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A Bayesian Learning Approach to Estimating Unbalanced Spatial Panel Models 

 

Highly competitive grain commodity markets create incentives for agribusinesses handling grain 

to use a variety of strategies for reducing variable cost margins. Shuttle train-loading elevators—

high-capacity, high-speed grain loading facilities—are a recent example of agribusinesses 

adopting technologies that improve efficiency and attempt to capture market share. These 

facilities provide improved rail rates, guaranteed railcar availability, and attract grain from 

further distances, which has spurred agribusinesses to upgrade existing elevators and build new 

shuttle-loading facilities across the Great Plains (Bekkerman 2013; Kowalski 2014). 

If shuttle-loading facilities reduce the marginal costs of handling a bushel of grain and 

grain elevators operate in a competitive market, then it seems plausible that some portion of 

those savings will be passed on to grain producers in the form of stronger basis bids (i.e., higher 

cash prices). A quantitative test of the level of cost savings pass-through to farmers requires cash 

bid data from elevators across both space and time. Grain elevators compete for grain in space, 

but must also adjust their pricing strategies across time if competition from other elevators 

changes. The amount of any change in basis bids to farmers from reduced transportation costs 

incurred by elevators will be a function of both the amount of the transportation cost savings and 

the level of competition faced by new entrants in the grain handling industry. 

This study measures the systematic impacts of shuttle-loading elevators on local wheat 

basis in Kansas and Montana. These states were selected because they are large wheat producing 

areas, there has been substantial recent growth in the number of shuttle-loading elevators in both 

states, and agribusinesses continue to explore building additional high-speed grain handling 

facilities. To identify differences that can be attributed to alternative loading technologies, we 
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model daily nearby basis bid data between January 2004 and July 2013 (2,554 time periods) for 

267 Kansas and 30 Montana locations. Due to unsystematic missing observations and/or entry or 

exit of elevators throughout the time window, these data represent a large unbalanced spatial 

panel. Existing spatial panel estimation methods are mostly intended for balanced panel data, but 

are not effective for unbalanced panel because of the computational burden associated with 

inverting a large spatial weighting matrix. 

We propose an alternative approach that provides an efficient, computationally tractable 

method for estimating unbalanced spatial panel models. Using a dynamic Bayesian network 

method, we develop an iterative process by which large, unbalanced spatial panel models can be 

estimated. Preliminary results indicate that shuttle-loading facilities command a small price 

premium in Kansas and a slightly larger premium in Montana. The estimation also helps glean 

insights about spatio-temporal responses to market shocks across space and time, helping 

provide inferences about the breadth and speed of market information transfer. 

 

Background on Basis and Shuttle-Loaders 

Knowledge about basis is important to both farmers and grain merchandizers, helping inform 

them of market information regarding returns to storage, local and downstream demand, and 

changing costs of transportation. Accurately predicting basis can, therefore, help reduce risk 

exposure, develop efficient marketing strategies, and hedge variability in grain prices. Many 

previous studies of basis behavior have focused on two related areas—improving basis 

prediction and determining factors that help explain variation in basis—but have not explored the 

empirical effects of grain handling technologies on observed basis values. 



	   3 

Local basis behavior has typically been categorized as having intertemporal and spatial 

determinants as well as being affected by changes in public policy and the marketing 

environment. Intertemporal costs are comprised of the carrying costs of storing grain, which 

include storage costs (on-farm and commercial), demand for grain (e.g. flow), and interest costs 

of holding grain rather than selling it. Garcia and Good (1983) provide a thorough review of the 

theory underlying the intertemporal impacts on basis. In addition to analyzing intertemporal 

relationships, a number of studies demonstrate that wheat basis can be affected by changes in the 

market structure, including adjustments to loan deficiency payments, introduction of ethanol 

plants, unanticipated variation in protein content of grain produced in a particular region, and 

increased transportation costs (Dykema, Klein, and Taylor 2002; Martin, Groenewegen, and 

Pigeon 1980; Jiang and Hayenga 1997).  

The literature has paid less attention, however, to the theory of spatial factors, which is 

likely due to the general consensus that spatial differences in basis are driven by variation in 

transportation costs (Strobl, Fortenbery, and Fackler 1992). However, other research suggests 

that there may be significant impacts on basis from local demand centers, such as ethanol plants 

in certain areas of the country (McNew and Griffith 2005). This more recent research suggests 

that demand-side factors associated with differences in grain delivery facilities could also be 

important determinants of spatial variation in basis bids. 

Fortenbery, Zapata, and Kunda (1993) found that shuttle-loading facilities did not pass 

through the transportation cost savings to farmers. The authors used corn basis levels from 1980 

to 1992.  This time period is very important because it followed the 1980 Staggers Act, which 

deregulated the rail road industry and greatly impacted grain shipping through changes in freight 

rates. One result of the deregulation was an increase in the number of shuttle-loader facilities, 
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which could now take advantage of lower freight rates. Using harvest time basis levels at 16 

Corn Belt locations, the authors estimated a spatio-temporal error component model that used 

elevator concentration measures to determine whether grain companies were able to capture 

decreased transportation savings rather than passing them on to farmers. The study found no 

adverse price impacts from deregulation, with basis improvements (i.e., higher cash prices to 

farmers) more common for locations with less elevator concentration prior to deregulation.  

Hauser, Jeffrey, and Baumel (1984) similarly analyzed the period following the Staggers 

Act, with a focus on shuttle-loading facilities in Iowa and Nebraska. In Iowa, the marketing 

landscape was relatively saturated with large capacity 25- and 50-car loading facilities prior to 

the Staggers Act deregulation, while Nebraska had relatively few of these facilities and presented 

greater entry opportunities. Using a mathematical programming model to estimate the implicit 

(shadow) prices of shuttle-loader facilities, the author estimated larger shadow prices for 

Nebraska than Iowa, suggesting possible improvements in local basis were likely to occur in 

areas with fewer existing shuttle-loading facilities. 

The majority of shuttle-loading elevators were built in the largest grain production states 

of Illinois and Iowa following the Staggers Act. Expansion into the wheat-production regions did 

not begin until the 2000’s when a combination of higher wheat yields and faster harvest times 

translated to greater demand for efficiency at elevators (Kowalski 2014). Shuttle-loaders have 

also expanded into the northern Great Plains and Pacific Northwest as international agribusiness 

firms continue to invest in facilities to assure a steady supply of grain to Asian markets 

(Bekkerman 2013). The present study contributes to the existing literature by measuring direct 

impacts of transportation cost savings of shuttle-loaders on local basis bids, and therefore prices 



	   5 

received by farmers, giving a more complete picture of the effects of grain handling technology 

investments by agribusinesses. 

 

Data Description 

To quantify the impacts of shuttle-loader elevators on winter wheat basis levels, a panel dataset 

of daily cash and futures prices was assembled for 297 locations in Kansas and Montana over the 

2005 to 2013 period. Cash prices were obtained from the DTN historical database for all Kansas 

elevators and for the majority of elevators and days in Montana. The remaining prices for 

Montana were obtained from Cash Grain Bids, Inc. Cash prices represent hard red winter wheat 

with a protein content of 11% for Kansas and ordinary (10% or less), 11%, 12%, and 13% 

protein content for Montana wheat. Montana grain prices were averaged across the protein levels 

to calculate a single winter wheat price for each day and elevator.1 Futures prices for the nearby 

(closest contract to expiration at a given point in time) and harvest (July) hard red winter wheat 

contracts traded on the Kansas City Board of Trade (KCBT), as well as implied volatilities for 

the nearby contracts, were collected from Bloomberg.2 Using the cash and futures prices, the 

nearby basis levels were calculated by subtracting the futures price from the cash price.3 

Additional information about the elevators in the panel dataset was gathered from a 

variety of sources. The ability of an elevator to load shuttle trains was determined by directly 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 While DTN historical databases only report prices for 11%, 12%, and 13% protein level winter wheat marketed in 
Montana, Cash Grain Bids, Inc. report prices for these protein levels and the ordinary protein level. Because 
elevators discount lower protein content wheat, the average price is expected to be higher when the ordinary protein 
level wheat price is excluded. However, the difference is expected to be relatively constant across time and elevators 
within a common marketing environment (Bekkerman, unpublished data representing Montana elevator protein 
discount schedules for 22 locations between 2011 and 2013) and can be accounted for using an indicator variable in 
an empirical specification.  
2 The rollover date for the nearby contract was defined as the first day of the month that the nearby contract was due 
to expire. 	  
3 It should be noted that cash bids collected in this manner represent offer prices to buy grain and do not necessarily 
imply that grain was transacted at these prices for every elevator on every day. 
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contacting individual elevators and from state and federal elevator licensing records, railroad 

websites, news releases, and the Kansas Grain and Feed Association’s Annual Directory. For 

each elevator reported to be a shuttle-loader, the year in which they began loading shuttle trains 

was also recorded. Other elevator characteristics were similarly collected and include 

information about rail line access, business structure (cooperative or investor-owned firm), and 

licensed grain holding capacity.  

Table 1 provides the descriptive statistics of select variables by state and shuttle-loading 

capability. The descriptive statistics show that Montana has fewer elevators than Kansas, but the 

proportion of shuttle-loaders to conventional elevators is higher in Montana than in Kansas. The 

average capacity of Kansas elevators is approximately 2.5 times larger than the capacity of 

Montana elevators, but in both states, the grain storage capacity of shuttle-loaders averages five 

times more than conventional elevators. Interestingly, shuttle-loading facilities in both states are 

largely privately owned, while conventional elevators are more likely to be operated by a 

cooperative. The differences between types of grain handling facilities and markets across the 

two states suggests possible variation in the marketing strategies of elevators in the data, which is 

likely to be reflected by differences in observed basis.	  

Figure 1 provides a visual representation of all the Kansas and Montana elevators in the 

in the data. Shuttle-loader elevators are represented by red circles and conventional elevators are 

blue. The size of each circle corresponds to an elevator's licensed grain storage capacity, with 

larger circles representing greater capacity relative to other elevators in the state (not across 

states). The lines on the map represent rail lines in each state. While all the elevators are located 
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near the rail lines, not every elevator is built close enough to have rail-side access.4 A visual 

comparison of the two maps indicates that Kansas has many elevators that are densely clustered 

as well as an expansive railroad network. Montana has a sparser rail line distribution and fewer 

facilities. However, many of these facilities have relatively large storage capacities.  

 

Modeling Strategy 

We follow Anselin, Le Gallo, and Jayet (2008) in specifying a spatial panel data model that 

accommodates interactions among spatial units across time. Within this structure, we model 

variation in nearby basis as 

𝒃 = 𝜆 𝑰! ⊗𝑾! 𝒃+ 𝑿𝜷+ 𝜾𝒕⊗ 𝑰𝒏 𝝅+ 𝝆 𝑰𝒕⊗𝑾𝒏 𝝂+ 𝒖, (1) 

where the term 𝒃 represents an 𝑁𝑇×1 vector of nearby basis observations; 𝑿 is a matrix of 

explanatory variables, including a binary indicator that indicates whether an elevator has shuttle-

loading capabilities, observed basis from the preceding week, observed basis from the 

corresponding weekday of the preceding year, implied volatility of the nearby Kansas city Board 

of Trade winter wheat futures contract, and a binary variable indicating whether the cash price 

data were obtained from the DTN historical database or Cash Grain Bids, Inc.; 𝑰 is an identity 

matrix; 𝑾𝒏 is a spatial weights matrix in which the weights are represented by the inverse 

distance between location i and j, and 𝜆 is a vector of spatial autoregressive parameters. The term 

𝜺 in equation (1) is specified as a combination of, 𝜾𝒕⊗ 𝑰𝒏 𝝅, a matrix of time-invariant effects 

where 𝜾𝒕 is a vector ones and 𝝅 is a vector of elevator-specific indicators; a spatial error 

component, 𝝆 𝑰𝒕⊗𝑾𝒏 𝝂, where 𝜌 < 1 is a spatial error autoregressive parameter and 𝜈 is 

spatially correlated error term; and 𝒖, an i.i.d. white noise term.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Rail-side access refers to an elevator built close enough to the rail line that grain can be loaded directly from 
storage into a rail car. 
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In a random effects model, for example, 𝜋! ∼ 𝐼𝐼𝐷 0,𝜎!!  and Mutl and Pfaffermayr 

(2011) derive the covariance matrix for the spatially correlated disturbance term 𝜀 to be 

𝜴𝜺 = 𝑰𝒕⊗ 𝑰𝒏 − 𝝆𝑾𝒏
!! 𝜴𝝂 𝑰𝒕⊗ 𝑰𝒏 − 𝝆𝑾𝒏

!! , (2) 

where 𝜴𝝂 = 𝜎!! 𝑰𝒕 −
𝜾𝒕𝜾𝒕!
𝒕

⊗ 𝐼! + 𝜎!! + 𝑡𝜎!!
𝜾𝒕𝜾𝒕!
𝒕
⊗ 𝑰𝒏 . Anselin’s (1988) general formula for 

deriving the log-likelihood function for this estimator is used to determine the specific log-

likelihood function for the random effects spatial panel model. Millo and Piras (2012) describe 

the method for estimating the parameters 𝜆,    𝜌,    𝜎!!,    𝜎!!,    𝜎!!, and 𝛽 by iterating between 

generalized least squares and concentrated likelihood procedures until a convergence criteria is 

satisfied.  

Equation (2) shows that the spatial weighting matrix has a key role in estimating the 

covariance matrix for a spatial panel model. When data represent a balanced panel, the same 

spatial relationship among locations exists in each period, which allows the weighting matrix to 

be simplified to 𝑁×𝑁 dimensions. In this case, even with a relatively large number of cross 

sections, the computational burden for inverting the matrix 𝑰𝒏 − 𝝆𝑾𝒏  is relatively small. To 

our knowledge, these panel data structures represent the empirical applications of spatial panel 

estimators in the literature.  

In an unbalanced panel, however, there is a different spatial relationship for each time 

period, requiring the weighting matrix to have dimensions 𝑛𝑡×𝑛𝑡. The covariance matrix 𝜴𝜺 

becomes 

𝜴𝜺 = 𝑰𝒏𝒕 − 𝝆𝑾𝒏𝒕
!! 𝜴𝝂 𝑰𝒏𝒕 − 𝝆𝑾𝒏𝒕

!! . (3) 

With a very small number of cross sections and time periods, this may not present many 

computational issues. When there are many cross-section units and time periods (e.g., in higher 

frequency data), however, the computational burden becomes excessive and the estimation 
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frequently fails. In this study, using daily data requires inverting a 629,586×629,586 matrix for 

Kansas and a 70,740×70,740 matrix for Montana.  

We propose an alternative estimation approach based on a dynamic Bayesian networks 

(DBN) method. The DBN has been used to develop a probabilistic framework in which model 

parameters can be learned by recursive forward-backward routines. Within the unbalanced 

spatial panel structure, the recursive estimation process is used to deconstruct the full unbalanced 

spatial panel regression based on an 𝑁𝑇×𝑁𝑇 weighting matrix into a series of 𝑇 regressions 

based on an 𝑁×𝑁 weighting matrix. For each individual regression at period 𝑡, the 𝑁×𝑁 spatial 

weighting matrix is itself weighted by the marginal probability that the particular spatial 

weighting matrix is representative of the spatial relationships that existed in the previous periods 

and that will exist in future periods. That is, the marginal probability of observing a spatial 

weighting matrix is proportional to the product of the information obtained from its parent (i.e., 

the weighting matrix observed in period 𝑡 − 1) and information from its child (i.e., the weighting 

matrix observed in period 𝑡 + 1). For a weighting matrix, 𝑾𝒕, and parent 𝒆! and child 𝒆! 

information sets, the marginal probability of the weighting matrix is 

𝑃 𝑾𝒕 𝑒 ∝ 𝑃(𝑾𝒕|𝑾𝒕!𝟏,𝑾𝒕!𝟐,…𝑾𝒕!𝒌) 𝑃(
𝒌

𝒕!𝟏(𝑾𝒕!𝟏,𝑾𝒕!𝟐,…𝑾𝒕!𝒌)

𝑾𝒕|𝑒! 𝑾𝒕 ) 𝑃(𝑾𝒔, 𝑒! 𝑾𝒔 |𝑾𝒕)
𝒍

𝒔!𝟏

 

At the conclusion of the recursive process, we obtain a set of regression parameters that 

represents information contained in the unbalanced spatial panel structure. 

To estimate the recursive process, we assume a state-space model and use the Kalman 

filter approach in which a forward recursion is used to estimate regression parameters based on 

observations between periods 𝑡 − 𝑘 and 𝑡, and then a backward recursion that uses observations 

between periods 𝑇 and 𝑡 + 1. In this manner, the forward-backward algorithm is an application 

of a belief propagation structure that initially applies past knowledge to suggest current states, 
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and then further informs the current state information by incorporating the influence of future 

observations.  

Empirical Results 

Forthcoming 

 

Conclusions 

While having access to large, information-rich datasets is often a "good" problem to have, it can 

lead to empirical "too-much-of-a-good-thing" roadblocks. As high-frequency, large dimension 

spatial panel data continue to become more readily available to agricultural economists, these 

roadblocks are likely to become more apparent. We develop one method for overcoming the 

dimensionality constraint in large, unbalanced panel regression estimations. Application of this 

and similar methods is likely to be relevant to studies of agricultural marketing, land and water 

uses, environmental issues, and other topics that take into account spatial and temporal 

dependencies. 
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Table 1. Summary Statistics of Select Variables by State and Shuttle-Loading Features 

Variable Mean Standard Deviation 
Kansas 

  Proportion elevators in state 0.899 — 
Proportion shuttle-loaders 0.087 — 
Proportion with rail access 0.693 — 
Proportion owned by co-operative 0.640 — 
Storage capacity (thousand bu) 1,817.124 3,529.250 
Nearby basis (dollars per bu) -0.594 0.359 

Montana 
  Proportion elevators in state 0.101 — 

Proportion shuttle-loaders 0.256 — 
Proportion with rail access 0.800 — 
Proportion owned by co-operative 0.570 — 
Storage capacity (thousand bu) 715.866 471.562 
Nearby basis (dollars per bu) -0.658 0.590 

Shuttle-Loader Elevators 
	   	  Proportion with rail access 1.000 — 

Proportion owned by co-operative 0.103 — 
Storage capacity (thousand bu) 6,126.703 9,151.526 
Nearby basis (dollars per bu) -0.509 0.391 

Non-Shuttle-Loader Elevators 
  Proportion with rail access 0.672 — 

Proportion owned by co-operative 0.627 — 
Storage capacity (thousand bu) 1,227.643 1,073.664 
Nearby basis (dollars per bu) -0.608 0.380 

KCBT HRWW futures contract implied volatility 32.890 7.790 
   
Total observations 690,525 
Total elevator locations 297 

Notes: Standard errors are presented only for continuous variables. KCBT denotes the Kansas City Board of Trade 
and HRWW denotes hard red winter wheat. 
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(a) Grain handling facilities and rail lines in Kansas 

(b) Grain handling facilities and rail lines in Montana 

Figure 1. Elevator locations and rail lines in Kansas and Montana 

Notes: Circles represent the location of a grain handling facility. Red circles represent facilities with shuttle train-
loading capabilities and blue circles represent conventional elevators. The size of each circle represents the total 
storage capacity at the location relative to other elevators in each state. Black lines characterize rail lines. 


