is as follows.  The next section provides some brief background on

ODAL’s price pooling system.  The third section presents the conceptual model of marketing and

hedging decisions.  Data used in the analysis are described in the fourth section.  Model results are

presented in the fifth section.  The paper concludes with a short discussion of implications.

2. Background on Price Pooling

ODAL operates three different pricing systems for wheat: a weekly spot price system,

various grower contracts, and the pool system (Sintorn, 1997).  Spot prices are announced on a

weekly basis and are paid for grain delivered immediately.  However, spot prices are usually lower

than prices offered in the other two systems.  Grower contracts allow specific business

arrangements between the cooperative and its patrons, with prices arrived at through negotiation.

Contracting gives ODAL some latitude in its dealings with large producers.  The pool system has

accounted for nearly two thirds of the grain handled by ODAL in recent years (Table 1).

Within a marketing year, ODAL can offer several pools in succession.  The first pool is

announced during the growing season and is closed at a predetermined date after harvest.  When

the first pool is closed, a second pool is opened; and when the second pool is closed (some months

hence), a third is opened.   In practice, most grain handled by ODAL is committed in the first

pooling period, although farmers may have an incentive to defer sales if they expect higher prices

in later periods.

Table 1. Grain Handled by ODAL, 1997-1999.

Grain Total quantities Share of total quantity Share of total Share of total
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Marketing
Year

handled by ODAL
each year (in million
metric tons)

delivered during the
first pool period:
Delivery from Aug. to
Oct. in M metric ton.

quantity
delivered under
the remaining
pool periods

quantity
delivered spot
and through
misc. contracts

1997 1,75 63% 27% 10%
1998 1,40 64% 26% 10%
1999 1,10 64% 26% 10%

Source: Karlsson 1999.

In the analysis that follows, we focus on the operation of the first pool offered during a

marketing year.   It should be borne in mind that ODAL does not know the quantity that will be

marketed until the pool is closed.  The pool price is fixed when the pool is closed, and in advance

of most grain sales.   If the proceeds from grain sales exceed the amount guaranteed to farmers,

the extra revenue is returned to coop members (and not limited to participants in a particular pool)

in the form of patronage refunds.

3. Conceptual Model

To assess the potential impact of hedging on ODAL’s pooling system, we frame a three-

period optimization problem.  The first period is pre-harvest, when quantities committed to the

pool are not yet known.  In the second period, which is post-harvest, pool quantities are known,

and the price paid to farmers is fixed by ODAL.  Marketing and hedging decisions are made in

each of the first two periods.  In the final period, ODAL liquidates its remaining positions in grain

and futures, and the profit or loss on pool operations is determined.

ODAL’s objective is to maximize the expected price paid to producers (SEK per ton),

subject to a risk constraint. Let Zt denote the expected price in period t. In period 1, this is simply

a planning price; in period 2, ODAL actually fixes the price to producers. In both periods (t=1,2)

ODAL solves:

tZMax  (1)

Subject to

{ } α−≥≥⋅− 10Pr QZRob t  (2)
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where R is marketing revenue for the pool (million SEK), Q is the quantity of grain marketed by

the pool (million tons), and α  is the chance of the pool defaulting on its obligation to farmers.  The

risk constraint (2) has a deterministic equivalent

0)]QZR(V[K)Q(EZ)R(E 2/1
ttttt ≥⋅−⋅−⋅− α (3)

where Et(⋅) is the expectation operator conditional on period-t information; Vt(⋅) is the variance

operator conditional on period-t information; and Kα  is the number of standard deviations

associated with a specified probability of default.2  Marketing revenue is defined

)FF(H)FF(HXPXPXPR 232121332211
2 −+−δ++δ+δ=   (4)

where δ is a compounding factor; Pt is the cash price (SEK/ton) in period t; Xt is the quantity sold

(million tons) in period t; Ht is the hedge placed in period t (million tons), with Ht < 0 implying

sale of futures; and Ft is the futures price (SEK/ton) in period t. Market revenue (valued in period

3) includes the proceeds from cash grain sales as well as profits or losses on futures transactions.

The difference between market revenue and the amount promised to producers is the patronage

refund.  If the cooperative pays too high a pool price, pool members will have to refund money to

the cooperative.  For the sake of simplicity, we assume that ODAL does not charge a handling fee.

                                               
2 This is a variant of chance-constrained or stochastic programming, see Taha (1976). Chance constrained
programming is described in Taha in context of operations research (pp. 588-592).
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Grain sales can occur in each of the three periods,

321 XXXQ ++=  (5)

although the quantity available for sale, Q, is not known until period 2.

There are three sources of uncertainty in the model: cash prices, futures prices, and the

pool quantity. By assumption, cash prices evolve according to

t1t10t ePbbP ++= − (6)

where b0 and b1 are coefficients and et is a random disturbance.  In line with Kamara (1982) and

Myers and Hanson (1996), futures prices are assumed to follow a random walk,

t1tt fFF += −   (7)

with disturbance ft.  Uncertainty about the pool quantity is represented by

21 u)Q(EQ +=   (8)

where u2 is a forecast error revealed in period 2. The errors (et, ft, and u2) are assumed to be

multivariate normal with zero mean, and are uncorrelated across time. Contemporaneous

(positive) correlations exist between et and ft, the errors for cash and futures prices. Correlations

may also exist between u2 and the price errors, for reasons discussed below.

The solution to the overall problem involves backward induction. First, optimal decision

rules must be derived for period 2, when pool quantity is known. Then decision rules for period 2

can be embedded in the optimization problem for period 1.

In period 2, first-order conditions for ODAL’s optimization problem yield two different

strategies. ODAL could store any unsold grain in period 2 and place a futures hedge (Strategy A).

Alternately, the cooperative could sell its grain immediately and store nothing until period 3

(Strategy B).
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that is, if the (compounded) period 2 cash price equals the expected period 3 price less a risk

adjustment.  Here σef denotes the covariance of cash and futures prices, σf
2 is the variance of

futures price, and σe
2 is the variance of the cash price.  Substituting P2 = b0 + b1 P1 + e2 and E2(P3)

= b0 + b1 P2 , equation (10) solves for the critical value of e2 that leaves ODAL indifferent between

strategies (A) and (B).
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The probability that ODAL will elect to store and hedge (Strategy A) in period 2 is







σ
Φ=

e

*
2e

)A(obPr (11)

where Φ  denotes the standard normal cdf. The probability that ODAL will elect to sell its

remaining cash grain in period 2 (Strategy B) is







σ
Φ−=

e

*
2e

1)B(obPr (12)
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The larger is K, the risk parameter, the less likely is storage with deferral of grain sales to period 3.

Now consider the period-1 decision problem. ODAL seeks to maximize Z1 subject to risk

constraint (3).  Choice variables include X1 (cash grain sale), H1 (hedge position), and Z1

(expected pool price).  The risk constraint requires specifying the expected value of pool revenue

less payout (R – Z1⋅Q), and variance of the same.  These are given by

)QZR(E)B(obPr)QZR(E)A(obPr)QZR(E 1B/11A/111 ⋅−⋅+⋅−⋅=⋅− (13)

and

2
111B/1

2
111A/1

1B/11A/111

)]QZR(E)QZR(E[)B(obPr

)]QZR(E)QZR(E[)A(obPr

)QZR(V)B(obPr)QZR(V)A(obPr)QZR(V

⋅−−⋅−⋅+
⋅−−⋅−⋅+

⋅−⋅+⋅−⋅=⋅−
(14)

where E1/A and E1/B are conditional expectations, and V1/A and V1/B are conditional variances, given

indicated price relationships in period 2.  Equation (14) indicates that the variance of (R− Z1 ⋅Q)

equals the mean of conditional variances plus the variance of conditional means (Lindgren, 1976).

Formulas for conditional expectations and variances given a truncated normal distribution are

found in Greene (p.899 and 927).

4. Data and Parameter Estimates

Data required for the analysis include cash wheat prices (Pt) and wheat futures (Ft). As

there are no suitable official spot price quotes for wheat from the Swedish grain market, we

sought prices from a related market.  A relevant markets for the Swedish grain trade is the French

market in Rouen, one of the largest grain markets in the EU (Tkaczyk, 1999).   Swedish milling

wheat is of higher quality than the standard grade traded at Rouen, but transport cost differentials

are assumed to be relatively stable (Sintorn 1999)3.

                                               
3 Formally, we can describe the price relationship as in (PS= PR + Prem – Trans); where PS is the spot price for
Swedish grain, PR is the spot price for Rouen grain, Prem is the quality premium for Swedish grain and Trans
represents the transportation cost parameter from Rouen to a Swedish harbor.
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Currently, there are two wheat futures contracts traded on European futures exchanges,

namely the LIFFE feed wheat futures and the MATIF milling wheat futures.  However, little

historical data are available for the MATIF contract, which started trading in 1998. Therefore, this

study uses futures quotes from the nearest-to-mature LIFFE feed wheat contract.  The contract

size is 100 metric tons and the price is quoted in British pounds (GBP).  Bridge in Stockholm

provided the futures data (1999).  LIFFE operates wheat futures with five maturing months:

January, March, May, July, September, and November.

Our model does not explicitly account for fluctuations in exchange rates.  Instead, we

convert all prices to quarterly averages in Swedish currency (SEK/ton) at prevailing exchange

rates. 4

Using data from October 1993 to September 1999, the following equation was estimated

by OLS (t-ratios in parentheses):

Pt = 80.6136 + 0.9274  Pt-1 + 0.7648 ∆ Ft                      (15)

(1.121)              (15.790)* (7.241)*

* significant at 1% level R-squred: 0.932 24 observations

where  ∆ Ft is the first difference of futures prices.   The coefficient on ∆ Ft can be interpreted as a

minimum-variance hedge ratio under the maintained hypothesis that futures evolve as a random

walk (Myers and Thompson).  For purposes of forecasting, (15) collapses to (6) with b0 = 80.6136

and b1 = 0.9274.   Let  Let ν t denote the residual from (15).  Thus, the cash price error et is

constructed as

et = vt + .7648 * ∆ Ft (16)

for our 1993-98 sample.  With ft=∆ Ft, the correlation between et and ft is .845 in this period.  The

variance-covariance matrix of et and ft is shown below.
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The expected pool quantity, E1(Q), is fixed at 1.5358 million tons.  This is based on a 70

percent market share for ODAL, planted hectares for 2000 and trend yields (Statistics Sweden

1999). The standard deviation of u2 (the quantity forecast) is based on residuals from a trend yield

model, scaled to reflect actual planted hectares and the assumed 70 percent market share: σu =

0.1186.

Correlations between u2 and the price errors, e2 and f2, are unknown; however, negative

correlations seem plausible. Farmers who observe a price increase between periods 1 and 2 might

choose to defer their sales to ODAL.5 Conversely, if prices should fall between periods 1 and 2,

farmers would have a greater incentive to commit their grain to the pool (to claim part of ODAL’s

higher average price). For purposes of sensitivity analysis, correlations between u2 and price errors

are varied in the analysis reported below.

        

5. Model Results

The base case for our analysis reflects a number of assumptions that can be briefly

summarized.  The initial cash price for grain sold by ODAL (P1) is fixed at 1000 SEK/ton.  To

ensure a positive expected return to storage6, an adjustment is made to the intercept in price

equation (6).  The adjusted intercept is b0* = b0 + 35.  With a quarterly interest rate of 1.5 percent,

this implies an expected real price increase of about 2.6 percent in period 2 and period 3.  The risk

                                                                                                                                                       
4 Thompson and Bond (1987) present a hedging model that explicitly accounts for exchange rate fluctuations. They
conclude from the derived solution that it is not possible to determine effects of exchange rate fluctuations on the
optimal hedge ratio.
5 Recall that ODAL can open several pools in succession during a marketing year.  Subscriptions to the second pool
begin when the first pool is closed, and so on.
6 If expected returns to storage are insufficient, ODAL sells all its cash grain immediately. With cash price risk
largely eliminated, there is little incentive to hedge.
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parameter is set at K=1.  Given (10) and (11) and the price adjustment, this implies Prob(A)=.053,

or a 5.3 percent chance of storage between periods 2 and 3.  The correlations between u2 and e2,

and between u2 and f2, are fixed at -.2 in the base case.

Results for the period-1 decision variables are shown in Table 2.

Table 2.  Base Case Results.

Variable Units Value

Z1 Expected pool price SEK/ton 1029.1
X1 Physical sales Million tons 0.187
H1 Sales of futures Million tons -0.991

The optimal solution calls for an immediate cash sale of 0.187 million tons and a short futures

position of 0.991 million tons.  Since the expected pool quantity is 1.5358 million tons, the hedge

ratio (HR) for unsold grain is

734.0
187.05358.1

991.0
X)Q(E

H
HR

11

1 =
−

=
−

−=

Note that this is smaller than the minimum-variance hedge ratio implied by regression equation

(15).

Figures 1 and 2 show the effects of alternative parameter values on model results. The

correlation between price and quantity forecast errors are allowed to vary between 0 and –0.8 (as

compared to –0.2 in the base case). The figures also show the effect of a larger price adjustment

than assumed in the base case. Expectations of higher cash prices (b0* = b0 + 50) in periods 2 and

3 result in lower hedge ratios (Figure 1), as well as higher expected pool prices (Figure 2). Hedge

ratios also decline as the correlation increases, in absolute value, between price and quantity

forecast errors.
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Figure 2.  Impact of Price Expectations on Expected Pool Price

To measure the impact of hedging on expected pool price, it is necessary to compare

model results with and without hedging.  In the constrained model, hedging is not allowed (H1 =

H2 = 0).  First-order conditions for the period-2 problem are modified accordingly.  The term

under the radical in (10) is replaced by σe
2, and probabilities of period-2 storage (11) and sales

(12) are revised to reflect the greater risk associated with cash grain positions.  Storage is

discouraged, and expected pool price is lowered, relative to the unconstrained case.  Optimal

values for this case are displayed in Table 3:

Table 3. Results for Period 1 in the Case of No Hedging.

Variable Units Value
X1 Physical sales Million tons 1.494
H1 Sales of futures Million tons 0
Z1 Expected pool price SEK/ton 1027.4
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Table 4 shows the impact of hedging for different values of K, the measure of risk

sensitivity.  The base case corresponds to K equal to one. With higher values of K, the probability

of period-2 storage goes to zero,7 and the contribution of hedging to ODAL’s expected pool price

is inconsequential.  However, at lower levels of risk sensitivity (K=0.5), hedging increases the

expected pool price by 2.8 percent.

Table 4. Impact of hedging with different levels of risk sensitivity.

K:
Risk

Sensitivity

Prob(A):
Probability of

Period-2 Storage

Z1 (SEK / ton):
Expected Pool Price

%∆   in Z1
due to

hedging
with hedging No

hedging
with hedging no

hedging
difference

0.5 .924 .110 1060.2 1031.3 28.9 2.8

1.0 .053 .001 1029.1 1027.4 1.7 0.2

1.5 .001 .001 1026.4 1025.9 0.5 0.0

2.0 .001 .001 1024.7 1024.5 0.2 0.0

The impact of hedging is more pronounced when there are higher expected returns to

storage. In Table 5, two different price scenarios are compared. The first (+35) corresponds to the

base case, and the second (+ 50) represents a larger expected price increase in periods 2 and 3. In

the latter case, hedging results in a 4% higher expected pool price.

Table 5. Impact of hedging with different expected returns to storage.

Price
Adjustment

Prob(A):
Probability of

Period-2 Storage

Z1 (SEK / ton):
Expected Pool Price

%∆   in Z1
due to

hedging
with hedging No

hedging
with hedging no

hedging
difference

 + 35 .053 .001 1029.1 1027.4 1.7 0.2

+ 50 .819 .001 1067.8 1027.4 40.6 4.0

                                               
7 To avoid computational errors, a lower bound of 0.001 is placed on Prob(A).
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Thus far we have only discussed optimal values of choice variables in period 1.  However,

the distribution of outcomes in the second and third periods is also of interest and can be evaluated

through simulation techniques.  Specifically, we take 5,000 random drawings of the disturbance

terms in equations (6) through (8) and simulate the impacts of optimal strategies by ODAL.  The

procedure for simulating error terms is described by Johnson and Wichern (1998).  Parameters for

the base case are unchanged: the risk parameter K is kept at unity, and the add-factor for price

adjustments remains at 35.

Optimal strategies for period 1 are the same as those shown in Table 2.   For period 2, the

optimal strategy8 depends on the realization of price disturbances.  Strategy A (store grain and

hedge) exposes ODAL to continuing price risk, while Strategy B (store nothing) involves

liquidating the remaining grain inventories.  If Strategy A is pursued, there is a chance that market

revenues will not be sufficient to cover ODAL’s price commitment (in which case, patronage

refunds will be negative in period 3).  If Strategy B is pursued, the pool price can be set equal to

the average of market revenues, and patronage refunds are zero.  The results are compared with

hedging and without hedging.  Results from the 5,000 iterations on the (period 2) pool price and

(period 3) patronage refund are shown in Tables 6 and 7 below.

                                               
8 Relevant decision rules for X2 (cash grain sales),  H2 (hedge position), and Z2 (pool price) under each strategy are
derived from the period-2 optimization problem.  Details are available from the authors.
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Table 6. Simulated Period-2 Pool Prices and Patronage Refunds.

With Hedging Without
Hedging

Pool
price

Z2

Patronage
Refund

PR

Pool
Price

Z2

Mean 1055.0 0.17 1029.9
Standard Deviation 28.30 9.15 5.48

Kurtosis 0.11 53.40 5.66
Skewness 0.12 0.07 -0.77

Minimum 956.5 -116.3 990.9
Maximum 1177.5 98.4 1054.5

When hedging is allowed, the average period-2 pool price is 2.4 percent higher than

otherwise.    When hedging is not allowed, the patronage refund is zero because no risks remain in

period 3.   Note that the period-2 pool price has a lower standard deviation when hedging is not

allowed.   The reason is that in the absence of futures markets, ODAL markets a larger volume in

the first period when the cash price is known.  When hedging is allowed, ODAL assumes greater

risk in order to realize a higher expected price (through storage).

The period-2 pool price is not normally distributed in either case (with hedging allowed, or

hedging not allowed).9 The positive skewness value for Z2  (with hedging) indicates that its

distribution has an extended right-hand tail.  This is in contrast to Z2  (without hedging), which is

characterized by negative skewness.

                                               
9 The Anderson-Darling test of the null hypothesis of normality is rejected at a high level of significance.



17

6. Concluding Remarks

This paper presents a multi-period model of price pooling that accounts for both price and

quantity uncertainty.  The analysis focuses on the potential gains from hedging in the context of a

cooperative’s price pooling system.  When hedging is allowed, a lower share of grain is sold at

harvest in the cash market.   Simulation results show that the distribution of pool prices also

changes considerably when the cooperative is allowed to hedge its cash grain position.

As discussed in Carter (1984), price risk exposure at the farm level originates as early as

the time of planting in the spring. Therefore, to take full advantage of hedging within a price

pooling system, it is desirable to extend the planning horizon backwards to spring.  An alternate

route would involve forward contracts between the cooperative and farmer-patrons, signed early

in the planting season; this would also reduce the cooperative’s uncertainty about quantities to be

marketed.

 Incorporating hedging in ODAL’s marketing strategy will pose a challenge to managers,

who to this point have little direct experience with futures markets.  Equally important, patrons

must accept the new cooperative marketing strategy— a point emphasized by Fulton, Popp and

Gray (1998).   Buccola and Subaei (1985) add another dimension to the problem on how the

cooperative should develop pricing systems.  If members are heterogenous in terms of their risk

preferences, features of some pooling arrangements might not be acceptable to all patrons.  The
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latter aspects form an interesting topic for future research of how to optimally manage price pools

for subsets of member categories.
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