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1. Abstract 

We investigate spatial dependency among technical efficiency levels of rice producers on the 

Central Visayan island of Bohol, Philippines in two separate ecosystems: rainfed and irrigated. 

Results revealed evidence of spatial correlation in technical efficiency levels for both 

residential and plot neighborhood. There is a stronger spatial dependency among farmers in the 

rainfed ecosystem and particularly in the farm plot neighborhood structure. These results are 

most likely a result of producers facing similar environments with less control over their fields 

than producers in the irrigated ecosystem. This study also used spatial panel econometrics 

techniques to investigate spatial dimension in farmers’ technical efficiency in regression 

models. Results strongly show evidence of spatial dependence in household and farm plot 

neighborhood. 

 

Keywords: Efficiency analysis, rice, spatial dependency, technical efficiency 



2 

 

2. Introduction 

Spatial dependency has often been overlooked in economic modeling. It wasn’t until the 1990’s 

that the role of space was more frequently incorporated into economic modeling (Anselin 2002; 

Bockstael 1996). Spatial econometrics originated in regional science, which was focused 

primarily on spatial problems and solutions for urban centers and regions (Anselin 1988). The 

use of spatial econometrics in agriculture also began in the 1990’s with the realization that 

factors such as climate, pest populations, land configurations, and soil characteristics all had 

spatial variability (Bockstael 1996; Weiss 1996). Another geographical issue that is 

investigated in agriculture is the neighborhood effect. Anselin (2003) discusses the significance 

of neighbors’ influences on economic decisions. Neighborhood interactions change individuals’ 

decisions, information sets, preferences, and behavioral outcomes. In agriculture, neighborhood 

interactions have primarily been deployed to investigate drivers of technology adoption (Case 

1992; Bandiera & Rasul 2006; Conley & Udry 2010; Ward & Pede 2014; Langyintuo & 

Mekuria 2008; Maertens & Barrett 2012)  

In a broad term, technical efficiency (TE) refers to the ability of a farmer to achieve the 

maximum output possible given a set of inputs. TE is often measured in terms of the ratio of the 

observed output to the frontier output, given the corresponding level of inputs used by the farm. 

TE scores can be driven by several factors, including technology adoption among farmers. 

Although there is a robust literature on TE in agriculture (Zhu et al. 2012; Idiong 2007; Dung et 

al. 2011; Ogundari & Ojo 2007; Michler & Shively 2014; Karagiannis & Tzouvelekas 2009; 

Kolawole & Ojo 2007; Rejesus et al. 2013; Shantha et al. 2013; Oyekale 2012; Alvarez 2004; 

Bravo-Ureta et al. 2011; Gebregziabher et al. 2012; Quilty et al. 2014; Balde et al. 2014; 
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Hossain & Rahman 2012; Khai & Yabe 2011; Battese & Rao 2002; Coelli & Battese 1996; 

Sauer & Latacz-Lohmann 2014; Baruwa & Oke 2012) there have been few attempts to 

investigate spatial dependency among levels of TE. Farrell (1957), expressed concerns about 

spatial factors such as climate and location influencing efficiency (Farrell 1957, p. 270). 

Although concerns existed, the econometric techniques required to complete such an analysis 

was not available in Farrell’s time. There is in fact very little research that incorporates spatial 

dependency in TE scores presently available.  

Although limited, some research has been conducted that incorporates spatial dependency in 

TE scores. Druska and Horrace (2004), extended the estimator presented by Kelejian and 

Pruncha (1999) applied to a stochastic frontier model (see Aigner et al. 1977; Meeusen & Van 

Den Broeck 1977) for panel data (see Schmidt & Sickles 1984) of 171 Indonesian rice farmers. 

Schmidt et al. (2008) combined stochastic frontier analysis with spatial econometric analysis 

following the Bayesian paradigm (see Koop & Steel 2001; Kumbhakar & Tsionas 2005) to 

investigate geographical variation of outputs and farm productivity for 370 municipalities in 

Brazil. Areal et al. (2012) investigated the spatial dependence of 215 dairy farms in England at 

a sub-municipality level also using a Bayesian paradigm.  

Spatial considerations are important to capture how individuals may behave similarly. Manski 

(1993) puts forth three hypotheses that help to describe why individuals in the same group tend 

to act in a similar fashion. These hypotheses are: 1.) endogenous effect: the propensity of an 

individual to act in some way varies with group behavior, 2.) exogenous (contextual)
1
 effects: 

the propensity of an individual to act in some way varies with the exogenous characteristics of 

                                                 
1 Referred to as contextual effect in sociological literature (see Coleman 1968; Sewell & Armer 1966; Crane 1991; 

Mayer & Jencks 1989). 
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the group, and 3.) correlated effects: individuals in the same group act similarly because they 

face similar institutional environments and have similar individual characteristics. In the case 

of agriculture, all of these hypotheses hold, especially correlated effects. Neighboring 

producers face similar climatic conditions, similar access to technology and information, and 

are likely to come from a similar background. It is for this reason that spatial considerations 

should not be ignored. 

This study is unique in that it investigated spatial dependency of individual farmers in two 

separate neighborhood structures using GPS coordinates from both the household and the farm 

plot. The purpose of this study was to explore spatial dimensions in farmers' TE scores. There 

are several reasons why spatial dependency may exist in farmers’ TE levels in either irrigated 

or rainfed environments. Firstly, despite the presence of agricultural extension agents, it is still 

expected that farmers rely on their social networks for information on input allocation, 

management practices, etc. (Ward & Pede 2014; Bandiera & Rasul 2006; Conley & Udry 2010; 

Foster & Rosenzweig 1996; Banerjee et al. 2013; Case 1992; Maertens & Barrett 2012; 

Langyintuo & Mekuria 2008). When the proportion of adopters increases in an individual’s 

social network, so too does the individuals probability to adopt (Ward & Pede 2014). Sociology 

literature concurs that peer influences have a influence on individual behavior (Ostrom 2000). 

This social network influence is likely to result in observed correlation among farmers’ TE 

levels. Secondly, farmers who belong to the same production ecosystem and sharing a common 

resource pool, not only exchange agricultural information but also depend on the regulations set 

within the resource pool for their agricultural system management. This effect is expected to be 

accentuated among irrigated farmers as they are members in water user groups, also called 

Turnout Service Areas (TSA) groups which collectively make irrigation management decisions 
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regarding their shared turnout gate and farm ditches. This formal TSA group could also result 

in dependency in farmers’ TE levels. In fact, a forthcoming publication in the same region from 

Tsusaka et al. (2015), used artefactual field experiments to unveil that neighborhood effects 

influenced social behavior more strongly using the household neighborhood structure over the 

farm plot neighborhood structure. This result could be from the interactions of the TSA group 

in irrigation management, consistent with the theory of social norm evolution through common 

pool resource management (Ostrom 2000). Lastly, farmers belonging to a rainfed ecosystem 

face similar environmental and climatic challenges with less control over their field 

environments than their irrigated counterparts. This means that the farming skills in the rainfed 

area is very location specific and thus the exchanging of such skills among the neighbors 

strongly influence their productivity. This could result in higher spatial dependencies among 

rainfed farmers’ TE levels. 

Data from 492 individual rice producers in Bohol, Philippines, which were collected by the 

authors for four consecutive rice growing seasons in 2009 and 2010, were used in this study to 

build a panel over four periods. Analyses were performed following the spatial panel estimation 

procedure outlined in Millo and Piras (2012). This study differs from previous studies on 

spatial dependencies among TE scores in that it uses farm-specific data, whereas previous 

studies were aggregated to sub-municipalities. Furthermore, this conducts a spatial panel data 

analysis, a field that has recently experienced increased methodological progress (Millo & Piras 

2012). This study aimed to investigate the presence of spatial dependency among TE levels of 

rice farmers in the Central Visayan island of Bohol in the Philippines by employing the most 

recent methodologies in both TE analysis and spatial analysis. This study investigated the 

difference in spatial dependency between farmers from both rainfed and irrigated ecosystems 
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by using two different neighborhood structures constructed using GPS location from the 

farmers’ households as well as their farm plots. These analyses will be carried out on balanced 

spatial panel data covering four growing seasons in Bohol, Philippines. 

3. Theory 

Stochastic frontier production function model specification 

Since the seminal works of Aigner et al. (1977) and Meeusen and van der Broeck (1977), the 

stochastic frontier approach (SFA) has been the most commonly used to model production and 

measure efficiency on farm-level data. The SFA approach estimates the parametric form of a 

production function and recognizes the presence of random error terms in the data. One 

component of the error term reflects the inefficiency in production while the other component 

represents the random effects outside producer control. The production frontier itself is 

stochastic since it varies randomly across farms due to the presence of the random error 

component.  

Following the model proposed by Battese and Coelli (1992), the stochastic frontier production 

function for a panel data with a time trend component can be defined by: 

 

��� = �����; 	
 exp���� −���
      (1) 

and  
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��� = ����� = ��exp�−��� − �
� ,     (2) 

 

where ���  denotes the production at the � -th observation �� = 1,2, … , �
  for the � -th farm 

�� = 1,2, … ,�
; �����; 	
 is a function of a vector ��� which represents a 1 x k vector of know 

functions of inputs of production and other explanatory variables associated with the �-th farm 

at the �-th observation (farm-specific variables); 	 is a k x 1 vector of unknown parameters to 

be estimated; the ���s are assumed to be iid ��0, �� 
 random errors, independently distributed 

of the ���s; the ��s are non-negative random variables, associated with technical inefficiency of 

production, which are assumed to be independently distributed, such that ��  is obtained by 

truncation of the ��!, �" 
 distribution; � is an unknown scalar parameter and � is the last time 

period. This model is such that the non-negative farm effects, ���, decrease, remain constant or 

increase as � increases, if � > 0, � = 0 or � < 0, respectively. A positive value of � implies 

that paddy farmers tend to improve their level of technical efficiency over time. Further, if the 

�th time period is observed for the �th farm then ��� = ��, � = 1,2, … ,�. 

In the island of Bohol, located in the central Visayas Region of the Philippines, paddy farms are 

specialized farmers that produce only paddy for market and consumption. A translog functional 

for the stochastic frontier production is chosen for the technical efficiency analysis. The 

translog is a flexible functional that can be viewed as a second-order Taylor expansion in 

logarithms of any function of unknown form. Unlike the Cobb-Douglas function, it imposes no 

restriction a priori on the elasticities of substitution between inputs and outputs. Time is 

included in the specification to capture the effect of Hicksian neutral technological progress. 

The interaction terms of inputs with the time variable allow for technological progress to be 
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nonneutral. The data for all inputs and the output are normalized by respective geometric 

means prior to estimation. This makes the model’s parameter estimates directly interpretable as 

elasticities evaluated at the geometric mean of the data. To cope with the great number of zero 

observations for fertilizer inputs, we follow the procedure proposed by Battese (1997). We 

replace original variable for fertilizer with ���% = max����% , (��%�, where (��%  is dummy variable 

defined by (��% = 1 if ���% = 0 and (��% = 0 if ���% > 0 . Thus, the final estimable form of the 

translog stochastic production function becomes 

 

ln +�� = ,- +/,% ln����%�
%

+ 0%(��% +
1
2//,%1 ln����%� log����1 �

1%
+ 

45� + 4 � + ∑ 7%� ln����%�% + ��� − ���     (3) 

And 

 ��� = ��exp�−��� − �
�     (4) 

+ is the output, � is a time index �� = 1,… , �
, 8 and 9 are the inputs and ,-, ,%, ,%1, 45, 4 , 

7%, and � are the parameters to be estimated. The symmetry property is imposed by restricting 

,%1 = ,1%. The term �� are farm specific inefficiency terms as defined above. To explore the 

possibility of unobserved heterogeneity between paddy farmers, the following technical 

inefficiency effect specification of the parameter �� is defined 
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�� = :5Educ + : Size + :BGender + :ERemittance    (5) 

 

Where the variable Educ consist of the years of formal schooling of the primary decision maker 

of the household, Size is the total number of people living in the household, Gender represents 

the gender of the primary decision maker of the household, and Remittance consists of the ratio 

of remittance as it relates to total household income. The first three variables capture the human 

capital endowment of the sample farmer: education for quality, size for amount, and the gender 

for advantage or disadvantage of female head. The remittance indicates the importance of rice 

farming. Hence, we hypothesize that it has a negative effect on efficiency.  

Educated farmers are generally assumed to have better farming capacity and access to 

information and, therefore to be more efficient (Battese & Coelli 1995). In the instance that one 

of the farm-specific variables takes a value one and the coefficients of all other variables are 

zero, then the model should be specified following Stevenson (1980) and Battese and Coelli 

(1992). If all elements of the :-vector are equal to zero, then technical inefficiency effects are 

not related to the explanatory variables and the model specification from Aigner, Lovell and 

Schmidt (1977) following a half-normal distribution is obtained. 

The level of technical efficiency ��H��
  measures how close a given farm �  is from the 

estimated efficient frontier at time �. The deviations of the �H�� measures from 1 indicate the 

percentage by which output produce would increase to reach the production frontier. Following 

Battese and Coelli (1992), the minimum-mean-squared-error predictor of the technical 

efficiency of the �th farm at the �-th time period is defined by 
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�H�� = HIexp�−���
 |��� − ��� KL     (6) 

The method of maximum likelihood is proposed by Battese and Coelli (1995) for 

simultaneously estimation of the parameters of the stochastic frontier and the model for 

technical inefficiency effects (Schmidt 2011). The likelihood function and its partial derivatives 

with respect to the parameters of the model are presented in Battese and Coelli (1992). The 

likelihood function is expressed in terms of the variance parameters, � ≡ �� + �N  and 

O ≡ �N � ⁄ . 

Spatial dependency 

In order to fully exploit the panel nature of the data in investigating the determinants of 

farmers’ TE scores, a spatial panel estimation procedure was considered. Following Millo and 

Piras (2012), the general panel model with spatially lag dependent and autoregressive errors is 

given as: 

Q = 7�RS⨂UV
+ + W0 + !   (7)  

� = �XS⨂RV
! + Y     (8)  

Y = Z�RS⨂UV
Y + [ ,    (9)  

       

where, y is an NT x 1 vector of observations on the dependent variable, X is an NT x k matrix of 

observations on k independent variables, IT is a T x T identity matrix, WN is the N x N spatial 

weight matrix with zeros as diagonal elements, iT is a T x 1 vector of ones, IN is a N x N identity 

matrix, is a vector of time invariant individual specific effects assumed to be spatially not 
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autocorrelated. The error term ε has spatial autoregressive structure. The spatial parameters are λ 

and ρ. Additional assumptions to be considered are: [�� ≈ ��]�0, � ̂
 and Y�� ≈ ��]�0, �_ 
. 

The individual effects could follow a fixed or random effect structure. In case the random effect 

model appropriately fit the data, the error structure u is given as: 

� = �XS⨂RV
! + `RS⨂�RV − aUV
b5c[   (10)  

whereas, he model with spatial autocorrelation process in the individual effects can be written in 

reduced form as: 

d = `RS⨂�RV − aUV
b5cY    (11)  

Y = �XS⨂RV
! + e     (12)  

where, µ represents a vector of cross-sectional specific effects, and v a vector of innovations that 

vary over cross-sectional and time periods (see Kapoor, Kelejian, & Prucha (2007), cited in 

Millo and Piras (2012)). 

This estimation strategy follows the procedure outlined in Millo and Piras (2012). Firstly, The 

spatial Hausman test was used to determine the most appropriate model specification between a 

fixed effect and a random effect model specification. Next, the Lagrange Multiplier tests 

developed in Millo and Piras (2012) were used to determine the appropriate spatial processes. 

Estimation of spatial models requires specification the spatial structure of observation units 

considered in the study. As such, a distance-based weight matrix WN, of a Boolean type with 
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elements wij was defined, taking value 1 when observation i and j are neighbors and 0 when they 

are not.
2
 

4. Data 

Data for this study were collected for the Japan International Cooperation Agency (JICA) by 

the International Rice Research Institute (IRRI) to conduct an impact assessment of the Bohol 

Irrigation Development Project in the Philippines. The project area of the Bohol Irrigation 

System (BIS) in the northeastern portion of the provincial island of Bohol, located in the central 

Visayas Region of the Philippines (Figure 1). Data used in this study covered four growing 

seasons with unique rainfall and dam water supply characteristics: 1.) 1
st
 season 2009, 2.) 2

nd
 

season 2009, 3.) 1
st
 season 2010, and 4.) 2

nd
 season 2010 (Table 1). In total, 1,160 observations 

remain in the balanced panel. There are 492 observations per season from two different 

ecosystems: 202 observations and 290 observations from rainfed and irrigated ecosystems, 

respectively. Over the four surveyed seasons, the study area experienced drought, floods, and 

normal seasons (Table1.) 

[Figure 1 about here] 

[Table 1 about here] 

To make comparison between two agro-ecosystems fair, our rainfed sample must be the 

counterfactual of the irrigated sample. There are several methods to address the issue of 

selection bias such as difference-in-difference (DID), propensity score matching (PSM), or 

instrumental variables (IV) method (Khandker et al. 2009). The data for this study were 

                                                 
2 The weight matrix WN is of dimension N x N and has 0 as diagonal elements. 
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selected using a counterfactual observation for adjacent rainfed ecosystems in order to match 

the rainfed producers with “similar” irrigated producers (JICA 2012). These counterfactuals 

were determined using agronomic and socio-economic characteristics (JICA 2012).  

The Bayongan irrigation system spans 14 villages in three municipalities and is expected to 

service as many as 4,104 hectares in the future (JICA 2012). This irrigation system is made up 

of a reservoir, main irrigation canal, secondary canals, turnouts, and farm ditches. Management 

of the system changes at different levels. The National Irrigation Administration is responsible 

for the maintenance of the reservoir and main canal. Secondary canals fall under the 

management of the Irrigators’ Association (IA). IAs are made up of several TSA groups, which 

is the name given to farmers who share one turnout gate. Finally, the turnouts and farm ditches 

are managed by individual TSA consisting of 20 individual farmers on average (JICA 2012). 

These data are unique because GPS coordinates were recorded at both the farm plot as well as 

the farmers’ residences. This allows for two types of neighborhoods (plot and residential) to be 

defined for each farmer. 

5. Results 

Descriptive Statistics 

Statistics for variables that were used in the efficiency analysis are available in Table 2. 

Farmers from the rainfed ecosystem were found to have a higher rate of education on average, 

6.10 years of formal schooling as compared to 5.73 years for farmers from the irrigated 

ecosystem. Household size was found to have the same average mean across ecosystems with 

5.61 persons per house as the average. There were more female led households in the rainfed 
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ecosystem than the irrigated ecosystem with 7.55% and 4.91%, respectively. Also, the percent 

of income coming from remittances was also higher in the rainfed ecosystem than the irrigated 

at 7.42% and 4.70%, respectively. Average yields were higher on average for farmers from the 

irrigated ecosystem than the rainfed ecosystem with yields of 2.35 tons ha
-1

 and 1.44 tons ha
-1

, 

respectively (Figure 2).  

 [Table 2 about here] 

[Figure 2 about here] 

Technical efficiency estimates 

The maximum likelihood parameters (MLE) of the stochastic production frontier with 

inefficiency effects are estimated using the software Stata version 13.0 (Stata Corp, College 

Station, TX, USA). The complete set of results is provided in Table 3. A one-sided likelihood is 

used to test whether technical inefficiency is present in the dataset. For the dataset, the null 

hypothesis of no inefficiency is rejected, and thus, it is appropriate to analyze the dataset with a 

stochastic production frontier. For the inefficiency effects, a positive sign of a coefficient 

implies a positive impact on efficiency – whereas a negative coefficient sign implies an 

efficiency reducing effect. For the two paddy faming systems, the variance parameters, �  and 

O in Table 3, are statistically significant at the 5% level. Moreover, the ratio parameter O is 

estimated at 0.63 and 0.43 for irrigated and rainfed ecosystems, respectively, indicating that 

technical inefficiency plays an important role in explaining output variability among paddy rice 

farmers in the Bohol island. This also indicates that the inefficiency is higher among the rainfed 

farmers. Further, the hypotheses that time-invariant models for paddy farm effects apply is 

rejected as the parameter � is statistically significant at the 1%, level, indicating that technical 
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efficiency highly varied across the year. Because the estimate for the parameter, �, is positive 

for the rainfed system ��̂ = 0.188
 the technical efficiencies increase over time, according to 

the assumed exponential model, defined by Equation (2). In contrast, the negative value of this 

parameter for the irrigated farming indicates that technical efficiencies for rice producers using 

irrigated farming system decrease over time. 

[Table 3 about here] 

Table 3 reports the parameter estimates of the first-order terms of stochastic production frontier 

and the structural parameters of the inefficiency effects. As the output and input variables are 

normalized around their geometric mean values, the first order parameters can be interpreted as 

input elasticities for the sample average farm. All estimated elasticities have the correct sign 

and the coefficients associated with labor, land and fertilizer are statistically significant and 

positive. The largest effect on the inefficiency in both ecosystems was found to be that of labor 

with a coefficient 0f 0.4747 and 0.4443 for irrigated and rainfed ecosystems, respectively. 

Fertilizer use had the second largest effect on inefficiency with a coefficient of 0. 0.3021 and 

0.2295 for irrigated and rainfed ecosystems, respectively. Interestingly, the magnitudes of the 

elasticities for most inputs in the irrigated ecosystem were higher than those in the rainfed 

ecosystem, indicating complementarity of controlled irrigation water and physical inputs. This 

holds particularly so for fertilizer.  

The time trend parameters �45	and	4 
 are statistically significant for irrigated farming system 

and suggests that a hypothetical sample average irrigated farm would have had an annual 

decline rate of technical change of 21.1 percent  
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Moving to the factors explaining efficiency levels, regression estimates show that for both rice 

farming systems, education of the producer positively affects technical efficiency. Moreover, 

the coefficient is larger in the rainfed. This indicates the farming in rainfed is more skill 

demanding than in irrigated. The main reason behind this may be that in the irrigated area the 

farming is already standardized under controlled ecology, while in the rainfed area farming 

requires skills dealing with various situations occurring under uncontrolled ecology. Household 

size statistically affects producer of the irrigated farms. Remittance ratio has a negative effect 

on the efficiency as we have hypothesized.  

Table 4 contains summary statistics for the estimated efficiency scores, and Figure 3 presents 

histograms of the efficiency estimates for the two farming systems. The shape of these 

histograms suggests a higher variability of efficiency scores for the two farming systems.  

[Figure 3 about here] 

[Table 4 about here] 

Spatial dependency of TE scores 

Irrigated farmers were found to have higher levels of technical efficiency on average but until 

this point spatial dependencies in the data have been excluded. To incorporate spatial 

dependencies, two N x N neighborhood weight matrices were constructed with N=492. Both 

matrices capture the entire sample, inclusive of 202 rainfed and 290 irrigated farmers. Two 

neighborhood structures were defined: the household neighborhood structure with neighbors 

being defined as those within a threshold distance of 0.82 kilometers and the farm plot 

neighborhood structures with neighbors being defined as those within a threshold distance of 

1.15 kilometers. Because these are panel data with the same respondents returning for each of 
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the four seasons the same weight matrix can be used for the panel analysis. Given that the 

surveys have been conducted on two consecutive years, it is assumed that the residential as well 

as plot coordinates likely remain the same throughout the four seasons thus maintaining 

constant neighborhood structures. The weight matrix used for the household neighborhood 

structure had dimension 492 x 492, with a total of 4528 non-zero links. On average, each 

household had 9.2 links. The weight matrix used for the farm plot neighborhood structure had 

dimension 492 x 492, with a total of 8546 non-zero links. On average, each household had 17.4 

links.  

Using a dataset inclusive of both irrigated and rainfed ecosystems and the before-mentioned 

weight matrix a Moran’s I statistics was estimated was estimated for the TE levels for both plot 

and residential neighborhood.
3
 Interestingly, the Moran statistics was found to be significant in 

both plot and the residential neighborhood structure, indicating a pattern of spatial dependency 

in TE estimates. Although both neighborhood structures show spatial dependency, the 

magnitude of the dependency is slightly higher for residential neighborhood (Figure 4). The 

figures provided in Figure 4 are known as Moran’s scatter plots. These scatter plots shows the 

TE estimates of every individual (on the x axis) against the average TE of their neighbors (on 

the y axis). Observations in the lower left quadrant represent farmers with low TE and having 

neighbors with low TE. Similarly, observations in the upper right quadrant represent farmers 

with high TE and having neighbors with high TE. Observations in the other quadrants represent 

                                                 
3 The Moran’s I statistics is defined as:  

j = //k�1��� − �̅
��1 − �̅�//��� − �̅
 
n

�o5

n

1o5

n

�o5
 

where k�1 	are elements of the weight matrix, and the variable x is measured in deviation from its mean. 
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association of low TE farmers and having high TE neighbors, and vice versa. Spatial 

dependency can be seen when the fitted line has a positive slope.
4
 The spatial dependency seen 

in Figure 4 may be explained by the neighborhood effect where social interactions with 

neighbors can result in knowledge dispersion about farming practices and technologies. Spatial 

dependency was found to be more pronounced in the rainfed ecosystem (Figure 5). One likely 

explanation for this is that farmers in the rainfed ecosystem have very localized skills whereas 

the farming practices used in the irrigated ecosystem are already very standardized across the 

irrigation system. Additionally, farmers growing in a rainfed ecosystem are subject to the same 

variations in climatic conditions as their neighbors. Result in Figure 5 showed that higher levels 

of spatial dependency existed in the rainfed ecosystem.  

 [Figure 4 about here] 

[Figure 5 about here] 

Results of spatial analysis are presented in Table 5. The first two columns show estimation 

results for the non-spatial model. The Hausman test is insignificant, indicating that a random 

effect model appropriately fits the non-spatial estimation of the panel data. The next set of 

columns shows the spatial estimation of the panel data under two neighborhood structures: 

residential and plot. In both cases, the Hausman test is insignificant, supporting a random effect 

model. We therefore went on to estimate a random-effects model with spatially lag dependent 

and autoregressive errors (RE-SARAR) for the two neighborhood structure. Estimation results 

show that the spatial dependency parameters (Lambda and Rho) are significant in residential as 

well plot neighborhood. In particular the spatially lagged parameter is positive and significant, 

                                                 
4 The slope of the fitted line in the scatter plot represents the Moran’s I statistics. 
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with a close magnitude for residential and farm plot neighborhood structures. This indicates 

that correlation exist between the efficiency levels of farmers proximate farmers, and could be 

the result of information exchange, and it seems that this happens at the residential and also 

farm plot level. This is somewhat expected as the residential and plot neighborhoods are both 

environments in which one would expect information exchange to happen. Social interactions 

are more likely to be more intensified within the residential neighborhood structure than at the 

farm plot level. Social events such as weddings, receptions, meetings, parties are often held at 

farmers’ residence and represent ideal opportunities for information exchanges. Additionally, 

farmers often socialize after work and exchange information about their farming practices and 

experience. Similarly, the farm plot neighborhood offers opportunities for farmers to witness 

the input decision and management practices of their peers and their observed outcome. The 

spatial error parameter rho, though negative is also significant with a higher magnitude at the 

plot neighborhood. This could be capturing the correlated effects discussed in Manski (1993). 

Farmers from the same neighborhood tend to have similar TE levels because they face similar 

political, institutional, or environmental conditions. This makes sense in the context of rained 

environment where farmers’ management practices depend mainly on rain and weather 

conditions. Likewise, farmers in a commonly managed irrigation environment like the Bohol 

irrigation face same regulations on water supply and usage, and this could be translated into 

similar TE levels. Conversely, access to water decreases from the beginning of the river to the 

end, the changes in water access could reduce the spatial dependency of farmers in the irrigated 

ecosystem.  
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The estimated regression also shows some noteworthy results. Education has a consistent and 

positive effect in both residential and plot neighborhood.
5
 More years of formal schooling 

increased technical efficiency. Assuming that more years of formal schooling is positively 

correlated with willingness or ability to learn new techniques and technologies, increased 

education can further support the hypothesis that the neighborhood effect and social networks 

are driving technical efficiency through the dissemination of new techniques and technologies. 

Household size and remittances was found to be insignificant in all estimated models. While 

one would expect household size not to significantly affect because more farmers reach out to 

hired labor for farm operations, the non significance of remittances appears counter-intuitive, 

especially in the context of the Philippines where many farmers rely on remittances to buy 

inputs and hire labor for farm operations.  

  [Table 5 about here] 

6. Conclusions 

This study used two different neighborhood structures and spatial panel econometrics 

techniques to investigate spatial dimension in farmers’ technical efficiency levels. The analysis 

was carried out with data for four seasons in Bohol, Philippines and using a balanced spatial 

panel. Results revealed that yield over approximately 2 ton ha
-1

, depending on the season, 

resulted in similar TE scores. Meaning, the additional output of paddy production was the result 

of additional inputs. Education was found to be significant in non-spatial estimates as well as in 

both neighborhood structures. Although higher levels of formal education increase efficiency 

                                                 
5 It should be noted that the non-spatial model over-estimate the effect of education on farmers’ TE. Moreover, the 
non-spatial model indicates a negative and significant effect of households’ size, which the non-spatial models do 

not show under the two neighborhood structures. 
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the exact reason is uncertain. One potential explanation is that increased education could 

increase managerial abilities as seen in Kalaitzandonakes & Dunn (1995). Managerial ability 

has been shown in previous studies to increase efficiency in TE estimates (Wilson et al. 2001; 

Kalaitzandonakes & Dunn 1995; Kirkley et al. 1998). 

The neighborhood effect in TE scores was most pronounced in the rainfed ecosystem using the 

farm plot neighborhood structure. This result is most likely explained by the hypothesis of 

correlated effects brought forth by Manski (1993). In the rainfed ecosystems, producers face 

more similar environments with less control over them than their counterparts in the irrigated 

ecosystem. Moreover, access to irrigation water can change significantly while moving from 

head to tail on the river. This could not only decrease the level of dependency as a result of 

sudden changes in irrigation access but so too could the directionality of the neighborhood 

structure involved with water access from a flowing river.  

Future studies should revisit the levels of TE using a directional neighborhood structure in the 

irrigated ecosystem. This could help further investigate how a neighborhood structure 

influences TE specifically in regards to producers’ proximity to the head of the river and 

concurrent water access.  
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Table 1 Rainfall and dam water characteristics by season (JICA 2012). 

Season Characteristics 

Wet season 2009 Normal rainfall & Plenty of dam water supply 

Dry season 2009 Low rainfall & Limited dam water supply 

Wet season 2010 Normal rainfall & Moderate dam water supply 

Dry season 2010 Abnormally high rainfall & Moderate dam water supply 
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Table 2 Socio-economic characteristics of producers by ecosystem. 

Rainfed Irrigated Difference 

  (n=808) (n=1160)   

Yield (Ton/ha) 1.44 2.35 0.91*** 

(0.95) (1.17) 

Education (Yrs.) 6.10 5.73 0.37*** 

(3.48) '(3.01) 

Household size 5.61 5.61 0.00 

(2.33) (2.59) 

Female led house (%) 7.55% 4.91% 2.64% 

Remittance
†
 7.42% 4.70% 2.72% 

Note: ‘***’ difference is statistically different at the one percent level 
†: Calculated as remittance as a portion of total income 
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Table 3 Stochastic Production Frontier Estimated Parameters 

Variable 
Irrigated Ecosystem Rainfed Ecosystem 

Coefficient Std. Error Coefficient Std. Error 

Intercept  0.4080*** 0.118 –0.0957 0.149 

Ln seed –0.0504 0.070 0.0655 0.097 

Ln labor 0.4747*** 0.105 0.4443*** 0.112 

Ln land 0.1199 0.123 0.2510 0.166 

Ln fertilizer 0.3021*** 0.053 0.2295*** 0.073 

Ln Capital 0.1217 0.088 0.0158 0.116 

Dummy for fertilizer 0.1648*** 0.059 0.1792** 0.077 

Ln seed × Ln seed –0.0063 0.019 0.0428** 0.019 

Ln labor × Ln labor –0.066 0.043 –0.0367 0.060 

Ln land × Ln land 0.0387 0.086 –0.1623 0.163 

Ln fertilizer × Ln fertilizer 0.0456*** 0.007 0.0586*** 0.013 

Ln capital × Ln capital 0.0168 0.046 –0.0076 0.105 

Ln seed × Ln labor –0.0086 0.056 0.0497 0.068 

Ln seed × Ln land 0.0384 0.075 –0.1033 0.107 

Ln seed × Ln fertilizer –0.0483 0.037 –0.0413 0.044 

Ln seed × Ln capital –0.0055 0.059 –0.0317 0.076 

Ln labor × Ln land –0.0423 0.086 0.2438* 0.139 

Ln labor × Ln fertilizer –0.0011 0.039 –0.1130** 0.049 

Ln labor × Ln capital 0.1094 0.072 –0.1150 0.098 

Ln land × Ln fertilizer 0.0457 0.048 0.0494 0.078 

Ln land × Ln capital –0.1253 0.110 0.1110 0.238 

Ln fertilizer × Ln capital –0.0191 0.033 –0.0196 0.061 

Time –0.211** 0.101 –0.0474 0.117 

Time × Time 0.0605** 0.024 –0.0053 0.028 

Time × Ln seed 0.0334 0.030 0.0333 0.046 

Time × Ln labor	 –0.0330 0.0428 –0.0032 0.052 

Time × Ln land 0.1038** 0.051 –0.0511 0.075 

Time × Ln fertilizer –0.0417* 0.021 –0.0154 0.033 

Time × Ln capital –0.0366 0.036 0.0311 0.054 

� = �  ̂ + �"  0.4144*** 0.050 0.3961*** 0.040 

O = �" � ⁄  0.6378*** 0.046 0.4356*** 0.063 

η –0.2215*** 0.056 0.1885*** 0.043 

µ –0.1706* 0.102 –0.2153** 0.104 

Log likelihood –883.72  –965.64  

Observations 1,584  1,240  

Note: ‘***’, ‘**’, and ‘*’ are statistically different from zero at the 1, 5, and 10 percent levels, respectively 
Figures in parentheses are standard errors 
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Table 4. Summary Statistics of Efficiency Score Estimates 

Ecosystem Observations Mean Std. Err. Min. Max. 

Irrigated 1584 0.7906 0.7906 0.2724 0.9672 

Rainfed 1240 0.7463 0.7463 0.2103 0.9395 
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Table 5 Results of SARAR model 

Non-Spatial Spatial Models 

Models Farm Plot Residential 

  FE RE FE RE FE RE 

Intercept 0.7480*** 0.7442*** 0.0155*** 0.0280*** 

(0.0088) (0.0111) (0.046) (0.0045) 

Education 0.0032** 0.0028*** 0.0006* 0.0006** 0.0006** 0.0007** 

(0.0011) (0.0009) (0.0002) (0.0003) (0.0003) (0.0003) 

Household Size –0.0021* –0.0018* 0.0004 0.0003 0.0002 0.0001 

(0.0011) (0.0010) (0.0003) (0.003) (0.0003) (0.0003) 

Female Household Head 0.0026 –0.0002 0.0008 0.0005 0.0007 0.0019 

(0.0134) (0.0115) (0.0033) –0.004 (0.0033) (0.0037) 

Remittance 0.0027 0.0023 –0.0012 –0.0010 –0.0003 –0.0002 

(0.0075) (0.0074) (0.0018) (0.0022) (0.0018) (0.0021) 

Irrigation 0.0078 –0.0002 –0.0008 

(0.0105) (0.0002) (0.0050) 

Lamda 0.98*** 0.97*** 0.97*** 0.96*** 

Rho –1.30*** –0.99*** –0.92*** –0.92*** 

Phi 56.00*** 54.11*** 

AIC 

Diagnostic Tests             

Chi2 Hausman Test 0.8941 9.1513 8.4789 

LM1† 0.0239 0.0239 

LM2‡ 0.005 0.0062 

LMH
 ᾠ 2276.65*** 2323.30*** 

CLMlamda
 ᾴ       13.50***   13.89*** 

Note: ‘***’, ‘**’, and ‘*’ are statistically different from zero at the 1, 5, and 10 percent levels, respectively 
†: tests the null hypothesis of no random effect assuming no autocorrelation  
‡: tests the null hypothesis of no autocorrelation assuming no random effect  
ᾠ: tests the joint null hypothesis of no random effect and no spatial autocorrelation 

ᾴ: tests the null hypothesis there is no autocorrelation assuming that there is random effects 
Figures in parentheses are standard errors 

 



 

Figure 1 Locations of study sites designated by ecosys

 

Locations of study sites designated by ecosystem 

33 



34 

 

 

Figure 2 Histograms of paddy yield for rainfed and irrigated ecosystems 
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Figure 3 Histograms of efficiency score estimates for rainfed and irrigated ecosystems 
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Figure 4 Moran's scatter plots for all ecosystems at the residential and farm plot neighborhood 
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Figure 5 Moran's scatter plots for irrigated and rainfed ecosystems in different neighborhood structures.  

 


