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Abstract

In food markets the use of labels with collective reputations is widespread. Exam-

ples are organic or fair trade labels. These labels signal credence attributes of products

which cannot be verified by consumers. Producers may mis-label their products to col-

lect the premium associated to such collective reputations. We examine the propensity

for fraud to emerge in a multi-player, collective action game. An important feature of

our framework is that the premium depends on the proportion of mis-labeling in the

market. We experimentally test the impact of market size, alternative monitoring and

subsidy on the propensity to mis-label. In line with our theoretical predictions we find

that more stringent monitoring and enforcement schemes and the presence of a subsidy

reduce the propensity to mislabel, while an increase in market size elevates it.

Keywords: label, public policy, collective action game, experimental economics,

agricultural economics.

JEL classification: C72, C92, Q18
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1 Introduction

For many goods, consumers rely on product labels to inform them on the presence of valu-

able attributes that would otherwise be unobserved. The economic role of product labeling

to signal attributes that are imperceptible in consumption has been extensively analyzed

from theoretical, empirical and policy perspectives (see e.g. Bonroy and Constantatos,

2015 for a survey). In many cases, consumers products containing informative labels are

produced in supply chains that lack traceability back to individual suppliers, for instance

free range beef, sustainable timber, organic fruits and vegetables, and “fair trade” coffee.

Yet, the potential for untruthful reporting under circumstances of collective labeling, and

the consequences for market outcomes, is a subject that has not received much empirical

attention to date. As demonstrated by Hamilton and Zilberman (2006), the incentive of

an individual producer to mis-label products with collective reputations depends on the

cost of producing the attribute relative to the cost of disguising it and successfully sell it

in the market. This interpretation of collective label as a public good subject to free-riding

behavior suggests that the equilibrium level of mis-labeling in a market should increase

with the number of producers sharing the label, a finding that has important implications

for the design of labeling programs. For example, labeling behavior may be more truthful

in settings with decentralized, local “region of origin” labels than in larger, centralized pro-

grams. In this paper, we study incentives to truthfully report product attributes using an

experiment design that allows us to examine labeling incentives in settings with collective

reputation as the number of sellers in the market changes.

In principle, it is possible to curtail or prevent fraud in markets through the introduction

of monitoring and enforcement schemes. However, these activities are costly, consequently

it is important to determine to what extent market participants sharing a collective label

can self-regulate mis-labeling.

We examine the propensity to mis-label in a multi-player, collective action game. This

class of game analyses players’ incentive to contribute to a collective action under circum-

stances where free riding is possible (i.e. not to contribute to the collective action but

still benefit from it). We frame our experiment around producers’ incentive to contribute

or not to collective labels. A particular feature of our game is that producers have ran-

domized payoffs from free-riding behavior. We find only weak incentives to free-ride, and

hence limited need to invest in monitoring and enforcement activities, when the number of

players in the game is “small”. However, when a larger number of players is involved, we
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show that a coordination problem arises in a multi-player assurance game. In this case two

Nash equilibria emerge, one in which all players use the label properly and one in which

all players free-ride. We empirically investigate these results in a controlled, experimental

study that focuses on how the randomization of payoffs from free riding behavior affects

players’ ability to coordinate actions.

Our experimental results show statistically significant support for an increase of the

propensity to fraud when the group size increases from 4 players to 8 players. We also find

that for our groups of 8 players, there is statistically significant evidence that raising the

monitoring and enforcement levels reduces the propensity to free-ride.

Our findings have important implications for markets with labeling fraud. In an early

paper on fraudulent labeling, Baksi and Bose (2007) show that third-party labeling may not

be socially optimal in an environment where a government inspects products. The reason

is that third party labeling raises the cost of providing high-quality attributes, leading

to higher prices for certified attributes in the market and larger incentives for fraudulent

labeling. Third-party labeling can thus raise monitoring and enforcement costs by forcing

regulators to incur greater costs of inspection. Hamilton and Zilberman (2006) analyze the

fraud strategy of producers that adopt a certified label. Firm adopting the certified label

can disguise their product as containing the certified attribute even if these products do

not in fact meet the certification standard. Under such circumstances, a positive per-unit

certification cost can serve to reduce the degree of fraud in the market by narrowing the

relative cost of producing truthful products instead of fraudulent products. Contrary to

Baksi and Bose (2007), the cheating producer also pays the certification cost in Hamilton

and Zilberman (2006), which reduces the marginal return from cheating.

Our experimental framework includes features of a public good game (Ledyard, 1997

and Chaudhuri, 2011, for surveys), but also involves coordination between players (Camerer,

2003 for a survey). Thus, our experimental setting is more general as it encompasses sev-

eral classes of multi-player collective action games depending on the level of randomization

of returns to free-riding. Specifically, we have a public good game when payoffs are certain

and a multi-player assurance game when payoffs are randomized. Early experiments on

public goods reviewed by Ledyard (1997) typically show that in one-shot versions of the

public goods game, there is much more contribution than predicted in the Nash equilibrium

of the game; however, there is wide variation in the level of individual contributions. When

players interact repeatedly over a number of rounds, contributions tend to start near the

social optimum and decline steadily over time as more and more players choose to “free
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ride”. The higher the number of players interacting, the higher the number of free-riders.

As far as we know, only Engel and Zhurakhovska (2014) randomizes the player’s own payoff

in a public good game. In comparison to a baseline treatment where payoffs to contribution

are certain, Engel and Zhurakhovska (2014) report significantly less cooperation when such

payoffs are randomized, but only when the probability is low enough.1. Yet, our approach

departs from theirs as we randomized payoffs related to free-riding actions rather than to

contribution actions.

To sum up, our contribution to the experimental literature is threefold. First, to our

knowledge, no other study has experimentally investigated the impact of randomized pay-

offs on free riding behavior in a collective action game. Randomizing payoffs that result

from free-riding behavior changes the nature of the game from a public good game to a

multi-player assurance game for some probability value, which offers a more general ex-

perimental setting. The coordination problem generated by randomizing payoffs, by itself,

provides for a novel experimental design. Second, while most experiments investigate sanc-

tion mechanisms by pairs under conditions of perfect observability or else randomize payoffs

to contribute, our “monitoring” mechanism leads to randomization in payoffs to free-ride.

This design is appropriate in settings where gains arise through free-riding on collective

reputation. Third, while the experimental economics literature has devoted much atten-

tion to elicit consumers’ willingness to pay for labeled products (Cason and Gangadharan,

2002; Michaud et al., 2013; Kiesel and Villas-Boas, 2013), there is so far no experimental

study of the labeling strategies of the firms.

The remainder of the paper is structured as follows. In section 2 we present the basic

set up of our game. In section 3, we describe the experimental design and procedure. In

section 4 we present the experimental results. Finally, we conclude.

2 The basic setup: a multi-player collective-action game

We consider a game with N players. Each player simultaneously chooses between two

actions, A and B, which have corresponding cost cA and cB, respectively. We assume

1As mentioned above, we designed this randomized payoff scheme to capture to some extent a “moni-
toring” mechanism. Experimenters investigated monitoring mechanisms in public good settings, but when
monitoring is enforced by the subjects themselves, when they can observe others’ shirking (Fehr and Gachter,
2000; Sefton et al., 2007; Ertan et al., 2009). When there is only some probability that the monitoring
is enforced, which is a mechanism that is closer to ours, experimental results show that the higher the
probability, the higher the contribution levels (Walker and Halloran, 2004; Sousa, 2010)
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cA > cB = 0. Choosing action A generates a fixed revenue p ≥ cA and an additional

payoff γ = ρ(n) a, where a > cA and ρ(n) is a premium arising from collective action

and dρ(n)
dn > 0. Specifically, we formulate our collective action premium using the function

ρ(n) = n/N , where n denotes the number of players choosing action A. The payoff to

choosing B is the same as for A but no costs are incurred (cB = 0).

The incentive structure of the game is as follows. As more players choose action A,

their payoff increases through the premium γ. That is, each player choosing A has the

following return:

C(n) = p+ ρ(n) a− cA (1)

Each time a player chooses action B, the payoff is

F (n) = p+ ρ(n) a > C(n). (2)

As more players engage in action B, the smaller the payoff from action A, as the N −n
players opting for action B reduce the collective premium, ρ(n). Because the market cannot

distinguish between individuals taking actions A and B, players choosing B receive a higher

payoff than players choosing action A by avoiding the additional cost, cA.

For each player, the decision to choose A or B depends on the decisions of the other

(N −1) players, specifically on the number of players in the game who choose action A. To

see this, consider a “late-arriving” player who can decide the action to take after observing

the action selected by every other player and suppose the late-arriving player observes m

other players that select action A. If the late arriving player chooses A, the number of

players that coordinate on action A becomes m+ 1 and she receives C(m+ 1). Conversely

if she chooses action B, her payoff is given by F (m). Therefore, the final decision of a

late-arriving player would be driven by the comparison between these two payoffs. When

C(m+1) > F (m), a payoff-maximizing player would opt for action A and otherwise choose

B. Note that action A satisfies the convention properties of a pure public good, as the

benefits are both non-excludable and non-rival (Dixit et al., 2009).

Our game thus encompasses the coordination problem in collective action games. The

welfare of the collective is higher when its members choose A, but this action may not

be in the best interest of each individual. In other words, the socially optimal outcome

may not be the Nash equilibrium of the game. Specifically, when the number of players

is sufficiently small, N < a
cA

, the choice of A is the dominant strategy regardless of what
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the other (N − 1) players are doing: C(m+ 1) > F (m), ∀m ∈ [0, N − 1]. In this case, the

Nash equilibrium coincides with the social optimum.2 However, when N > a
cA

opting for

B becomes the dominant strategy: C(m + 1) < F (m), ∀m ∈ [0, N − 1]. In this case, the

game becomes a prisoners’ dilemma game that results in a suboptimal Nash equilibrium.

Thus, our framework nests two alternative classes of games depending on the number of

players.

Consider now the case in which the player’s payoff from action B is random such that

it is 0 with a probability (1− r). In this way the condition of non-excludability is relaxed

such that action A is no longer a pure public good. The final decision of a player is driven

by the comparison of the following payoffs:C(m+ 1) = p+ ρ(m+ 1) a− cA when the player chooses A

F (m) = r(p+ ρ(m) a) when the player chooses B.
(3)

As in the previous case, when N < a
cA

then C(m + 1) > F (m) whatever the fea-

sible values of m and r, action A is the dominant strategy and the social optimum is

achieved. When N > a
cA

, opting for A is still the dominant strategy, but only when r is

sufficiently low. That is, A is the dominant strategy when r < r1(N) = a+(p−cA)N
pN and

the social optimum is still feasible. However, when r is sufficiently high (i.e. superior to

r2(N) = (a+p−cA)N
(a+p)N−a ), the game becomes a prisoners’ dilemma game. Action B is then the

dominant strategy, and the social optimum is not achieved. Interestingly, randomizing the

player’s return to choosing B introduces a new and third class of game. The reason for

this is that for N > a
cA

and r ∈ [r1(N), r2(N)] the game has two equilibria: the socially

optimal outcome and the prisoner’s dilemma outcome.3 This third class of game is a mul-

tiplayer assurance game with two pure-strategy equilibria: the dominant strategy is B for

n ∈ [0, ñ(N)] and A for n ∈ [ñ(N), N − 1], with ñ(N) ≡ N(cA−p(1−r))−a
a(1−r) (see Dixit et al.,

2009).4

2Note that this requires a > cA.
30 < r1(N) < r2(N) < 1 for N > a

cA
.

4In this way for any value of n superior to ñ(N), each player will want to contribute and will choose
action A: there will be a Nash equilibrium at n = N where all players contribute. Conversely, for any value
of n inferior to ñ(N), each player will want to act as a free rider and will choose action B: there will be
a second Nash equilibrium at n = 0 where no player contributes. Technically, there is also a third Nash
equilibria for n = ñ in wich some players contribute and some act as free riders. This situation could be an
equilibrium only if ñ is exactly right but is strongly unstable, such as only two stable Nash equilibria hold
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The following Lemma, summarizes the previous discussion:

Lemma 1. Whenever N < a
cA

and r ∈ [0, 1] all players choose action A at equilibrium.

Whenever N > a
cA

three equilibrium configurations may hold: i) ∀r ∈ [0, r1(N)] only one

Nash equilibrium where all players choose action A occurs, ii) ∀r ∈]r1(N), r2(N)[ two Nash

equilibria where all players take either action A or action B occur, and iii) ∀r ∈ [r2(N), 1]

only one Nash equilibrium where all players choose action B occurs.

Let us now focus on the multiplayer assurance game. We found that for all N > a
cA

then ∂r1(N)
∂p = NcA−a

Np2
> 0 and ∂r2(N)

∂p = N(NcA−a)
(−a+Na+Np)2 > 0, with ∂r1(N)

∂p > ∂r2(N)
∂p . We state:

Lemma 2. Whenever N > a
cA

increasing p enables i) to increase the region of r where the

social optimum is achieved, ii) to reduce the region fo r where the game is a a prisoners’

dilemma game, and iii) to reduce the region of r where the game is a multiplayer assurance

game.

3 Experimental design and procedure

To empirically test our Lemmas we resorted to experimental methods. This section starts

with a description of our experimental treatments and parameterization of our theoretical

model. Then we provide the equilibrium predictions that will be tested in the experiment.

Finally we describe in detail the experimental procedure.

3.1 Experimental treatments and parameters

Our experiment reproduces in the lab the setting of the collective action game presented

above. Subjects were told that they had to choose between ”kappa” (action A in the

model) or ”phi” (action B in the model) 5 and that all the members of their group had

to make this choice simultaneously. Subjects were told how many subjects there where

in their group but they didn’t know who they were nor were allowed to communicate

with other subjects during the sessions. Each subject played the game during 20 periods

(the number of periods was common information in the experiment). As the subject’s risk

(see Dixit et al., 2009)
5To be coherent with the frame of the model, we will go on referring in the paper to action A and action

B, even if they were labeled Kappa and Phi in the experiment
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preference is a variable that might affect the decision to free ride in the game, we controlled

subjects’ attitudes towards risk in the experiment: the subjects performed the Holt and

Laury (2002)’s risk test before and after the collective action game to control possible order

effects.6

Subjects were given a payoff table and encourage to use them before making their

choices. This table showed the payoff for the period when choosing A or B, according to

the number other members in their group deciding to play A or B. To build the payoff

tables of the experiment, we used the following parameter values: p = cA = 2, cB = 0,

a = 10 such that:

∗ for N = 4 and p=2, only one Nash equilibrium where all players adopt action A

occurs

∗ for N = 8 and p=2, the partition of equilibrium is defined by r1 = 0.625 and

r2 = 0.930.

Thus, to test the effects or r we select the following values of r: 0.55, 0.75, 0.95

and 1. Note that with these values we cover all the partitions of equilibrium considered

in the game. Since Lemma 1 suggests that the number of subject and the effects of r

affect the optimal strategy, using a between subjects procedure we designed 8 experimental

treatments according a 2x4 factorial design that crosses the size N of the group of subjects

(N = [4; 8]) and the probability r of retaining the payoff to fraud (r = [1; 0.95; 0.75; 0.55]).

For instance, the treatment [4;0.75] corresponds to experimental sessions conducted with

groups of 4 subjects with a probability of 0.75 of getting a positive payoff (and 0.25 of

getting a null payoff) for B. Treatments [4;1] and [8;1] can be considered as ”benchmark”

treatments. Since Lemma 2 suggests that increasing

The payoff tables (see examples in the appendix section) displayed all the possible

payoffs for every combination of self’s and others’ choices7 In treatments in which the

6This test is a menu of 10 paired lottery choices (sets of two options, one of which has to be chosen by
the subject), designed to make inferences about risk preferences under various payment conditions. The
subjects can choose the safe option when the probability of obtaining the higher payoff is small, and then
cross over to the risky option without ever going back to the safe one. The number of safe choices made by
the subjects (before the switch to the risky one) determines their risk attitude. If subjects choose four safe
options (i.e. the switch occurs at the fifth set of choices), they are risk neutral; fewer than four signals risk
attraction, and more than four risk aversion.

7The real payoffs were displayed only when the play of the game started. During the reading of the
instructions, the payoffs in the tables were symbolized by letters.
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payoff to action B was randomized, the payoff table displayed that the choice of B could

lead to a positive amount with r probability, or a null payoff with (1 − r) probability.

For instance, in treatment [8;0.55], subjects were told that if they chose B they had a 0.55

chance of getting some positive payoff in Ecus and a 0.45 chance of getting 0 Ecu (there was

no wording such as ”probability of being monitored” or ”probability of destruction”). The

resulting expected payoff for the choice of B was not calculated and displayed in the payoff

table, to avoid biases in subjects’ risk preferences. The subject’s payoff was her cumulative

payoff over all the periods. Each subject was credited each period with the amount of Ecus

corresponding to the number of A and/or B choices in her group (including her own choice).

After each period, a subject was informed of her decision, the repartition of A and/or B

choices in her group (including her own choice), her own payoff and her cumulated playoff

since the beginning of the experiment. Each subject could see the history of all previous

periods with such information on choices and payoffs throughout the experiment.

3.2 Predictions

Based on both Lemmas 1 and 2 the equilibria predictions of the game played are:

Prediction 1. The effect of N

Increasing number of players increases the free-riding. In this way i) For N = 4 all players

will choose action A whatever the level of r. ii) For N = 8 all players will choose action A

(respectively action B) whenever r ≤ r1 = 0.625 (respectively r ≥ r2 = 0.930). Otherwise

both previous equilibrium configurations are possible.

In accordance with this prediction, when 4 subjects play together they should choose

action A whatever the level of r. But when there are 8 subjects in the group they should

not choose action A for high levels of return to fraud (i.e., r = 0.95 and r = 1). Thus, we

postulate that increasing the number of players reduces the incentive to participate to the

action A.

Prediction 2. The effect of r

For intermediate values of r, players are confronted to a coordination problem on the equi-

librium choice that modify the incentive to free-ride. In this way for N = 8, r = 0.75 and

p = 2 the players’ choice to free-ride is not the same as when there is no coordination

problem (i.e., for r ≤ r1 = 0.625 or r ≥ r2 = 0.930.)
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This prediction postulates that for intermediate values of r, the players cannot coor-

dinate on an equilibrium such as the free-riding is not the same as only one equilibrium

holds. Lemma 2 establishes that increasing p increases the region of r where the social

optimum is achieved. In order to test this result a treatment [8;0.75] has been conducted

by considering p = 2cA = 4. For such a value of p the partition of equilibrium is defined

by r1 = 0.813 and r2 = 0.941. Thus we have:

Prediction 3. The effect of p

Increasing the fixed revenue p related to the action A may reduce the free-riding. In this

way, for N = 8, r = 0.75 and p = 4 all players participate to the Action A conversely to

the treatment where N = 8, r = 0.75 and p = 2.

This prediction postulates that increasing the fixed revenue p related to the action A

may enable to avoid the coordination problem on the equilibrium choice and thus to reduce

the incentive to free-ride.

3.3 Experimental procedure

The experiment, which was entirely computerized, was conducted at the experimental

laboratory of the GAEL research center in Grenoble. When they arrived in the laboratory,

subjects received a personal code both to preserve their anonymity and to log into the

software dedicated to the experiment. They were randomly assigned places in the room.

Each session of the experiment corresponded to a treatment. Our laboratory has 16 working

stations, thus in each session, subjects were randomly and anonymously matched in four

groups of 4 players or two groups of 8 players. As we chose a between subjects design,

subjects participated in just one treatment and were told that the group composition would

remain fixed throughout the session and that no interaction between the groups would be

possible.

Once subjects reached their place, they found an envelope on their table, containing a

show up fee of 5 euros. Before the actual experiment started, the experimenter read the

instructions aloud to the subjects. In addition, they were able to read these instructions

on their individual screen. It was made clear that the instructions were identical for all the

participants. To ensure complete understanding, subjects were given a questionnaire on the

meaning of the variables, profit calculations, etc. The questionnaires were corrected with

the experimenter before the experiment started. Participants had complete information
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on their own and others’ payoffs. The payoff tables corresponded to the ones depicted in

previous section. Recall that the subjects repeated the game 20 times and they were told

so in the instructions.

In addition to the attendance fee and in order to make the decisions non-hypothetical,

the subjects were informed at the beginning of each session that at the end they would

anonymously be paid an amount in cash depending on their decisions and the decisions of

others. Subjects could earn between 8.4 and 28.7 Euros (including their show up fee, their

payoff for the collective action game and their payoff for the risk elicitation task).8 The

currency was the Ecu during the experiment and the exchange rate was 0.80 Euro=1000

Ecus.

At the end of the experiment, subjects filled in a small questionnaire asking them basic

profiling information (male/female, university, diploma prepared). Then subjects could see

their total payoff for the experiment. Finally, they were called one by one in a separate

room to receive privately their money in cash and were free to leave the lab. The payoff

tables are available in the appendix section. Each session lasted approximately 75 minutes,

including time devoted to the subjects’ payment.

To test predictions 1 (effect of N) and 2 (effect of r), we conducted 16 experimental

sessions from February 2014 to May 2014, with a total of 244 subjects (Female: 155,

Male: 89). To test the prediction 3 (effect of p, with p = 2cA = 4), which concerns

only groups of N=8 subjects, we conducted in March-April 2015 an additional set of 8

experimental sessions with a total of 128 subjects (Female: 89, Male: 39). In this new

set of experiments, we performed treatments with r=0.75 but also with r=0.55.9 Subjects

were undergraduates from different universities (arts, sciences, social sciences, engineering

schools) with no background in game theory. The data about each session and the number

of observations are given in Table 1. Here, as we chose a fixed partner matching, each

group can be considered as a statistically independent observation. The experiment was

8In order to get their payoff for the Holt and Laury’s test, a computer program enabled subjects to throw
a 10-sided die twice: the first time to determine the relevant lottery, and the second time to determine the
payoff for the chosen action. This procedure of payment was carried out at the end of the experiment,
to ensure that the subjects’ behaviors in the game were not influenced by their earnings in the risk test.
Payoffs to lotteries were labeled in Euros and were identical to those of Holt and Laury (2002).

9The prediction 3, in its general formulation, states that an increase in the premium p should reduce
the propensity to free-ride. Thus, even it is especially interesting to assess this effect for intermediate levels
of monitoring (here, r=0.75) because it may solve the coordination problem raised by such levels, it also
makes sense to run experiments with r=0.55, eventually to control whether such effect can be observed
even for high rates of monitoring.
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conducted to get at least 4 observations per treatment.

4 Results

We start this section with an overview of the data and then we present the results from our

panel data econometric estimations with which we further assess the predictions formulated

in section 3.2.

4.1 Descriptive results

Overview. Our model and predictions distinguish two situations associated to the number

of subjects in the group. To start, we visualize the average choice of B, across periods

and for the sessions where there were 4 and 8 players. Figure 1 below shows these results.

There are a few points worth noticing in this picture: first, consistently with our theoretical

predictions, it can be seen that the size of the group leads to two distinct outcomes: first

subjects do free ride more when involved in groups of 8. Second, there seems to be more

variation on the average choice of B when N=8, than when there are fewer subjects in the

game. In the latter case, note that the average choice of B becomes quite stable across

treatments. A third point is that only a minority of subjects play B when there are 4

players in the game, whereas the proportion is close to 50% when there are 8 players.

This provides preliminary evidence that the randomization of payoffs hinders the ability

of subjects to coordinate their actions.

Along with the size of the group, a key element of our model is the probability 1 − r
of loosing the payoff when choosing B. In Prediction 1, we suggest that when there are

four players in the game, players should play A and r shouldn’t matter. Figure 2 seems

to support this claim at least in the final periods when the confidence intervals do seem

to overlap when r=1, r=0.95 or r=0.75. What is also worth noticing, is that the decision

to play B does decrease with the raise of the probability of payoff loss. Continuing in this

vein, Figure 3 shows the effect of r for the case where there are eight players. There it is

quite clear that with higher levels of r, especially when it is 0.55, the frequency of playing B

decreases, thus providing initial support for Prediction 1, that states that subjects should

play A whenever r ≤ r1 = 0.625.

Treatment effects. To further our analysis, we conducted non-parametric tests on our

different treatments. Specifically, we started examining whether there are significant dif-
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ferences between the group size and random payoff treatments. We first run the Kruskall-

Wallis equality of population rank test for the whole sample and to compare the choice

of B across the number of subjects and the different levels of r. The test on the number

of subjects indicates there are statistically significant differences between the population

according the group size (Chi square (1) = 14.545 and p-value=0.0001), while for the levels

of r the difference is statistically significant at the 1% level, but the test suggests a tie be-

tween, at least, two groups (Chi square (3) with ties = 14.451 and p-value=0.0024). Then

we resort to the Mann-Whitney test and focus on comparisons across the r treatments.

We consider for the tests the average frequency of ”free riding” (choosing action B) per

group in each group as independent variables. When there are four players involved in a

group, the Mann-Whitney test cannot reject the null hypothesis that there is no difference

in the frequency of free riding between the control treatment and the treatments where

payoffs to B are randomized (p-value=0.132, [4, 1] vs [4, 0.95]; p-value=0.774, [4, 1] vs [4,

0.75]; p-value=0;773, [4, 1] vs [4, 0.55]).10 Again a large majority of subjects play A when

there are 4 players in a group, which is consistent with Prediction 1.i): when they are

involved in small size groups, subjects do not change their actions significantly whatever

the level of r. Now, if we move to the treatments with groups of eight players, behavioral

patterns differ consistently. Without surprise, when there is only a small probability of

getting a null payoff when choosing the free-riding action, behaviors do not change signifi-

cantly (p-value=0.771, [8, 1] vs [8, 0.95]). Overall, pooling the groups, we observe in these

two treatments a majority of free-riding behaviors: the average frequency of choosing B

is 54.8% in treatment [8, 1] and 51.8% in treatment [8, 0.95]. Though not all the players

free-ride, this result gives evidence supporting Prediction 1.ii). On the other hand, the

null hypothesis is strongly rejected when we conduct other pairwise Mann-Whitney tests

(p-value=0.014, [8, 1] vs [8, 0.75]; p-value=0.009, [8, 1] vs [8, 0.55]; p-value=0.013, [8,

0.95] vs [8, 0.75]; p-value=0.009, [8, 0.95] vs [8, 0.75]). The average frequency of choosing

B is 36.25% in treatment [8, 0.75] and 27.08% in treatment [8, 0.55]. These results confirm

that for higher levels of r the incentive for subjects to free-ride decreases significantly. The

null hypothesis remains rejected for the latter treatments (p-value=0.09, [8, 0.75] vs [8,

0.55]), yet more weakly. These results suggest with the highest probability level (0.55) a

large majority of subjects tend to play action A, yet not all of them. This provides some

evidence to Prediction 2 such as when a coordination problem on the equilibrium choice

10The null hypothesis cannot be rejected either when we run the test between the other pairwise treat-
ments.
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holds, the players’ incentive to free-ride is not the same as when this one is absent.

To end this analysis, we turn to the results for Prediction 3. In treatment [8, 0.75], the

Mann-Whitney test rejects the null hypothesis that there is no difference in the frequency

of playing B when the fixed revenue to action A is p=2 and when it is p=4 (p-value=0.03).

Pooling the groups, the average frequency of choosing B is 36.25% when p=2, whereas it

is 26.4% when p=4. This result provides evidence to this prediction, which expected that

an increase in p would reduce the propensity to free-ride. We also conducted experimental

sessions for the treatment [8, 0.55]. Again, the Mann-Whitney test rejects the null hypoth-

esis that there is no difference in the frequency of playing B when the fixed revenue to

action A is p=2 and when it is p=4, yet more weakly (p-value=0.07). Pooling the groups,

the average frequency of choosing B is 27.08% when p=2, whereas it is 17.9% when p=4.

This latter result suggests that it may be useful to subsidy actions to contribute to the

collective label, even when monitoring is quite strongly enforced.

4.2 Econometric results

This section presents our econometric analysis results. Making use of the panel structure

of our experimental data, we use standard panel data techniques to test our hypothesis and

to take into account the concerns over independence of observations and session dynamic

effects when using experimental data (Houser, 2008; Frechette, 2012). Our dependent vari-

able is dichotomous, as in each period the subjects of our experiment were asked between

a decision to ”cooperate” or free ride, therefore we resort to limited dependent variable

approaches to analyse our data. Our problem and approach is similar to Rojas (2012), as

he investigates how the propensity to collude is affected by different levels of information

and monitoring. Thus, following his strategy we start exploring our data with a probit

model and then resort to panel data methods. Specifically for the later we use Random

Effects Probit that we specify as:

Pr(yit = 1 | xit) = Φ(xitβ + υi) (4)

Where yit is our dependent variable, coded 1 when the subject selects the choice B. In

our setting, this means that the subject decided to free ride or to fraud. So our dependent

variable can be interpreted as the propensity to free ride or fraud. xit is a vector of

independent variables and υi is our error term that we assume to be i.i.d. and N(0, σ2υ). Φ is

the standard normal cumulative distribution. Variables in xit include dummies accounting
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for the different treatments, a subject specific risk measurement variable11 and variables

accounting for time. The variable N accounts for the group size effects and is code as 1

when there were 8 subjects in the group. The monitoring treatments dummies were named

R1, R95, R75 and R55, respectively denoting zero, 5, 25 and 45% probabilities of loosing

payoff when the subjects chose to free-ride. We also created time dummies for each of the

periods of the game.

As described in the previous section 372 subjects participated in our experiment and

were placed in groups of 4 or 8 subjects. Recall these subjects were randomly assigned to 3

different treatments: market size effect, monitoring effect and fixed revenue effect. In each

session the subjects made 20 choices, thus we end up with a panel of 7440 observations.

For ease of exposition we start presenting a standard probit model to help us get a feel for

the data. Also we first show the results for the pooled data as it allows us to investigate

the group size effects and then we focus on a sub-sample containing the observations where

we have 8 subjects in each group.

Table 1 reports the results of 4 models. In the table N , is a dummy variable accounting

for our group size (1 if there were 8 subjects in the group), while R accounts for the mon-

itoring levels. To avoid the dummy variable trap and consistently with our experimental

protocol, we did not include the dummy for r=1 (that is R1) in our estimation, which is

then the benchmark variable.

First, consider Models 1 and 2 which are Probit models. These models don’t take into

account the structure of our data but give us an initial insight into the data. Model 1,

evaluates the impact of the treatment variables on the propensity to free ride. As it can be

seen an increase in the number of subjects in the group statistically significantly increases

the propensity, while more stringent monitoring and enforcement statistically significantly

reduces the propensity to free ride. Model 2 adds the effect a variable measuring the

attitude to risk as explained above. The results for the treatment variable are identical to

those in model 1 and while the risk variable is statistically significant and has the expect

sign, its magnitude is rather low. Models 3 and 4 use a random effects probit estimation.

We observe that the value of ρ is significant across the models which supports for our

random effects specification. Model 3 includes both the effects of N and R. The treatment

effects are, with exception of R95, all statistically significant. So, as number of players

increases to 8 so does the propensity to free ride, while the lower the level of R (i.e., the

11The risk variable is a quantitative variable that corresponds to the number of safe choices made by the
subjects in the Holt and Laury (2002)’s multiple prize list test.
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higher the randomness of payoffs to choosing B), the lower is propensity to free ride. This

result is line with what we saw on for models 1 and 2 and supports Prediction 1). Model 4

includes the attitude to risk which has the expected sign but, consistently with findings in

experiments conducted in strategic settings (Eckel and Wilson, 2004; Houser et al., 2010)

as a very small magnitude and is only significant at the 1% level of significance 12.

Turning to the case of the groups of 8, Table 2 reports the results of 3 models. The

first shows the effect of the monitoring treatments on the propensity to free ride, the

second takes also into account the risk attitude, finally the third adds the effect of the

subsidy. In line with the results for the whole sample the treatment variables are strongly

significant (except for R95, which as we have seen in the descriptive section above is not

statistically significantly different from R1). What the results suggest is that an increase

in the level of monitoring statistically significantly lessens the propensity to free ride. This

offers support for point ii. of Prediction 1. Turning to model 4, we can see that while there

is considerable more uncertainty in this treatment, the risk variable is only statistically

significant at the 10% level and although the sign is as anticipate, the magnitude of the

coefficient suggests very limited impact on the propensity to free ride. Finally, the last

model shows that adding a subsidy statistically significantly reduces the propensity to free

ride. This evidence supports our Prediction 3 which suggest that an increase in the fixed

revenue facilitates the coordination and therefore reduces the propensity to free-ride.

In short our analysis supports the first prediction from our theoretical model, in that

an increase in the number of players in the market significantly increases the level of free

ride. Also, in the case of groups of 8, an increase in the level of monitoring significantly

decreases the propensity to free ride, which supports at least partly the second prediction.

Finally, we show that the introduction of a subsidy that increases the fixed revenue reduces

the propensity to free-ride.

12Consistently with other studies that used this same test, our subjects as categorized by the Holt and
Laury’s risk elicitation task are overwhelmingly risk averse (73.7%). Only 11% of the subjects are risk
neutral and 5% are risk prone. The other subjects could not be classified because of inconsistent behaviors.
The absence of correlation between risk attitudes as categorized by this test and the decision to free-ride
does not mean necessarily that risky decisions are unimportant in our game. Actually, though the Holt and
Laury’s test remains widely used in experimental economics, it is more and more discussed in its ability to
elicit risk attitudes relevantly in strategic settings.
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5 Final Remarks

Food labels signaling the presence of quality attributes or production processes are widespread

in the food industry. The implications and impact of labels have great interest from both

theoretical and policy perspectives (Bonroy and Constantatos, 2015 ). The labels commu-

nicate attributes that are typically credence that is those that the consumer cannot verify.

Moreover often these labels have a collective reputation as they are shared by a group of

producers. The limited verifiability and the collective reputation associated to these labels

leads to opportunities for fraudulent behavior by producers, who may have an incentive to

free ride on the collective reputation. In recent years the press and USDA uncovered some

cases of fraudulent behavior in organic food labels (Charles, 2014; USDA-AMS, 2014).

Whereas there is a vast theoretical and empirical literature investigating the demand for

labels with credence attributes, surprisingly, few papers have investigated the economics

of labelling fraud. An exception is Hamilton and Zilberman (2006) who showed that the

higher the number of producers sharing a label with collective reputation the higher is

the incentive to fraud. Here, we aim to investigate what incentive structures mitigate the

propensity to free ride on markets with collective reputation labels. Specifically, our goal

is to assess how market size and alternative monitoring and enforcement strategies assuage

free riding in a multi-player game setting. We also investigate how a subsidy policy may

deter free riding behavior.

Drawing on Hamilton and Zilberman (2006) we develop a multi-player collective action

game that analyses the players’ incentive to contribute to a collective action and or free ride.

A key feature of our approach is that the premium to the collective reputation is inversely

related to the number of free riders. Moreover, the payoff to free ride is randomized under

alternative monitoring and enforcement schemes. These features provides with a very rich

and encompassing frameworks, as depending on the number of players and the uncertainty

of payoffs to free ride, the nature of our game shifts from a public good to an assurance

game and to a prisoners’ dilemma game. The games have different equilibria and therefore

allow us to explore alternative policies to obtain a social optimum outcome. We derive

the following testable predictions: 1) when the number of players is small we have a pure

public good game where the optimal outcome is to offer the collective reputation good;

2) when there is a large number of players and no monitoring and enforcement, the game

becomes a prisoners dilemma where the optimal strategy is to free ride; 3) with a large

number of players and random payoffs to free ride, we have a multiplayer assurance game,
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where there are multiple equilibria. The higher the probability of loosing payoff to free ride

(in other words the more stringent is the monitoring and enforcement scheme) the closer

is the equilibrium to the social optimum of no free ride.

To test our hypothesis we resort to experimental methods. We develop a novel experi-

mental protocol, which is based on a public good game when payoffs are certain and turns

into a multi-player assurance game when there are randomized payoffs to fraud. Subjects

were put in groups of 4 or 8 players played for 20 periods, in which they had to choose

between cooperating or to fraud. All the players in the group had to make their choice

simultaneously. The groups of 4 and 8 players were further divided into four treatments

corresponding to different levels of monitoring and uncertainty of the payoff to their ac-

tions. We conducted 24 experimental sessions in Grenoble, France between February and

May 2014 and then in March-April 2015. We had a total of 372 subjects, who were un-

dergraduate students from different programs in three universities. The students did not

have background in game theory. We chose a fixed partner matching, so each group can

be considered as a statistically independent observation. The experiment was conducted

to get at least 4 observations per treatment.

To analyse our data we used descriptive statistics, non-parametric test and, making

use of the panel structure of our data, we estimated random effects probit models to

test our predictions. The results of the non-parametric tests examined whether there

are significant differences in the propensity to free ride across group size and monitoring

treatments. Providing initial evidence for the validity of prediction 1, we find a statistically

significant difference in the propensity to free ride between the group with 4 and 8 players.

This result is confirmed by our econometric analysis where we find that an increase on the

number of players statistically significantly increases in the propensity to fraud. Then, as

we focus on the treatments with 8 players, the results from non-parametric pairwise tests

show a statistically significant difference between higher and lower levels of monitoring.

Again, the econometric analysis strengths this evidence as it shows that an increase in

uncertainty of payoffs to free ride statistically significantly reduces this action. Thus, our

results also provide evidence for our second prediction. Finally, we investigate the effect of

a subsidy as an alternative to more stringent (and costly) monitoring. We also find that a

subsidy statistically significantly decreases the propensity to fraud, consistently with our

third prediction.

While we acknowledge that our methodology limits our ability to provide clear and

definitive policy recommendation, we still think our research provide important insights
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and lessons. First our framework suggests a trade-off between policies promoting market

competition markets and those assuring consumer protection. This is because reducing

barriers to entry, increases the number of players in the market which hampers the ability to

coordinate actions, creating opportunities for free riding. In other words, when consumers

are willing to pay for credence attributes delivered through a collective reputation label, it

may be more economical to let producers of such goods restrict access to market. Secondly,

and perhaps more relevant, an important instrument to restrict free riding on products

carrying collective reputation labels, is to have an institution that regularly communicates

the level of free ride detected in the market place. That is a mechanism increasing the level

of transparency in the market place will provide a disincentive for firms to free ride. This

is because a rational consumer won’t be prepared to pay such a high premium when they

there is a good chance of being defrauded. Actually markets with collective reputation

labels could easily create such transparency mechanism by mandating third party certifiers

to publicly and regularly report the proportion of product that failed inspection and why.

Third, there is a possible trade-off between subsidizing the prices of products marketed

with collective reputation labels and monitoring. Our model show that the introduction of

a subsidy increases the efficacy of lower levels of monitoring and enforcement in deterring

fraud. Off course this may cause problems, as subsidies cause well know distortions in

trade and our model does not consider the costs of monitoring nor the ones for the subsidy.

Our research can be extended in a number of ways. First, it may be possible to evaluate

some of our proposition with real world data. For example, data from the USDA National

Organic Program reporting fraud detection could be used to assess decrease of organic foods

premiums after an fraud detection is announced. Our model could be extended to consider

two separate issues related to monitoring an enforcement: first monitoring agencies may

fail to detect the fraud or have a detection system with a high probability of incurring

a type II error. This will lead to another level of uncertainty in the model, that may

impact the nature and therefore equilibria of the game. Second, punishment for free riding

may increase, for instance the player caught cheating may be temporarily or permanently

excluded from the market. Finally, we could investigate alternative ways of communicating

the level of fraud in the market and analyse how it might change the equilibria.
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Matrix 2: A
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Matrix 3: A
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Matrix 4: A
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Dates Treatment Nb of Sessions Nb of subjects Nb of observations

Feb. 16, 2014 [4;1] 1 16 4
Feb. 18, 2014 [8;1] 2 32 4
Feb. 18, 2014 [4;0.55] 1 16 4
Feb. 19, 2014 [8;0.55] 1 16 2
Feb. 20, 2014 [8;0.55] 1 16 2
Feb. 24, 2014 [4;0.95] 1 12 3
Feb. 24, 2014 [8;0.95] 1 16 2
Feb. 26, 2014 [8;0.95] 1 16 2
Feb. 27, 2014 [4;0.75] 1 16 4
Feb. 27, 2014 [8;0.75] 2 32 4
May 19, 2014 [4;1] 1 12 3
May 19, 2014 [8;0.55] 1 16 2
May 20, 2014 [4;0.95] 1 12 3
May 21, 2014 [8;0.75] 1 16 2

March 23, 2015 [8;0.55;p=4] 1 16 2
March 26, 2015 [8;0.75;p=4] 3 48 6
March 27, 2015 [8;0.75;p=4] 1 16 2
March 31, 2015 [8;0.55;p=4] 1 16 2
April 1, 2015 [8;0.55;p=4] 1 16 2
April 2, 2015 [8;0.55;p=4] 1 16 2

Total 24 372 57

Table 1: Experimental sessions and observations
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Model 1 Model 2 Model 3 Model 4

Coef. Coef. Coef Coef
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

N 1.046∗∗∗ 1.044∗∗∗ 1.327∗∗∗ 1.320∗∗∗

(0.047) (0.048) (0.131) (0.130)

R95 0.060 0.064 0.152 0.157
(0.056) (0.056) (0.168) (0.167)

R75 −0.526∗∗∗ −0.528∗∗∗ −0.606∗∗∗ −0.608∗∗∗

(0.049) (0.049) (0.146) (0.145)

R55 −0.791∗∗∗ −0.800∗∗∗ −0.938∗∗∗ 0.948∗∗∗

(0.052) (0.053) (0.154) (0.153)

Risk −0.002∗∗∗ −0.002∗∗

(0.000) (0.001)

cons −1.034∗∗∗ −1.043∗∗∗ −1.402∗∗∗ −1.411∗∗∗

(0.050) (0.050) (0.143) (0.142)

Log likelihood -4032.046 -4021.091 -3529.1632 -3526.483

ρ 0.399∗∗∗ 0.394∗∗∗

obs. 7440 7440 7440 7440

Table 2: Probit and Random effects Probit estimation for the choice of B for the pooled
data
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Model 1 Model 2 Model 3

Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err)

R95 −0.092 −0.083 −0.092
(0.208) (0.206) (0.201)

R75 −0.856∗∗∗ −0.855∗∗∗ −0.575∗∗∗

(0.166) (0.165) (0.175)

R55 −1.124∗∗∗ −1.128∗∗∗ −0.910∗∗∗

(0.172) (0.171) (0.175)

Risk −0.002∗ −0.002∗

(0.001) (0.001)

Subsidy −0.448∗∗∗

(0.114)

cons 0.131 0.116 0.116
(0.147) (0.146) (0.142)

Log likelihood -3047.32 -3045.51 -3037.93

ρ 0.374∗∗∗ 0.372∗∗∗ 0.358∗∗∗

obs. 5760 5760 5760

Table 3: Random effects Probit estimation for the choice of B for groups of 8 players
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Figure 1: Average choice of B when N=4 and N=8
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Figure 2: Average choice of B when N=4 according the treatments
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Figure 3: Average choice of B when N=8 according the treatments
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