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Abstract
Due to the rapidly growing availability and accessibility of spatially gridded weather data
products, significant effort has been devoted to handling weather and climate variables
properly in econometric models. It is, however, noteworthy that relatively less econometric
attention is paid to how spatial correlation in weather variables and econometric models
can be specified and performed. To fill this gap, this study scrutinizes the main source
spatial correlation in econometric models of weather and climate variables, and implements
in-sample and out-of-sample prediction analyses with spatial panel model specifications of
crop yield response function. First, this paper theoretically and empirically demonstrates
that the aggregation bias is a main source of spatial correlation rather than omitted weather
variables. With soil variables, we specify six competing specifications of crop yield response
function with pooled, fixed effects and random effects with spatially robust standard errors.
From the results of prediction performances, we demonstrate that the choice of predictor
(prediction models) can be motivated from the purpose of models rather than a better
prediction performance. In addition, we empirically argue that the omitted socio-economic
variables are not a serious econometric concern in crop yield response function of this study.

Keywords: Spatial Correlation, Panel Estimation Approach, Crop Yield Response
Function, Weather Variables, Climate Change
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1. Introduction

As a result of the growing availability and accessibility of spatially gridded weather data,

significant effort has been devoted to the proper handling of weather and climate variables

in econometric models. A review of the recent climate-economy literature describes well-

developed models and estimation methods that provide reasonable solutions to econometric

issues, such as nonlinearity, identification of causality, estimation of a damage function, and

model specification differences between weather and climate (Dell et al., 2014). Yet, there

still remain a number of unaddressed issues. Auffhammer et al. (2013) point out five major

econometric pitfalls associated with using observed weather data and climate model output

in economic analyses: the choice of weather data set, averaging station-level data across

space, correlation between weather variables, endogenous weather data coverage, and spatial

correlation. While the first four pitfalls can be solved by proper data management and have

been addressed in the previous literature (Auffhammer et al., 2013; Dell et al., 2014), spatial

correlation has received relatively less attention in applied econometric studies. This study

fills this gap by scrutinizing spatial correlation in econometric models of crop yield response

and analyzing the relative performance of alternative models starting from Schlenker and

Roberts (2009) as an example of the (Deschênes and Greenstone, 2007) panel estimation

approach.

Various socio-economic sectors and phenomena—e.g., agriculture, forestry and land use,

population and human settlement, energy supply and demand, or industry—can be affected

(or expected to be affected) by climate change and weather extremes (IPCC, 2014). Among

them, agriculture has been the focus of much of the recent research on climate impacts

because of the given strong relation between the physical environment and agricultural

output—temperature and precipitation are direct inputs in the biological processes of plant

growth (Dell et al., 2014). An agronomic crop yield response function is one of the most

frequently adopted models in econometric analyses and it has a well-developed economic and
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econometric story about how to include weather and climate variables. By briefly summarizing

the current methodological debates between Deschênes and Greenstone (2007, 2012) and

Fisher et al. (2012), this study compares various spatial econometric specifications that model

spatial correlation by extending the nonlinear crop yield response function suggested by

Schlenker and Roberts (2009). Because the crop yield response function itself is often adopted

as a base model in the fields of climate change, food security, nutrition, and development

economics, the methods and results in this study can be directly applied to studies of these

and other topics. Considering that model specifications and interpretations explained in this

study are not specific to crop yields, we argue that the econometric approaches in this study

can be applied, without loss of generality, to a broad array of topics, that involve the relation

between scio-economic outcomes and weather variables.

In the previous empirical economic studies of weather fluctuation and climate change, two

fields of econometrics have attempted to take spatial correlation into account. Main-stream

econometrics1 (Auffhammer et al., 2013; Deschênes and Greenstone, 2007; Schlenker and

Roberts, 2009), have adopted and broadly applied a nonparametric approach to estimate

the variance-covariance (VC) matrix suggested by Conley (1999, 2008) (henceforth, Conley’s

method). In the spatial econometrics literature, the presence of spatial correlation in regression

models is the central focus and the forms of spatial processes are explicitly specified (Anselin,

2001; Anselin et al., 2004; Baylis et al., 2011). However, both branches of econometrics have

paid less attention to the question about how spatial correlation between weather variables

and in econometric models can be presented, specified and performed. Given the increased

use of spatially gridded weather data products—and geo-referenced data more generally—and

computationally expensive methods, answers to this question can provide more appropriate

model specification strategies. This study adopts spatial econometric techniques to model a

1. We borrow the notion of classification between the mainstream econometrics and spatial econometrics
from spatial econometricians’ view (Anselin, 2010; Gibbons and Overman, 2012).
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crop yield response function that accounts for spatial correlation and heterogeneity using the

best practices identified in the prior literature (Auffhammer et al., 2013; Dell et al., 2014).

The aim of this study is to compare prediction performance between non-spatial and

spatial panel estimation approaches that take spatial correlation into account. To specify

alternative models, we first delve into the data generating process that gives rise to spatial

correlation and motivates the need for this research. This study compares the Moran’s I

measure of spatial autocorrelation between weather variables and their aggregation over grid

cells, counties and states, and argues that aggregation over geographic units introduces bias

and can be one of the main causes of spatial correlation in regression disturbance terms.

Additionally, this study discusses the economic and biophysical reasoning behind spatial

correlation in crop yield response based upon two spatial econometric motivations—omitted

variables and spatial heterogeneity–described in LeSage and Pace (2009). In the performance

comparisons, this study focuses on better prediction capability as results of temperature and

precipitation impacts rather than better coefficient estimates. This is because the true data

generating process that relates crop yield to spatially varying explanatory variables remains

unknown and generating the best prediction is the main purpose of many climate change

related studies. This also helps to address specific solutions for the controversial debate on

identification and specification in spatial econometrics models pointed out by Gibbons and

Overman (2012), McMillen (2012), and Pinkse and Slade (2010).

The data used in the performance comparisons are county level corn yields, temperature,

total precipitation from 1981 to 2013, and soil characteristics. The spatially gridded weather

and soil data are aggregated up to county levels. Due to the intensively managed nature

of irrigated crops that mask the impact of precipitation on yield, our study counties are

limited to those east of the 100th Meridian line as in Schlenker et al. (2006) and Schlenker

and Roberts (2009). The prediction capabilities of candidate models and specifications are

compared using the root-mean squared prediction error (RMSE) by performing in-sample
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and out-of-sample prediction analysis.

The rest of the paper is divided into five parts. The second section provides a brief

background on panel estimation approaches and the crop yield response function. The third

section presents the motivation to account for spatial correlation in the specification of crop

yield response models. The data are described in detail in the fourth section. The results of

the performance comparison analysis are discussed in the fifth section. The paper concludes

with a summary and discussion.

2. The Econometrics of Weather

Although weather is closely related to climate, recognizing the differences between these

two is very important when developing an econometric model and identification strategy.

Weather is the condition of the atmosphere over a short period of time, whereas climate is the

behavior of the atmosphere over a relatively long period of time (Auffhammer et al., 2013).

For instance, daily measured temperature is a weather variable. On the other hand, 30-year

averaged temperature is a climate variable, referred to a climate ”normal” by climatologists.

Due to the conceptual differences, econometric setups using weather and climate measures

of the same variables can result in different results (Dell et al., 2014). For the prediction

capability comparison analysis, this study utilizes a panel estimation approach (Deschênes and

Greenstone, 2007), which can analyze climate change impacts from the estimated sensitivity

of economic outcomes to weather extremes and fluctuation. Thus, we focus on weather

shocks rather than climate change in our exposition to avoid conceptual or econometric

confusion. This section concludes by presenting the panel estimation approach (Deschênes

and Greenstone, 2007; Schlenker and Roberts, 2009) that is the baseline model we compare

to alternative models that account for spatial correlation.
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2.1 General Econometric Concept

Based on Dell et al. (2014), this section briefly introduces the general econometric approaches

to understand the impact of weather on the socio-economic output. An unknown functional

relation of econometric models can be written as Equation (1) (Dell et al., 2014):

y = f(C,X), (1)

which links weather variables (C) and other non-weather exogenous variables (X) on socio-

economic output (y). For instance, y is crop yield, C is temperature and precipitation. X

can include any characteristics that are correlated with C and also affect the outcome of

interests, possibly by conditioning the weather response, e.g., fertilizer usage, elevation or

slope of the land. A typical linear form of regression Equation (1) can be estimated using

cross-sectional data:

yi = Ciβββ + Xiγγγ + εi, (2)

where i is an index of individual observations and εi is the disturbance term. The functional

form can be more flexible and a nonlinear form of C is generally modeled (Dell et al.,

2014; Schlenker and Roberts, 2009). The main issues of estimating εi are concerned with

endogeneity caused by reverse causality, omitted variables, and over-controlling (Dell et al.,

2014). The biased estimators that result from this endogeneity often distort the net effect of

weather. The error process is typically modeled using robust standard errors. Particularly,

if observations i are geographical units (e.g., counties, countries, or subnational regions),

spatial correlation is embedded in the variance-covariance matrix by clustering at a larger

spatial resolution, or assuming a spatial error process (Anselin, 2006) or distance decay

structure (Conley, 1999). When applying spatial fixed effects on the data generated by a

spatial dependence structure (spatial lag or spatial error), the estimation could be spurious

due to the removal of spatial correlation by the spatial fixed terms (Anselin and Arribas-Bel,
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2012). When interpreting the results of Equation (2), this can lead to a misinterpretation

of climate impacts. Even though cross-sectional models are assumed to be the long-run

equilibrium, the climate changes in the long-run make the socio-economic mechanism variant.

The general equilibrium interpretation based upon a consistent mechanism in Equation (2),

therefore, may not be valid.

Equation (2) can be extended to standard panel models to investigate the effects of

weather shocks as:

yit = Citβββ + Zitγγγ + µi + θt + εit, (3)

where t indexes time, µi is a spatial fixed effects term, θt is a time fixed effects term, and Zit

contains non-weather time-varying observables. The panel estimation approach of Equation

(3) is often adopted to investigate the effects of weather shocks. As stated above, weather

events are different from climate. It is plausible that weather variables in Cit vary randomly

over t as random draws from the distribution in a given spatial area, i.e., weather draws from

the climate distribution (Dell et al., 2014). From this intrinsic property of random replication,

most importantly, Dell et al. (2014) note that this ”weather-shock” panel estimation approach

in their article has strong identification properties through the two fixed effects terms. The

fixed effects of µi for the spatial area absorb fixed spatial characteristics, which can be

observed or unobserved including many possible omitted variables. The time fixed effects of

θt can reflect any common time trend like technology that help ensure that the relationships

of interest are identified from idiosyncratic local shocks.2 Since Equation (3) is mainly defined

as an explicit reduced form equation, it is relatively less plagued by the causal inference

problem than methods that include weather variables as instruments.

In empirical applications of Equation (3), researchers often encounter a number of

methodological decisions to implement the panel estimation approach (Dell et al., 2014).

2. Dell et al. (2014) point out that, in empirical studies, time fixed effects may enter separately by subgroups
of the spatial area to allow for differential trends in sub-samples of the data. As an example of this,
Deschênes and Greenstone (2007) include state by year fixed effects term for their county-level analysis.
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Even though including ZZZit is helpful to capture additional residual variations, the over-

controlling problem stated in the discussion of the cross-section model of Equation (2) can

be problematic if the endogeneity of ZZZit caused by Cit plays a role. If the time lag of the

dependent variable, yit−1
3, is assumed to be a part of the true data generating process, the

inclusion of the time lag with a short panel may bias coefficient estimates. Since the exclusion

of the lag variable may lead to omitted variable bias, enough length of panel data is required

to be adopted in most cases. The functional form of Cit is generally modeled as a flexible

form rather than the linear from in Equation (3). The frequently adopted method is using a

level value of Cit (e.g., exposure to growing degree days over the growing season) and giving

them as several regressors (Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009).

Despite its identification benefits, panel estimation of Equation (3) has difficulty connecting

short-run weather fluctuation to long-run climate change. The estimation and interpretation of

standard panel models of Equation (3) explain the variation in differences between observations

and the grand mean. Under this logic, Seo (2010) argues that the panel estimation with fixed

effects describes weather fluctuation rather than climate change that requires the concept of

grand mean variation. For this reason, the application of estimates of Equation (3) using

weather data to climate should start from the careful logic about how to match the short-term

results to the mid-term or long-term implication. The crop yield response function adopted

in this study provides a very well-developed example of this conceptual matching.

2.2 Crop Yield Response Function as a Panel Estimation

This study adopts agronomic crop yield response function to perform comparison analyses.

To derive the final model specification of the baseline model suggested by Schlenker and

Roberts (2009) in this study, we briefly summarize the methodological discussions from the

previous literature.

3. It is noteworthy that this paper investigate inclusion of spatial lag (spatial dependence) in the later
sections.
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We can find the early econometric investigation in the impacts of climate change on

agricultural production from the literature of production approaches. The production

approach specifies a relationship between climate and agricultural output, and uses this

estimate to simulate the impacts of climate change (Adams, 1989; Adams et al., 1995). Among

many different types of climate change impacts, some studies start adopting an agronomic

process of crop yield in economic production function (Dixon et al., 1994). The recent

production approaches give more flexible forms of production function or stochastic term of

inefficiency (Zhengfei et al., 2006). The early work of production approaches highly depends on

cross-section data whereas the recent work is based on panel estimation. The most important

contribution of production approaches in climate impact studies is involving weather (or

climate) variables as inputs of production function considering agronomic knowledge. For

instance, crop yield can be represented as yield production function in the form of Equation

(1):

y = f(H,P,S,X), (4)

where H is temperature, P is total precipitation, S is soil property, and X is other non-weather

exogenous variables4. The production function, f(·) is often given as a production function

like Cobb-Douglass and high-order translog production function. In other words, we can

adopt nonparametric forms in estimation of the production function. Both approaches can be

referred to general discussion of Stochastic Frontier Analysis (SFA) and Data Environment

Analysis (DEA).

The major econometric concern of adopting Equation (4) on weather impact analysis

is the downward estimates due to the disregards of compensatory responses to change in

weather made by profit-maximizing farmers. For example, farmers may alter their input

bundles in fertilizer, mix of crops, or changes of land use due to changes of climate (Deschênes

4. The weather (or climate) vector of the general form of Equation (1) become more specified as C = (H,P,S).
The weather input factors in crop yield response function comes from agronomic studies, for example,
Williams et al. (2008)
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and Greenstone, 2007). This myopic assumption of farmer’s behavior is named ”dumb-farmer

scenario.” (Mendelsohn et al., 1994)

To come up with the limited farmer’s compensatory behaviors in the production function

approach, Mendelsohn et al. (1994) develop the Ricardian approach, a type of hedonic

approach from the crop mix change scenario. By keeping the same weather variables in

Equation (4), we can present the Ricardian approach of panel data with the notation of

Equation (3) as:

yit =
J∑

j=1

βββjgj(Cit) + Zitγγγ + εit, (5)

where yit is farmland value (or crop revenues) rather than crop yields, C is a series of climate

variables5 and g(·) is a functional form of climate variables. For example, g(·) can be a

combination of monthly average temperature, their squared terms, and total precipitation

(Mendelsohn et al., 1994). The main philosophy adopted in Mendelsohn et al. (1994) is that

the farmland value (land rent) is equal to the net yield of the highest and best use of the

land under the competitive markets. Therefore, the rent of farmland can take into account

the direct impacts of climate on yields of different crops as well as the indirect substitution

of different inputs, introduction of different activities and other potential adaptations to

different climates.

Consistent estimation of the vector βββ requires E[gj(Cit)εit|Zit] = 0 for each climate variable

j. This assumption will be invalid if there are unmeasured permanent and transitory factors

that co-variate with the climate variables (Deschênes and Greenstone, 2007). Schlenker et al.

(2005) show that the irrigation factors are critical in the Ricardian approach while Schlenker

et al. (2006) adopt spatial weights matrix in the disturbance process. Furthermore, Deschênes

and Greenstone (2007) apply Conley’s method to take into account spatial correlation, which

5. The notations of Equation (5) is adopted and modified from Deschênes and Greenstone (2007). It is
noteworthy that C represents climate variables (mostly, the averaged values) whereas C indicates weather
variables (mostly, a realization of weather) in this study.
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can violate the exogeneity stated above.

Deschênes and Greenstone (2007) point out that the Ricardian approach can suffer from

the general specification and identification problem. They argue that it has been recognized

that unmeasured characteristics (e.g., soil quality and the option value to convert to a

new use) are important determinants of output and land values in agricultural settings.

Consequently, the Ricardian approach may confound climate with other factors, and the

sign and magnitude of the omitted variable bias is unknown. Instead of these confounding

complexities, Deschênes and Greenstone (2007) exploit the random year-to-year variation in

temperature and precipitation to estimate whether agricultural profits are higher or lower in

years when it was warmer and wetter. The panel estimation approach suggested by Deschênes

and Greenstone (2007) can be written as:

yit =
J∑

j=1

βββjgj(Cit) + Zitγγγ + µi + θt + εit, (6)

where yit is agricultural profits and Cit is a realization of weather. The replacement of

agricultural profits of yit in Equation (4) is due to the fact that land values capitalize long-run

characteristics of sites and, conditional on spatial fixed effects (µi), annual realizations of

weather should not affect land values. In addition, it is impossible to estimate the effect of the

long-run climate averages in a model with spatial fixed effects, because there is no temporal

variation in climate variables of Cit. Therefore, the climate variables in Equation (5) are

replaced with weather variables of Cit. The inclusion of a full set of spatial fixed effects of µi

allows absorbing all unobserved space-specific time-invariant determinants of the dependent

variable. The existence of time-indicator of θt is to control for time differences in the dependent

variable that are common regardless of location. Deschênes and Greenstone (2007, 2012)

argue that inclusion of the state by year fixed effects (θrt) is the proper specification of θt for

their county-level agricultural revenue analysis. The orthogonality condition is now given as
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E[gj(Cit)εit|Zit, µi, θt] = 0.

The major contribution of the panel estimation approach is that Deschênes and Greenstone

(2007) provide a theoretical and empirical framework of weather variables to incorporate long-

term behaviors of climate change. However, their model is only valid under the assumption

that farmers cannot undertake the full range of adaptation in response to a single year’s

weather realization. This assumption is supported by the fact that farmers are unlikely to

switch crops upon a year’s weather realization but adjust the mixture of inputs. If the degree

of climate change is small, which is expected in climate change studies, the panel estimation

approach provides the long-run hedonic equilibrium. The value of this panel estimation

approach is that it provides an alternative of production approach by simply replacing yit as

crop yields. The theoretical and empirical rigidity are not harmed from this replacement.

By adopting a county-level empirical study, Deschênes and Greenstone (2007) demonstrate

that there is no statistically significant relationship between weather and U.S. agricultural

profits, corn yields, or soybean yields. They also argue that if short-run fluctuation have

no impact, then in the long-run when adaptation is possible, climate change will plausibly

have little impact or could even be beneficial (Dell et al., 2014). This conclusion leads the

renowned controversial debate between Deschênes and Greenstone (2007, 2012) and Fisher

et al. (2012). Fisher et al. (2012) point out to the data errors in Deschênes and Greenstone

(2007) and demonstrate the indeed negative impacts of weather fluctuation from the corrected

data. They also argue that the state by year fixed effects (θrt) absorb almost all variations in

weather and thus, it is inappropriate in the panel estimation process. Besides, they argue that

the hedonic approach is still useful in the analysis and the recent nonparametric contribution

can resolve the problems pointed by Deschênes and Greenstone (2007). In the following

reply to Fisher et al. (2012), Deschênes and Greenstone (2012) defend that their conclusions

are not harmed by the data errors or other critics by Fisher et al. (2012). In the aspect of

spatial correlation, an interesting point in the debate is that they are all agree that spatial
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correlation is an important factor to be considered and they all adopts Conley’s method to

their results.

As a solution to the debate, Schlenker and Roberts (2009) suggest a very substantial

model crop yield response function that is the baseline model of this study as:

yit =

∫ h

h

g(h)φitdh+ zitγ + µi + εit, (7)

where the first term of integral represents a nonlinear form of temperature (the detailed in

Equation (9)), and zit includes total precipitation (and its squared) and time (and its squared).

The soil property is given in the spatial fixed effects terms of µi. Equation (7) includes the

important three agronomic determinants of crop yields—temperature, precipitation, and

soil—described in Equation (4). It is also based upon all substantial factors stated in the

methodological summary above. Since the Equation (7) follows the panel estimation approach

with the dependent variable of crop yields, it is an alternative to the production approach.

Schlenker and Roberts (2009) consider spatial correlation by adopting Conley’s method.

The major methodological contribution of Schlenker and Roberts (2009) is that Equation

(7) resolves nonlinearity, correlation, and endogeneity of weather variables. The nonlinearity

of temperature is given as a flexible functional form and the empirical demonstration of this

nonlinearity is evaluated as the most crucial impact of this literature. By considering the

conclusions of Roberts et al. (2012) concerning nonlinearity of precipitation and correlation

between temperature and precipitation6, Equation (7) takes into account the correlations

between weather variables. Finally, the fixed effects terms and time trends allow Equation

(7) to control potential issues from the omitted variables. In addition to the methodological

6. Roberts et al. (2012) empirically show that the quadratic form is statistically enough to reflect the
nonlinearity of precipitation. They also demonstrate that the correlation between temperature and
precipitation is not statistically significant and therefore, the inclusion of interaction terms of these two is
not necessary to be essential. However, they argue that there can be serious bias from the omission of
other weather factors like evaporation rate.

13



benefits of Equation (7), this study attempts to fill the gap of relatively less attention-paid

to but important factor, i.e., spatial correlation.

3. Spatial Correlation and Panel Estimation Approach

Weather or climate variables are inherently correlated across space (Auffhammer et al., 2013)

and it is well known from the spatial econometrics literature that the presence of spatial

correlation in regression models can lead to serious statistical problems (Anselin, 1988, 2006).

In addition, the potentially omitted weather variables can be taken into account by including

spatial correlation in the regression disturbance terms through Conley’s method or spatial

econometrics techniques (Auffhammer et al., 2013; Deschênes and Greenstone, 2007; Schlenker

and Roberts, 2009). This study, however, argues that inherent spatial correlation stated in

Auffhammer et al. (2013) is not particularly in relation to econometrics. Furthermore, spatial

correlation in the disturbance terms mainly comes from aggregation bias rather than the

omitted weather variables. We scrutinize spatial correlation in different aggregation levels

and connect an aggregation bias to the spatial specification in econometric models of the

panel estimation approach. And then, we extend the panel estimation approach by Schlenker

and Roberts (2009) to various spatial econometric specifications for the comparison analyses

of prediction capabilities.

3.1 Weather Data: Spatial Correlation and Aggregation Bias

Due to the recent increased availability of access to a number of different types of weather

(or climate) data, it is not difficult to find research adopting weather variables from many

difference sources7. Among the various types of data products based on the output of global

climate models (GCMs) (often called atmosphere-ocean GCMs, AOGCMs) or regional climate

7. Auffhammer et al. (2013) and Dell et al. (2014) describe many useful data sources for weather and climate
data products.
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models (RCMs), spatially gridded weather and climate data products have become popular

recently. The PRISM, the Climate Research Unit (CRU) at the University of East Anglia,

and data by University of Delaware (UDEL) are the three representative examples. We

particularly focus on the PRISM data due to its popularity in socio-economic literature.

The general logic pointed out here, however, is valid for any type of non-gridded or gridded

weather data products as well.

Before discussing spatial correlation in weather variables, it is prerequisite to understand

the data generating processes of the gridded (or areal) weather variables. This is because

spatial correlation is already incorporated into the values of this type of weather variables. In

addition, we can explain that spatial correlation issues in econometrics setup can be related

to the aggregated up or averaged variables to the larger geographical boundary than their

own provided geographical level, which are frequently used in economics.

One of the common mistakes from economists and non-climate specialists is that weather

variables can be measured in an area as a gridded weather data provides. Unfortunately,

however, this is not what weather variables stand for. Most of the weather variables including

temperatures and precipitations are continuous over space and time8 and they are measured

at a certain point not at an area per se. Even though gridded or aggregated weather variables

are computationally efficient and tactically convenient, they make unclear management issues

of spatial correlation in econometric models. For example, spatial correlation in temperature

means geostatistical correlation often described with the measures based on variogram rather

than areal measure like Moran’s I or G-statistic.

To briefly understand the meaning of spatial correlation in a data generating process

of weather variable, our interest is to find a relationship between a county-level corn yield

8. In geo-statistics, this type of data is defined as geostatistical data. The spatially collected data with a
certain areal boundary like county-level corn yield is called areal data. The event happens at a certain
location with uncertainty such as earthquakes is classified as point process. Depending upon these data
types, modeling strategy are different. For the further details, refer Cressie (1993).

15



in Indiana and the averaged temperature for April in the year of 2014. Figure 1 describes

spatial units of data collection and their symbolic generalization.

– FIGURE 1 about here –

In the left panel of Figure 1, the averaged temperature of April comes from the grid cell

data provided by the PRISM9. As descried above, temperature is continuous and they are

measured at a certain geographic locations. The ground stations dispersed irregularly over

the US measure temperature at first. However, there are not enough ground stations10 to

cover all regions as seen in ’∗’ of Figure 1. To cover the missing regions, a weather data

provider adopts interpolation, extrapolation or other statistical methods by adding additional

information like satellite measured data. Considering all important factors affecting weather,

the PRISM adopts a climate-elevation regression to produce weather a data of the 30 arcsec

(∼800m) sized grids for contiguous US (Daly et al., 2008). The size of 30 arcsec is the

USDA-NRCS standard to describe an agricultural climate data set. To generate a tractable

size of grids with 4 Km × 4 Km, which shown in Figure 1, the inverse distance weights are

applied to an observation and its neighbor cells, which is the same method commonly applied

in the spatial econometric literature to construct a spatial weights matrix. It is noteworthy

that constructing grid cell level weather variables is the process of a transformation from a

point-wise system to an area-wise system. Since this is a domain transformation between

infinite to finite, it is not viable to deliver all the information of point units to area units.

The PRISM data with 4 Km × 4 Km grid size, therefore, already includes spatial correlation

in its generation process and the size itself is the largest grid-size to reflect the actual spatial

variations in the weather variables for the contiguous U.S.

A grid cell of the PRISM is smaller than a county and each county is consisted of different

9. For the further details on data, refer to the PRISM webpages: http://www.prism.oregonstate.edu/.
10. For simplicity, we only represent the weather stations operated by the National Oceanic and Atmospheric

Administration (NOAA). In the PRISM, much more weather stations operated by other institutions are
reflected to their process. For the details, refer Daly et al. (2008)
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numbers of grid cells. Since the available corn yields data from the National Agricultural

Statistics Services (NASS) are county-level, we need to aggregated up the grid-cell to the

county-level. The right panel of Figure 1 generalizes this process of data collecting units.

We can assume that there are regions A = A1 ∪ A2 ∪ · · · ∪ An and Ai ∩ Aj = φ for ∀i 6= j.

For Ai, this region is consisted of several sub-regions such as Ai = ai1 ∪ ai2 ∪ · · · ∪ aini
and

air ∩ ais = φ for ∀r 6= s11. In our example, A is Indiana State, Ai is a county of Indiana, and

aij is a PRISM grid cell. If the temperature of a grid cell aij given by PRISM is Hij and Ai

has ni number of the PRISM grids, we can have H i as a county temperature by applying an

area weighted average for ni number of grids. As stated above, we cannot keep all spatial

variation in the PRISM grid cells due to the information loss of transformation. If we suppose

the disappeared spatial variation, a grid-cell temperature can be written as:

Hij = H i + νij =

ni∑
j=1

wijHij + νij, (8)

where νij is a grid cell-level temperature variation from the a county mean temperature H i

and wij is an areal weights to a grid cell aij . From Equation (8), we have the two propositions

in spatial correlation.

Proposition 1: The larger aggregation losses the more spatial variation.

As ni →∞, the absolute sum of νij diverges. i.e., lim
ni→∞

ni∑
j=1

|νij| does not define.

Proposition 2: The larger aggregation has the less spatial correlation by Proposition 1.

If k is a larger geographic aggregation level than i, then Hk is in [min(Hij),max(Hij)]. There-

fore, the spatial correlation with a larger level aggregation level (ρk) is less than its lower

11. In this example, we assumes that a county is consisted of several exclusive gridcells. It is, however, not
a problem having the cases that some grids cells are cut by two or more counties. When this happens,
researchers often apply areal weighting or omission of those cells.
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level aggregation (ρi). i.e., ρk ≤ ρi.

To empirically support the above two propositions, we calculate Moran’I of the grid-cell,

county-levle, and state-level for yearly average temperature, growing season degree days

(GDD) and total precipitation (Mar. to Aug.) from the PRISM data. All maps in Figure 2

are adopted 2013 data and the Moran’s I are based upon yearly changes.

– FIGURE 2 about here –

– TABLE 1 about here –

In case of temperature and total precipitation, it is clear that the grid cell-level variables are

highly spatially correlated due to their generating process. The yearly temperature of Figure

2 and Table 1 shows that county-level spatial correlations are similar. When using GDD

for Mar. to Aug., the correlation itself is smaller than temperature. However, county-level

Moran’s I shows the similar magnitude of spatial correlation. Therefore, we can say that

there has relatively less loss of spatial correlation in county level for temperature and GDD.

In case of total precipitation of Table 1, county-level Moran’s I are notably reduced. This is

because precipitations are more spatially heterogeneous and topography and other factors

affect precipitations a lot. In all three variables, state-level spatial correlations are shrunken

a lot. Therefore, state-level is not a fine aggregation level to consider spatial correlation in

all three variables.

From two propositions and the results of data analysis, we have two important implications

on model specification with spatial correlation of weather. First, we need to use a proper level

of aggregation on weather variables. Two propositions say that the area weighted weather

variables do not have enough level spatial variation information. Therefore, too large scale

aggregation of weather variable cannot be used in the models of spatial correlation. Second,

the main source of spatial correlation in the disturbance terms is the aggregation bias rather

than the omitted weather variables. In our example regression relation, the dependent variable
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is crop yields that the sum of total yields for a county whereas the temperature variable is the

area weighted value. Therefore, the spatial variation on the grid-cell levels within a county

is reflected to the dependent variable while those are eliminated in county-level averaged

temperature. Since the eliminated spatial variation plays a role to explain the variation of

crop yields, the disturbance term has to take into account spatial correlation unexplained by

county-level weather variables.

From the two model implications above, this study argue that spatial correlation in

weather variables does not necessarily mean grid-cell level spatial correlation stated in Figure

212 of Auffhammer et al. (2013). Spatial correlation can exist in any geographically aggregated

level of weather variables. In addition, the disappeared spatial variations due to aggregation

play a main cause of spatial correlation in the regression disturbance terms. Auffhammer

et al. (2013) mention that the spatial dependence of the regressors will not be a problem if

the model correctly accounts for all weather variables. This study, however, argues that the

spatial correlation in disturbance terms can be a problem even though researcher can include

all omitted weather variables that cannot generally happen. Besides, the omitted variables in

panel structure are possibly not a right reasoning to include spatial dependence structure.

Even though LeSage and Pace (2009) motivate the omitted variables is one of reason to

include spatially lagged variables, this is not rigid argument in the panel structure. Since

spatial fixed effects terms are presented in Equation (7), for example, these fixed effects terms

will take the role of omitted weather variables. If we motivate the omitted weather variables

to use spatial correlation structure in the disturbance terms of the fixed effects panel model,

it possibly double-counts the omitted variables and the estimates are likely to be confounded.

The motivation of omitted variables will be discussed again in the next section.

12. At p.189 in Auffhammer et al. (2013), they draw the map of spatial correlation calculated based upon the
values of eight surrounding neighbors’ cells. This study believes that spatial correlation requires to be
shown as spatially weights version of correlation like Moran’s I or Geary’s C rather than the Pearson type
correlation.
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We have an additional proposition needed to be considered in spatial correlation in the

disturbance terms.

Proposition 3: The center of an area in an aggregated weather variable is unknown.

Within Ai, the given weather variable is a constant over spatial boundary of Ai. Therefore,

the center of weather variables in a finer level geography

ni∑
j=1

wijAij does not necessary to be

matched with the centroid of Ai.

The most frequently adopted center of weather variable within the geographical boundary of

an area is the centroid. Many approaches to generate spatial dependence structure are based

upon the distance between two centroids, which are assumed as a known center of weather

variable. Any point inside of Ai, however, is possible to be a candidate of representative

point of weather. The centroid of Ai in the right panel of Figure 1 is the blue dot (•). If the

true center of Hi is the blue triangle (N), then the additional errors will be added into the

estimating model. A centroid is the physical center of mass over homogeneous areal unit, but

there is no evident reason that a centroid is a good representative center for deriving distances

of weather variables. And obviously, there is no proper answer to why the Euclidean distance

is a proper measure. Due to this incorrect measurement of distance, Conley (1999) studies two

different cases with the suggested model for an exact measure and for an inexact measure of

distance. The Conley’s method, therefore, can be an appropriate way to resolve the indicated

issues. Kelejian and Prucha (2007) propose a non-parametric spatial heteroscedasticity and

autocorrelation consistent (henceforth, SHAC) estimator of the VC matrix and this is a

generalized version of the Conley’s Method. Both methods can provide a better alternative

than the fixed structure of spatial dependence in Anselin (1988, 2006).

20



3.2 Spatial Specification of Crop Yield Response Function

In the prediction performance comparison analyses, this study replicates the crop yield

response function used in Schlenker and Roberts (2009) with different time periods13. The

county-level corn yield from 1981 to 2013 is adopted as an example and Equation (7) suggested

by Schlenker and Roberts (2009) is named FE for notational simplicity. In an explicit form

of Equation (7) can be written as:

FE: yit =

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + µi + εit, (9)

where Pit is total precipitation and t is time trend variable. In the nonlinear form of

temperature, φit(h) is the time distribution of heat over the growing season in county i and

year t. Following by Schlenker and Roberts (2009), we use the growing season to months

March through August for corn yields. Observed temperatures during this time period range

between the lower bound h and the upper bound h. A time-invariant county fixed effects µi

is to control heterogeneity, such as soil type and quality. The time trend t is included to take

into account advances of technology and other time dependent trends.

As stated in the previous section, we discuss the omitted variable motivation stated

in Auffhammer et al. (2013) briefly. Auffhammer et al. (2013) point out that the omitted

weather variables are the main source of spatial correlation in the regression disturbance

terms. This study, however, demonstrate that the main source of spatial correlation in the

disturbance terms are aggregation bias that force to vanish spatial variation. Further, the

omitted variable motivation by Auffhammer et al. (2013) is possible to be invalid argument

from the econometrics and spatial econometrics context. Of course, the most preferred way

13. We adopt the period of 1981 to 2013 whereas Schlenker and Roberts (2009) use the period of 1950-2005.
When Schlenker and Roberts (2009) published, the daily PRISM data was not available yet and they,
therefore, interpolate ground station-level weather data by themselves. The PRISM recently releases the
daily data for 1981-2014 (but the data of 2014 is provisional) and Roberts recommends to use this data
for a replication of their study in their G-FEED blog: http://www.g-feed.com/.
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is including the omitted variables as control variables, which is generally unavailable. The

next general attempts to resolve the omitted variable bias can be instrumental variables (IVs)

or control function approach. It is, however, really difficult to find an appropriate IV. In

the weather data generating process, almost of geographical characteristics are adopted. For

example, the PRISM uses elevation, longitude and latitude, topography, distance from the

coast, and many other weather related factors. If we, therefore, use these variables as an IV

or control factors, these can be doubly counted in the regression estimates. In addition to this,

it is noteworthy that panel estimation approach (Deschênes and Greenstone, 2007) adopted

in the baseline model is based upon the philosophy of absence of temporal correlation due to

the intrinsic property of weather fluctuation, which is randomly and exogenously given. For

this reason, the past weather data cannot be a proper IV or control factor as well.

The next approach to resolve the omitted weather variables issue can be adding fixed

effects terms and this is a particularly proper way in panel model. If this is the case in the

crop yield response function of Equation (7), then we will encounter difficulty to discern time

invariant soil factors from the omitted weather variables. It is possible to leave the spatial

fixed effects taking these confounding factors if the fixed effects terms are not dominating all

the regression variation. As Auffhammer et al. (2013) argued, if there is spatial correlation in

the omitted weather variables, then this is a motivation to have random effects rather than

the fixed effects (LeSage and Pace, 2009). Since we have to keep soil factors in the control

variable set, soil factors have to be present in the random effects panel set up as:

RE: yit =

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + γγγSi + εit, (10)

where S is a vector of soil properties at county i. In empiricial analysis, we adopt four soil

factors—water holding capacity (whc), soil erosivity of K-factor, organic matters in top soil,

and soil pH. Equation (10) is an alternative specification motivated from the omitted weather
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variables mentioned in Auffhammer et al. (2013).

One important assumption of the panel estimation is possibility of input mix even though

change of crop is not allowed. Under this assumption, the possibility of spatial correlation in

input mix can be questioned. Separating from the omitted weather variable motivation, this

can be named the omitted socio-economic variables. Unlike the omitted weather variables, the

omitted socio-economic variables are the factor of the dependent variable because the given

panel estimation approach assumes the crop yield response function as the optimized value

function. This motivation, therefore, provides the necessity of spatially lagged dependent

variable that is believed as a fine proxy of omitted spatially correlated variables (Anselin,

2006; LeSage and Pace, 2009). Our alternative spatial panel specification from the omitted

socio-economic variables can be represented as:

FE SLAG: yit = ρwiyt +

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + µi + εit, (11)

where wi is ith row of spatial weights matrix.

In addition to the specification above, we can derive another possibility of spatial cor-

relation from the geophysical processes. As we discussed weather data generating process,

weather variables are inherently spatially correlated. Even though Auffhammer et al. (2013)

state that the spatial dependence of the regressors will not be a problem if the model correctly

accounts for all weather variables, this cannot be agreed with spatial econometricians (Anselin,

1988, 2006). One interesting point on this motivation is that the literature adopting crop

yield response function with spatial econometric approaches are not taken into account this

motivation (Anselin et al., 2004; Baylis et al., 2011). Particularly, Baylis et al. (2011) perform

the panel estimation approaches by using farmland values as the spatial panel version of

Deschênes and Greenstone (2007). They, however, overview the possibility of spatial econo-

metric extension of the panel estimation approach and don’t provide any detailed specification
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motivation. For this reason, this study attempts to involve geophysical motivation as a

testable simulation. The equation of geophysical motivation can be written as:

SLX: yit =

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + witCjtθθθ + µi + εit, (12)

where Cjt is a vector of heat and precipitation variables. In empirical specification, we adopt

all heat variables (xit) and total precipitation (P ) but its squared. The spatially lagged

explanatory (SLX) weather variables can be combined the above specification as well.

In addition to four specifications above, we perform two additional specifications. By

following the textbook type panel regressions, the pooled regression model can be played as

a comparable model in Equation (13).

Pooled: yit =

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + εit, (13)

The spatially robust standard errors are usually adopted with Conley’s method and SHAC.

Therefore, we additionally calculate Conley-type standard errors for FE and SLX. For FE

SLAG model, SHAC is added for the counterpart. Since these additions are based on the

residuals derived from the N1/2 consistent estimator, we estimate FE, FE SLAG, and SLX

with Generalized Method of Moments (GMM) estimation. In the case of RE model, standard

errors are not separately calculated from the estimators. By considering the assumptions of

no-serial (or temporal) correlation, we have the spatial random effects model suggested by

Kapoor et al. (2007) as:

KKP-RE: yit =

∫ h

h

g(h)φitdh+ γ1Pit + γ2P
2
it + γ3t+ γ4t

2 + γγγSi + uit. (14)

With matrix notation, uN = ρ(IT ⊗WN )uN + εεεN where N is the size of spatial observations,

T is the size of time period, I is identity matrix, W is spatial weights matrix, and ⊗ is the
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Kronecker product.

One may question the identification issues in spatial econometrics pointed by Gibbons

and Overman (2012), McMillen (2012), and Pinkse and Slade (2010). We emphasize the fact

that this study is not trying to estimate the best coefficient (given as λ or ρ in the above) of

spatially dependent variables. Since the crop yield response function play a base model in

many fields to have prediction caused by climate change, this study implement prediction

capability comparison as the main purpose. With this specific purpose, this study follows the

usage of spatial econometric models as a predictor in Dormann et al. (2005). The interested

reader may find more abundant spatial panel specifications from Elhorst (2014) and Millo

(2014).

3.3 Additional Specifications

To implement empirical estimations for the regression models above, we need to have additional

specification in the functional from of heat and the spatial weights matrix of FE SLAG,

KKP-RE, and spatial kernel density function in spatially robust standard errors. Schlenker

and Roberts (2009) adopts three different specification on the heat integrals—step function,

m-th order Chebychev polynomials, and piecewise liner–for the approximation of g(h). We

apply the m-th order Chebychev polynomials to have a smooth representation of temperature

impacts as:

∫ h

h

g(h)φitdh =
m∑
k=1

δk

39∑
h=−1

Tk(h+ 0.5) [Φit(h+ 1)− Φit(h)]

=
m∑
k=1

δkxit,k,

where Tk(·) is an m-th order Chebychev polynomial. Adopting the results of Schlenker

and Roberts (2009), we choose eighth order Chebychev polynomial and thus, k = 8 in our
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specification.

To keep the consistency of spatial correlation arguments in the previous section, we adopt

the first order queen spatial weights matrix and apply the row standardization scheme that

supports the consistent estimator of irregular spatial process (Kelejian and Prucha, 1999). In

Conley’s method and SHAC estimator, we need to specify the spatial kernel density function.

Conley (2008) states that a uniform kernel density can be an operationally convenient choice

and, therefore, we adopt it. In the SHAC variance-covariance matrix estimator, we apply

the Parzen kernel density that is used in Kelejian and Prucha (2007). In both kernel density

functions, the bandwidth is given as six-nearest distances to satisfy N1/2 consistency condition

descried in Kelejian and Prucha (2007). It is noteworthy that six is very close to the average

number of spatial links (5.6130) in the spatial weights matrix adopted in FE SLAG and RE

of the following empirical analysis.

For all data management and estimation process, the most recent version of R (3.2.0)

at the point analysis is adopted14 with plm packages (Croissant and Millo, 2008) and splm

packages (Millo and Piras, 2012).

4. Data and Estimation Results

To implement prediction performance comparison among the models above, we adopt corn

yields from the National Agricultural Statistics Services (NASS) by the United States

Department of Agriculture (USDA), weather variables from the PRISM data, and soil data

from the gridded Soil Survey Geographic (gSSURGO) database. The constructed balanced

panel data is 1,964 counties for 33 years (i.e., N = 1, 964×T = 33). Area weighted average is

applied to all weather and soil variables from the gridded PRISM (4 Km × 4 Km resolution)

and gSSURGO (10 m × 10 m resolution).

14. In data management steps, parallel computing is adopted on the Intel(R) Core(TM) i5-2450M CPU of
2.50GHz with 8 GB RAM and 64 bits Windows system.
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4.1 Temporal and Geographical Range

This study adopts the daily temperature and precipitation data from the PRISM. The fully

available daily weather data period in the PRISM is 1981 to 2014. Since the current version

of the year 2014 data is provisional15, this study takes the study period as 1981 to 2013 (33

years). The geographical boundary of this study is the east counties of the 100th Meridian to

avoid irrigation issue, which forms an endogeneity in the crop yield response function. This is

the same geographical boundary adopted in Schlenker and Roberts (2009). Since the county

and state geographical boundaries have been changed for the past 33 years, we adopt the

most detailed 500k (1:500,000) county boundaries map of 2013 from the Census Bureau16.

All variables are matched with this map. The Figure 3 shows the geographical boundary and

frequencies of yield data from 1981 to 2013.

– FIGURE 3 about here –

The histogram of Figure 3 (a) describes county-level yearly corn harvesting frequencies of

the east counties of the 100th Meridian line. Among 2,510 east counties, 2,393 counties

have produced corn at least once. Within 2,393 counties, 429 counties have not produced

corn for some years while 1,964 counties have done for full 33 years. The map of Figure

3 (b) represents geographical boundaries of study area. The non-colored counties are the

west counties of the 100th Meridian line or non-corn growing counties. Among 2,393 colored

counties, the skyblue-colored areas are 1,964 counties of 33 years corn growing history while

the pink regions are excluded 429 counties due to its shorter corn growing history.

In the empirical studies of this study, we construct N = 1, 964 × T = 33 of balanced

panel data by using only 1,964 counties of 33 years corn growing data. While estimation

methods of non-spatial panel regression models are broadly applicable in both balanced and

unbalanced data, spatial panel models with unbalanced data are currently under suggesting

15. The last accessed to the PRISM FTP is January 10th, 2015.
16. https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html
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and developing stages (Pfaffermayr, 2009; Wang and fei Lee, 2013). By excluding the pink

colored counties, 14.64 % of available observations are not used. Selection issues can be

questioned from this exclusion. We argue, however, that the selection bias is not serious

in this study due to two reasons. Schlenker and Roberts (2009) empirically demonstrate

robustness of their estimation results by comparing the east counties only to the all counties

of 48 contiguous states. In addition, the study area in Figure 3 covers most major corn belt

regions and the exclusion itself does not create any island county that causes non-link spatial

process in spatial economic models.

4.2 Variables

The six comparable models in this study need variables of corn yield, temperature, precip-

itation, and soil. Table 2 presents the explanation of variables adopted in this study and

descriptive statistics.

– TABLE 2 about here –

The past county-level corn yields (bu/ac) are extracted from the NASS. Based on the map of

2013, we adjust some counties aggregated or disaggregated counties by using the bridge table

provided by the NASS17. The counties disappeared in 2013 are excluded. In regression analysis,

we transform corn yields as the logarithmic form. Therefore, the corn yield represented in

regression equations is yit = log(corn yieldit + 1).

In crop yield response function, many different temperature measures can be applied.

The most simplest measure year or monthly average temperature and their interactions, for

example, Lobell and Burke (2010) and Mendelsohn et al. (1994). Deschênes and Greenstone

(2007) point out that the cumulative heat exposure is agronomic ally proper measure of the

role of temperature in any plant growth. Many recent careful studies now use GDD as the

heat measure on crop yield response function (Deschênes and Greenstone, 2007; Roberts

17. http://www.nass.usda.gov/Data_and_Statistics/County_Data_Files/Frequently_Asked_
Questions/county_list.txt
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et al., 2012; Schlenker et al., 2006). By following Schlenker and Roberts (2009), this study

estimates the GDD by using a sinusoidal curve between the daily minimum and maximum

temperature in PRISM data18. We construct the GDD of Mar. to Aug. in each 1◦ C degree

temperature interval between -5 ◦C and +50 ◦C over whole 4Km by 4Km PRISM grid cells.

At each degree over all PRISM grid cells in a county, we finally derive county-level GDD with

the area-weighted average. The agricultural area in each cell is obtained from Schlenker’s

web-link19. In Table 2, the descriptive statistics of optimal GDD for corn growing between +5

◦C and +35 ◦C is presented. In regression analysis, we lump all time a corn plant is exposed

to a temperature below 0 ◦C into one category that indicates freezing level as Schlenker

and Roberts (2009) do. Similarly, the harmful temperature above 39 ◦C is lumped into

one category. The total precipitation in mm between March to August within each year is

adopted as ppt variable as shown in Table 2. This 1◦ C degree heat measure covers all the

optimal or harmful temperature ranges stated in agronomy literature. Figure 4 describes

distribution of yield, temperature and total precipitation.

– FIGURE 4 about here –

It is noteworthy that the GDD distribution in Figure 4 has a thicker for higher temperature

range than the GDD distribution in Schlenker and Roberts (2009). This is because our study

period includes more recent climate change impacts (the warmer temperature trends and

2012 droughts) for 2006 to 2013, which are not included in Schlenker and Roberts (2009). It

is, however, both distributions are very similar.

In this study, we very carefully select soil variables for RE and KKP-RE models. Many

previous economic-climate literature adopt soil structure (proportion of sand, clay, and

silt) and other soil properties such as drainage or erosivity as a separate variable. For

example, Schlenker et al. (2006) and Baylis et al. (2011) adopt the percentage of clay and the

18. The detailed methods can be referred from the University of California Statewide Integrated Pest
Management (UCIPM) program: http://www.ipm.ucdavis.edu/WEATHER/ddconcepts.html

19. http://www.wolfram-schlenker.com/dailyData.html
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premeability in a regression model. It is, however, noteworthy that soil structure is a major

determinant of other soil properties. The more clay means higher premeability, the more

sandy soil shows higher drainage and erosivity factor. In many cases, therefore, inclusion of

soil composition and other soil properties in a regression model can be double counting of

a soil property. Wolkowski (2005) classifies ten important soil factors on crop production

system20. Among those, we select four factors—organic matter (om), erosion (K-factor),

drainage (water holing capacity, whc), and soil pH—without including soil composition in

empirical analysis. From 10m by 10m gSSURGO data, we first calculate each depth averaged

soil factors across soil horizon. Then, we apply the area weighted average on all soil variables

within each county. The values in this study are depth and area weighted averages of each

county. Since county-level soils are assumed to be invariant over times, the number of

observations in soil variables of Table 2 is 1,964 counties. To verify the rigidity of our soil

calculation, we plot four soil values over study area as shown in Figure 5.

– FIGURE 5 about here –

From the US Geological Survey (USGS), we confirm that all four soil variables show the

similar spatial distribution with the USGS maps.

4.3 Estimation Results

With variables defined in Table 2, we estimate six comparable models—Pooled, FE, FE

SLAG, RE, and KKP-RE—in the previous section with proper estimation methods. Table 3

shows the model estimation results.

– TABLE 3 about here –

In Table 3, we present standard errors in parenthesis and spatially (robust) standard errors

in brackets. Due to two standard errors with one estimate in some models, we mark asterisks

20. This is an extension article from University of Wisconsin: http://www.soils.wisc.edu/extension/

area/horizons/2005/SoilQualityCropProduction.pdf. The ten important factors are 1. Organic
matter, 2. Crop appearance, 3. Earthworms, 4. Erosion, 5. Tillage ease, 6. Drainage, 7. Soil structure, 8.
Soil pH, 9. Soil test P and K, and 10. Yield.
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of p-values on the standard errors instead of on the estimates. As Deschênes and Greenstone

(2007, 2012) and Fisher et al. (2012) discussed, spatially robust standard errors with Conley’s

method and SHAC estimator are larger than the standard errors in parenthesis and thus, the

p-values with spatially robust standard errors are improved.

As shown in Table 3, overall individual significance levels are good enough for all models.

As expected, FE and FE SLAG models show the same directions of sign for all estimates

as RE and KKP-RE do. It is noteworthy that the terms reflecting spatial correlation are

statistically significant. The spatial lag coefficient, λ in FE SLAG is positive and statistically

significant with 1 % significance level. All spatially lagged variables of temperature and

precipitation variables in SLX model are statistically significant. The ρ coefficient in KKP-RE

model derived from the first stage of optimization of the moment condition is 0.6406 and the

magnitude itself is very similar to the estimated λ.

Across all models, precipitation and time trend variables shows the same and expected

direction of signs. In contrast, the estimates of Chebyshev polynomial coefficients change

relatively largely across models. This means that the nonlinearity in each model are much

different from each other due to the different assumptions of spatial correlation. It is, however,

noteworthy that the signs of the highest Chebyshev polynomial coefficients are all negative

and this supports the inverse U-shaped global nonlinear temperature trends in Schlenker

and Roberts (2009). All soil variables in RE and KKP-RE are statistically significant except

organic matters (om) and have the same positive signs.

As discussed earlier, the true data generating process of crop yield response function is

unknown. The six comparable models are competing models in having better estimation and

prediction. Due to its high importance of crop yield response function in prediction in many

related studies, this study aims to implement prediction performance comparison analyses.

The estimation results in Table 3 are directly used for in-sample prediction analysis in the

next section.
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5. Performance Comparison Analysis

This study implements two types of prediction analysis. The first is in-sample prediction

performances from the results of Table 3. The second is out-of-sample prediction by simulating

1,000 year-to-tear sampling replications.

5.1 In-Sample Prediction Performance

By adopting the estimates in Table 3, we calculate the mean root squared errors (RMSE)

between observed corn yields (yit) and predicted corn yields (ŷit). Figure 6 presents the

averaged RMSE over 33 years in each county.

– FIGURE 6 about here –

Across all six models, the third quantile (75 %) of RMSE is less than 0.8 except FE SLAG.

To make all results are comparable with the same scale, we assign the counties having the

RMSE greater than one as one in Figure 6. In in-sample prediction, FE SLAG model shows

the poorest in-sample prediction performance among all six models and its county-level

average RMSEs are greater or equal to one over all study area. Contrast to the results of

FE SLAG, the other five models show relatively less RMSEs across all counties. From the

RMSEs in five models, we can indicate obvious spatial patterns in RMSE. The west counties

in study area show less accuracy in in-sample prediction. In addition, relatively larger RMSEs

are recorded along with the Appalachian Mountains. As discussed in the earlier sections

on spatial correlation, this result can be explained by two geographical factors. First, we

intentionally select the east counties of the 100th Meridian line to avoid irrigation issues. The

west counties in the study area, however, are not fully free from the irrigation efforts. The

other reason is topographical complexity of the counties along with Appalachian Mountains.

The temperature and precipitation in bumpy areas shows more dynamical changes than those

in flat regions. Due to our county-level aggregation, this alteration becomes smoothed and

makes less accurate predictions.
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The first column of Table 4 represents the average of in-sample RMSE over whole 64,812

observations.

– TABLE 4 about here –

SLX and FE shows the best prediction performance in in-sample prediction. The averaged

RMSE of RE is only 0.004 smaller than the first two, and its value of KKP-RE is approximately

0.03 smaller than the averaged RMSE of RE. Due to these tiny differences, it is hard to

confirm the goodness of prediction performances among the first four models. Considering the

fact that the Pooled model has no spatial correlation consideration, the averaged RMSE of

FE SLAG is notably worse than other models. At least in in-sample prediction performance,

the spatial correlation come from changes of input mix seems not to be a strong motivation.

5.2 Out-of-Sample Prediction Performances

The in-sample prediction can play a role to explain the goodness of fit measure. To compare

direct prediction performances, the more general approach is (pseudo) out-of-sample predic-

tion. Among 1,000 times of sampling replication, we randomly select 27 of the 33 years in

our full sample. Relative performance is measured according to the accuracy of each model’s

prediction for the omitted 6 years of the sample (approximately 18 %). By the rule of thumb,

15 % to 20 % of out-sample selection is generally performed. Due to considerable spatial

correlation across study areas, we sample years of year-to-year random weather fluctuation

instead of observations (Schlenker and Roberts, 2009).

The second column of Table 4 represents the averaged RMSE of out-of-sample prediction.

The order of models in table is arranged by the superiority of out-of-sample prediction

performances, i.e., the smaller RMSE to the larger. From the 1,000 replications, SLX and

FE show the best prediction among six models. The following models are KKP-RE and RE.

Again, the differences between the first two and the second two are marginally small as about

0.03. From the results, we can conclude that FE SLAG is a relatively poor predictor of crop
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yield response function.

The rest of five columns present pair-wise Welch t-test against the null hypothesis of equal

RMSE under unequal variances. The smaller statistic means two models are performing the

same prediction according to the produced RMSE. The larger means tow models are not

performing the same predictions. The Welch test results indicate that SLX and FE produce

the same RMSE but the other models do not. Particularly, FE SLX is expected to have the

similar performances with FE. Yet, it turns out that this expectation is statistically not true.

The RMSE from KKP-RE is statistically congruent to the RMSE of RE. The other models,

however, do not comparable to RE or KKP-RE.

With the motivations of six models, the results of in-sample and out-of-sample per-

formances provide two important intuitions for researchers and practitioners interested in

prediction of crop yield response function corresponding to climate change impacts. First,

the inclusion of spatial correlation into crop yield response function can be motivated by the

management or adaptation purposes rather than the improvement of prediction performances.

As discussed, the four models—SLX, FE, RE and KKP-RE—are not statistically discernible

in prediction sense. Due to the different motivation in four models, each model can be

selected to fit the purpose of prediction. SLX model is better to reflect direct geo(bio)physical

process. The impact of heat islands or freezing poles can be an appropriate case of SLX.

FE models can reflect direct spatial heterogeneity in fixed effects terms. In economics, this

spatial heterogeneity sometimes play a more important role rather than spatial dependence

of weather variables. RE and KKP-RE models have soil variables as regressors. Since many

climate impacts on crop yields and its adaptation processes are related to carbon emission,

N-fertilizer usages, and irrigation matters, RE or KKP-RE model can be a proper model

strategy to these cases.

The second modeling intuition is that the omitted soico-economic variables (FE SLAG)

are possibly not an important factor to be considered. Since the model of Deschênes and
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Greenstone (2007) allows the changes input mixes, the omission of important socio-economic

variables in the model sometimes becomes a serious modeling issue. From the results of

in-sample and out-of-sample prediction performances, at least, we demonstrate that the

inclusion of spatially lagged corn yields is not helpful to increase prediction performance. In

addition to this, there is a possibility that WY is not a good instrument or proxy of the

omitted socio-economic variables unlike spatial econometricians’ expectation. It is noteworthy

that this is the exactly opposite conclusion from the panel estimation approaches on land

values in Baylis et al. (2011). As an alternative of production approach, the crop yield

response function of panel estimation does not support the role of spatially lagged dependent

variable in prediction performance aspect.

6. Conclusion

Due to the rapidly growing availability and accessibility of spatially gridded weather data,

significant effort has been devoted to handling weather and climate variables properly in

econometric models. Among many potential pitfalls, this paper aims to analyze the role

of spatial correlation in economics of weather and climate. For the model specification

purposes, this study first demonstrates empirical necessities of embedding spatial correlation

in econometric models by scrutinizing spatial correlations with the geographic aggregation

levels and discussing potential economic and geo(bio)physical reasoning. By adopting the crop

yield response function in Schlenker and Roberts (2009), this study classifies six panel models

to be compared—Pooled, FE, FE SLAG, RE, and KKP-RE. With the corn yields during 1981

to 2013, this paper empirically implements prediction comparison analysis through in-sample

and out-of-sample prediction performance. We remark six conclusion and contributions of

this study as follows.

First, the major source of spatial correlation in weather and climate variable is aggregation

bias rather than the omitted variable bias. With the three propositions and empirical analysis
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of temperature, GDD and precipitation, we argue that the aggregation of weather variables

is not properly managed in the regression setup. To take into account this aggregation bias,

we need to consider specification strategies on how to reflect this spatial correlation.

Second, spatial correlation caused by aggregation bias and omitted variables can be

involved as different model specification strategy. If the aggregation bias is the major issue,

then these spatial correlations are lumped into the disturbance terms of an econometric

model. By adopting spatially robust standard errors like Conley’s method or SHAC, this

can be properly managed. The direct inclusion of spatially lagged weather variables can be

another specification strategy. If the omitted socio-economic variable plays an important role,

then spatially lagged dependent variable can be an instrument or proxy variable of it. In the

case of spatial correlation caused by the omitted weather variables, then the random effects

model with soil variables is an alternative specification rather than fixed effects model. Based

on these specifications, we classify six competing models of crop yield response function.

Third, soil composition variables can create double counting problem with other soil

properties in crop yield response function. With careful review on agronomic-soil literature,

this paper argues that many soil properties are derived from the soil composition of sand,

clay and silt. In crop yield response function, we include four soil properties—water holding

capacity, erosivity K-factor, organic matters, and soil pH—but soil structure in random

effect models. We believe that this soil specification is valid for other models including soil

characteristics.

Fourth, the spatially robust standard errors by Conley’s method and SHAC estimators

can provide a better confidence intervals of prediction. From the estimation results of six

models in Table 3, we can find the general patterns of larger standard errors in Conley’s

method or SHAC than non-spatial standard errors. This, therefore, makes a better statistical

test result in individual estimates and a narrower confidence interval of predictor.

Fifth, the motivation to choose prediction models can be a better economic motivation
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rather than a better prediction. As shown in in-sample and out-of-sample prediction perfor-

mances, the four models of SLX, FE, KKP-RE and RE produce the statistically indiscernible

prediction performances. This means, therefore, the selection prediction model can be orig-

inated from the benefits of each model setup. SLX model can be better in regional level

analysis, FE is possibly good in spatial heterogeneity analysis, and RE/KKP-RE can provide

benefits of adaptation processes corresponding to climate change.

Lastly, there is a possibility that the bias from omitted socio-economic variable in crop

yield response function is not serious as expected. The prediction performance of FE SLAG

model is the worst in both in-sample and out-of-sample prediction. If the spatially lagged

dependent variable is a good proxy as stated in spatial econometrics, then the changes of

input mix in Deschênes and Greenstone (2007) is well reflected in the corn yields itself and

therefore, there is little spatial correlations are generated from this omitted variables. At

least, in empirical crop yield response function of this study, it turns out that the omitted

socio-economic variables are not serious source of spatial correlation.
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Deschênes, O. and Greenstone, M.: 2007, The economic impacts of climate change: Evidence
from agricultural output and random fluctuations in weather, The American Economic
Review 91(1), 354–385.

Deschênes, O. and Greenstone, M.: 2012, The economic impacts of climate change: Evidence
from agricultural output and random fluctuations in weather: Reply, The American
Economic Review 102(7), 3761–3773.

Dixon, B. L., Hollinger, S. E., Garcia, P. and Tirupattur, V.: 1994, Estimating corn yield
response models to predict impacts of climate change, Journal of Agricultural and Resource
Economics 19(1), 58–68.
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Table 1: Moran’s I: Yearly Average Temperature, Growing Season Degree Days (GDD) (Mar.
to Aug.), and Total Precipitation (Mar. to Aug.)

Avg. Temperature GDD Total Precipitation
year Grid County State Grid County State Grid County State

1981 0.9876 0.9778 0.7233 0.7189 0.6511 0.0075 0.9484 0.6532 0.1729
1982 0.9889 0.9827 0.7581 0.7599 0.7974 0.1763 0.9463 0.6922 0.2831
1983 0.9875 0.9761 0.7192 0.7477 0.7683 0.0719 0.9460 0.6684 0.3582
1984 0.9890 0.9802 0.7337 0.7563 0.7828 0.0753 0.9516 0.7750 0.1996
1985 0.9894 0.9830 0.7517 0.7337 0.7666 0.1085 0.9547 0.6934 0.2869
1986 0.9884 0.9808 0.7530 0.7066 0.6063 0.0522 0.9459 0.6009 0.2094
1987 0.9876 0.9744 0.7334 0.6859 0.6544 -0.0206 0.9432 0.6150 0.1180
1988 0.9877 0.9765 0.7164 0.7082 0.7657 0.0470 0.9417 0.6741 0.1626
1989 0.9883 0.9809 0.7317 0.7476 0.7391 0.1756 0.9630 0.7628 0.1744
1990 0.9885 0.9796 0.7468 0.7142 0.7027 0.1161 0.9581 0.6430 0.2065
1991 0.9885 0.9792 0.7350 0.7570 0.7812 0.0375 0.9513 0.7935 0.3496
1992 0.9877 0.9783 0.7313 0.7405 0.7628 0.2801 0.9510 0.7523 0.1544
1993 0.9892 0.9814 0.7440 0.7311 0.6010 0.0767 0.9549 0.6393 0.1791
1994 0.9879 0.9797 0.7381 0.7298 0.7822 0.2854 0.9658 0.7822 0.2767
1995 0.9883 0.9794 0.7345 0.7514 0.7615 0.0717 0.9468 0.6389 0.2762
1996 0.9890 0.9818 0.7394 0.7411 0.7500 0.2704 0.9568 0.7670 0.1901
1997 0.9879 0.9784 0.7215 0.7512 0.7892 0.2390 0.9546 0.7059 0.1820
1998 0.9886 0.9786 0.7530 0.7083 0.7383 0.2720 0.9543 0.7934 0.3074
1999 0.9886 0.9791 0.7367 0.7245 0.6975 0.0656 0.9473 0.6385 0.2648
2000 0.9885 0.9803 0.7420 0.7118 0.7229 0.1504 0.9556 0.7112 0.1720
2001 0.9883 0.9781 0.7314 0.7300 0.7971 0.2792 0.9582 0.7004 0.3177
2002 0.9886 0.9793 0.7295 0.7552 0.7997 0.2004 0.9641 0.7220 0.3470
2003 0.9877 0.9798 0.7366 0.7438 0.8327 0.1438 0.9617 0.8447 0.2785
2004 0.9882 0.9803 0.7376 0.7404 0.7437 0.2167 0.9602 0.7449 0.1518
2005 0.9886 0.9797 0.7386 0.7126 0.7467 0.0953 0.9494 0.7667 0.2904
2006 0.9887 0.9788 0.7258 0.6961 0.6999 0.0755 0.9481 0.6927 0.2615
2007 0.9884 0.9808 0.7485 0.7047 0.7270 0.1039 0.9630 0.5954 0.0821
2008 0.9892 0.9823 0.7328 0.7479 0.7859 0.1687 0.9674 0.7171 0.1904
2009 0.9892 0.9827 0.7362 0.7417 0.7651 0.3062 0.9626 0.7618 0.2920
2010 0.9891 0.9787 0.7381 0.7123 0.6820 0.1040 0.9483 0.6394 0.1842
2011 0.9897 0.9829 0.7452 0.7439 0.7358 0.3715 0.9606 0.7551 0.2183
2012 0.9887 0.9788 0.7309 0.7072 0.7607 0.3090 0.9521 0.6802 0.2998
2013 0.9886 0.9819 0.7212 0.7318 0.8298 0.2703 0.9643 0.7930 0.2556
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Table 3: Estimation Results

Pooled FE FE SLAG SLX RE KKP-RE
Eq (13) Eq (9) Eq (11) Eq (12) Eq (10) Eq (14)

xit,1 −8.8880 −2.3365 −0.7016 0.1379 −3.4155 −3.2652
(0.0928)∗∗∗ (0.1049)∗∗∗ (0.1214)∗∗∗ (0.5678) (0.0967)∗∗∗ [0.1719]∗∗∗

[0.1313]∗∗∗ [0.1316]∗∗∗ [0.1919]
xit,2 −7.3300 −1.5055 −0.4492 −0.6053 −3.6886 −3.9155

(0.0400)∗∗∗ (0.0862)∗∗∗ (0.0888)∗∗∗ (0.4922) (0.0565)∗∗∗ [0.0981]∗∗∗
[0.0504]∗∗∗ [0.0600]∗∗∗ [0.1740]∗∗∗

xit,3 −6.5000 −0.8503 −0.2409 0.3119 −1.9659 −1.7950
(0.0992)∗∗∗ (0.0992)∗∗∗ (0.0845)∗∗∗ (0.4423) (0.0942)∗∗∗ [0.1665]∗∗∗

[0.1319]∗∗∗ [0.1336]∗ [0.1462] ∗ ∗
xit,4 −7.0840 0.1395 0.0745 1.0313 −1.8551 −1.9326

(0.0643)∗∗∗ (0.0916) (0.0718) (0.4020) ∗ ∗ (0.0721)∗∗∗ [0.1270]∗∗∗
[0.0847]∗ [0.0895] [0.1138]∗∗∗

xit,5 −3.4450 0.0407 0.0324 0.5264 −0.6758 −0.5089
(0.1082)∗∗∗ (0.0942) (0.0738) (0.3631) (0.0925)∗∗∗ [0.1589]∗∗∗

[0.1329] [0.1363] [0.0539]∗∗∗
xit,6 −6.3250 0.0681 0.0511 0.6078 −1.4149 −1.3172

(0.0904)∗∗∗ (0.0958) (0.0750) (0.3481)∗ (0.0868)∗∗∗ [0.1488]∗∗∗
[0.1207] [0.1198] [0.0312]∗∗∗

xit,7 −1.8550 −0.9734 −0.3068 0.4853 −1.2050 −0.8748
(0.0932)∗∗∗ (0.0754)∗∗∗ (0.0693)∗∗∗ (0.2787)∗ (0.0755)∗∗∗ [0.1289]∗∗∗

[0.1131]∗∗∗ [0.1154]∗∗∗ [0.1948] ∗ ∗
xit,8 −4.7480 −1.0387 −0.3379 0.3425 −1.8827 −1.4327

(0.0878)∗∗∗ (0.0792)∗∗∗ (0.0729)∗∗∗ (0.2777) (0.0760)∗∗∗ [0.1294]∗∗∗
[0.1094]∗∗∗ [0.1155]∗∗∗ [0.0319]∗∗∗

Pit 0.0018 0.0011 0.0004 0.0015 0.0016 0.0016
(0.0001)∗∗∗ (0.0001)∗∗∗ (0.0001)∗∗∗ (0.0001)∗∗∗ (0.0001)∗∗∗ [0.0001]∗∗∗

[0.0001]∗∗∗ [0.0001]∗∗∗ [0.0001]∗∗∗
P 2
it 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ [0.0000]∗∗∗
[0.0000]∗∗∗ [0.0000]∗∗∗ [0.0000]∗∗∗

t 0.0137 0.0065 0.0022 0.0064 0.0069 0.0081
(0.0007)∗∗∗ (0.0005)∗∗∗ (0.0005)∗∗∗ (0.0005)∗∗∗ (0.0005)∗∗∗ [0.0012]∗∗∗

[0.0008]∗∗∗ [0.0009] ∗ ∗ [0.0008]∗∗∗
t2 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002

(0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ (0.0000)∗∗∗ [0.0000]∗∗∗
[0.0000]∗∗∗ [0.0000]∗∗∗ [0.0000]∗∗∗

whc 0.0125 0.0089
(0.0010)∗∗∗ [0.0011]∗∗∗

Note: * p-value < 10%, ** p-value < 5%, *** p-value < 1%. Standard errors are in parenthesis.
[·] are spatial standard errors with Conley (1999, 2008), Kelejian and Prucha (2007), or
Kapoor et al. (2007) .
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Table 3 (Continued)

Pooled FE FE SLAG SLX RE KKP-RE
Eq (13) Eq (9) Eq (11) Eq (12) Eq (10) Eq (14)

kfactor 0.4146 0.2690
(0.0710)∗∗∗ [0.0814]∗∗∗

om 0.0000 0.0000
(0.0000)∗ [0.0000]

soil pH 0.2072 0.2038
(0.0042)∗∗∗ [0.0067]∗∗∗

wxit,1 −2.6786
(0.5888)∗∗∗
[0.2403]∗∗∗

wxit,2 −1.0424
(0.5089) ∗ ∗
[0.1796]∗∗∗

wxit,3 −1.3228
(0.4669)∗∗∗
[0.1839]∗∗∗

wxit,4 −1.0355
(0.4243) ∗ ∗
[0.1629]∗∗∗

wxit,5 −0.6314
(0.3897)
[0.0916]∗∗∗

wxit,6 −0.6529
(0.3752)∗
[0.1244]∗∗∗

wxit,7 −1.6120
(0.3004)∗∗∗
[0.1791]∗∗∗

wxit,8 −1.5719
(0.3006)∗∗∗
[0.1284]∗∗∗

wPit −0.0004
(0.0001)∗∗∗
[0.0000]∗∗∗

λ (ρ) 0.6845 0.6406
(0.0374)∗∗∗
[0.0045]∗∗∗

County FE NO YES YES YES NO NO

Note: * p-value < 10%, ** p-value < 5%, *** p-value < 1%. Standard errors are in parenthesis.
[·] are spatial standard errors with Conley (1999, 2008), Kelejian and Prucha (2007), or
Kapoor et al. (2007) .
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Table 4: Model Comparison Test for Prediction Accuracy

Out-of-Sample
In-Sample Welch Test for Equal Forecasting Accuracy

Model RMSE RMSE FE KKP-RE RE Pooled FE SLAG

SLX 0.0655 0.1402 0.0032 23.3950 24.8429 33.8952 88.0270
FE 0.0657 0.1402 23.3965 24.8449 33.8973 88.0270

KKP-RE 0.1022 0.1861 0.4656 13.0959 84.1451
RE 0.0702 0.1871 13.0243 84.1470

Pooled 0.1218 0.2182 81.1990
FE SLAG 0.8547 1.2352

Note: The first column reports the average root mean squared in-sample prediction error
from Table 3. The second column represents the average root mean squared out-of-sample
prediction error from 1,000 replications. Rows are sorted from the best forecast performance
(lowest average RMSE) to worst. The last five columns present pair-wise Welch t-test against
the null hypothesis of equal RMSE.
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Figure 1: Spatial Units of Weather Variable: Average Temperature of Indiana State, April,
2014
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Figure 2 (Continued on the next page)
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Figure 2: Spatial Correlation in 2013 Weather Variables
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Corn Yields Frequency, 1981−2013
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Corn: Counties, 1981−2013
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