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1 Introduction

Concerns about how best to control greenhouse gases have generated intense interest in the co-
benefits and adverse side-effects of climate policies. Perhaps the most well studied co-benefits of
climate policy are the effects on flow pollutants like NOX, SO2 and PM that are emitted along
with CO2 in combustion processes. Efforts to reduce CO2 emissions can reduce emissions of
these pollutants providing a co-benefit of climate policy. The Intergovernmental Panel on Climate
Change (IPCC) has reviewed many empirical studies of these co-benefits in Chapter 6 of IPCC
(2014), and they have concluded that the benefits of reductions in emissions of CO2 co-pollutants
can be substantial.1 On the other hand, climate policy can also have adverse consequences, some
of which come from increases in related pollutants. For example, Ren et al. (2011) suggest that
increased use of biofuels as part of a policy to reduce CO2 emissions can result in greater water
pollution from agricultural runoff.2

The presence of co-benefits or adverse side-effects presents challenges for efficient pollution
regulation. The efficient regulation of one pollutant must account for how its control affects the
abatement of its co-pollutants, and how the abatement interactions translate into changes in the
damages associated with its co-pollutants. In addition, accounting for existing regulations of co-
pollutants is critical for determining the net co-benefits or adverse consequences of pollution con-
trol.3 Of course, full efficiency would require that the regulations of multiple interacting pollutants
be determined jointly to maximize the net social benefits of a complex environmental regulatory
system, but this is not realistic. Environmental regulations tend to focus on single pollutants, not
joint regulations of multiple pollutants, and these single-pollutant regulations are likely to be inef-
ficient for a host of reasons. At best, regulation of a particular pollutant may strive for efficiency,
given the not-necessarily-efficient regulation of its co-pollutants.

1Nemet et al. (2010) surveyed empirical studies of air pollutant co-benefits of climate change mitigation and found
a mean value of $49 (2008 dollars) per ton of CO2 reduction. Similarly, Parry et al. (2014) calculated the average
co-benefits for the top 20 CO2 emitting countries to be about $57.5 for 2010 (in 2010 dollars). These values are
about the same magnitude as estimates for the climate-related benefit per ton of CO2 reduction developed by the US
Interagency Working Group on the Social Cost of Carbon. Using a 3% discount rate, the Interagency Working Group
proposes a schedule for the social cost of carbon dioxide to be used in regulatory impact analysis that starts at $33
(2007 dollars) per ton CO2 in 2010 and rises to $71 per ton in 2050 (US Interagency Working Group on Social Cost
of Carbon 2013).

2The IPCC considers many more ancillary consequences of climate policy besides those generated by co-pollutants.
These include the effects of climate policy on other social goals like food security, preservation of biodiversity, energy
access, and sustainable development. Many economists will be familiar with the effects of climate policy on the
efficiency of broader tax policy (e.g., Goulder et al. 2010). In this paper we remain focused on regulation in the
presence of co-pollutants.

3Accounting for existing co-pollutant regulation is not always present in analysis of the co-benefits of CO2 regula-
tion (e.g., Nemet et al. 2010, Muller 2012, Boyce and Pastor 2013), but it is prominent in how the Intergovernmental
Panel on Climate Change views the problem of how to account for co-benefits and adverse consequences in climate
policy (see Chapter 3 of IPCC (2014)).

3



That is the situation we address in this paper. In particular, we investigate the optimal regulation
of a pollutant given its interaction with another controlled pollutant under asymmetric information
about firms’ abatement costs. The co-pollutant is regulated, but perhaps not efficiently. Like most
of the related literature we limit our analysis to pollutants that interact in terms of abatement,
as opposed to multiple pollutants that have damage-related interactions. Consequently, we are
concerned with pollutants that are either complements or substitutes in abatement. Our focus is on
optimal instrument choice in this setting, and we derive rules for determining whether a pollutant
should be regulated with an emissions tax, tradable permits, or a hybrid price and quantity policy,
given the regulation of its co-pollutant.

Our work brings together two literatures, instrument choice under uncertainty and the regu-
lation of multiple pollutants, although we are not the first to do so. Like the research interest
in regulating multiple interacting pollutants, the challenge of climate change has also intensified
research in policy design under the immense uncertainty in the benefits and costs of controlling
greenhouse gas emissions. The seminal work of Weitzman (1974) is still relevant, because the
marginal damage associated with carbon emissions is almost perfectly flat over a relatively short
compliance period (e.g., Pizer 2002). Hence, uncertainty in the costs and benefits of controlling
greenhouse gases suggest that a carbon tax is more efficient than carbon trading. However, the
preference in some circles for emissions markets over emissions taxes has generated much interest
and innovation in hybrid schemes. The most popular form of these hybrids, in the literature and
in actual practice, involve tradable emissions permits with price controls. This is the form of hy-
brid policy that we model. The conceptual foundation for these policies originated with Roberts
and Spence (1976), who demonstrated that since an emissions tax and a simple permit market are
special cases of such a hybrid policy, emissions markets with price controls cannot be less efficient
and will often be more efficient than either of the pure instruments. The performance of alternative
hybrid policies has been examined theoretically (Grull and Taschini 2011), with simulations (Bur-
traw et al. 2010, Fell and Morgenstern 2010, Fell et al. 2012), and with laboratory experiments
Stranlund et al. (2014). Recent theoretical work has also examined technology choices in emis-
sions markets with price controls (Weber and Neuhoff 2010) and the enforcement of these policy
schemes (Stranlund and Moffitt 2014). However, the literature on the design of hybrid policies
and policy choice under uncertainty almost completely ignores the setting of multiple interacting
pollutants.

While there is a substantial empirical literature on the co-benefits and adverse side effects
of pollutant interactions in climate change policy, the theoretical literature on regulating multi-
ple interacting pollutants is much smaller, and much of it focuses on integrating markets for co-
pollutants. For example, Montero (2001) examines the welfare effects of integrating the policies
for two pollutants under uncertainty about abatement costs and imperfect enforcement. Woodward
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(2011) asks whether firms that undertake a single abatement activity that reduces two kinds of
emissions should be able to sell emissions reduction credits for both pollutants. Under complete
information, Caplan and Silva (2005) demonstrate that a global market for carbon with transfers
across countries can be linked with markets to control more localized pollutants to produce an effi-
cient outcome. In contrast, Caplan (2006) shows that an efficient outcome cannot be achieved with
taxes. While most models in this literature are static, the climate change setting has led several
authors to examine dynamically efficient paths for the multiple greenhouse gases that contribute to
climate change. (e.g., Kuosman and Laukkanen 2011, Moslener and Requate 2007). None of these
articles consider alternative policy instrument choices for multiple pollutants under uncertainty.

The only other work that we are aware that examines instrument choice in the presence of
multiple interacting pollutant under uncertainty is Ambec and Coria (2013). The main difference
between our work and theirs is that they consider optimal regulation of the two pollutants simul-
taneously, while we investigate the optimal regulation of a single pollutant, given regulation of its
co-pollutant which may not be efficient. While the two approaches are obviously complementary,
we feel that ours is of a more realistic policy environment given that pollutants are usually reg-
ulated separately. Moreover, our reading of IPCC (2014) suggests that they treat the problem of
co-benefits or adverse side-effects of greenhouse gas regulation as one of choosing the appropriate
climate policy, given existing policies for related activities.

Another major difference between our work and Ambec’s and Coria’s (2013) is in the modeling
of hybrid policies. They take their hybrid regulation from Weitzman (1978), and propose a policy
that includes an emissions tax, an emissions standard and a quadratic penalty function for exceed-
ing the standard. This policy can be designed to achieve a first-best outcome, but we know of no
examples of such a regulation in actual practice. In contrast, our hybrid model is from Roberts
and Spence (1976) and consists of an emissions market with a price ceiling and price floor. Many
recent proposed and implemented markets to control greenhouse gases include some form of price
control—see Hood (2010) and Newell et al. (2013) for several examples—so our approach is more
in line with current policy decisions.4

Our efforts produce several new results with important policy implications. Our main output
are complete orderings of the expected social costs of regulating a pollutant with a tax, tradable per-
mits, or a hybrid, given the regulation of its co-pollutant with either a tax or tradable permits. Like
standard instrument choice problems, these orderings depend on the relative slopes of the dam-
age functions for both pollutants and the aggregate marginal abatement cost function, including
whether the pollutants are complements or substitutes in abatement and whether the co-pollutant

4There are other more minor but still important differences between our work and Ambec’s and Coria’s. In partic-
ular, they extend their base model to examine pollutant interactions in both damages and abatement costs, as well as
uncertainty about whether two pollutants are substitutes or complements in abatement. We do not extend our work to
these cases, but they are likely to be important extensions for the future.
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is controlled with a tax or tradable permits. Interestingly, while these orderings depend on how the
co-pollutants is regulated, they do not depend on whether the co-pollutant is regulated efficiently.

The dependence of instrument choice for a pollutant on how its-co-pollutant is regulated is
due to how regulation affects the expected emissions of the co-pollutant. For example, if the co-
pollutant is regulated with a fixed number of tradable permits, then the regulation of the main
pollutant cannot affect its emissions. In this case, the rules for instrument choice are the same as
in the single-pollutant case. However, if the co-pollutant is regulated with an emissions tax, a key
component of the ordering of policy instruments is how regulation of the primary pollutant affects
the variation in the marginal damage of the co-pollutant. This variation is higher under a pricing
scheme when the two pollutants are complements in abatement, and it is higher under a quantity
schemes when the two pollutants are substitutes. Moreover, the strength of these effects increase
with the slope of the marginal damage function for the co-pollutant. Consequently, complementar-
ity in abatement tends to favor emissions markets for the primary pollutant (with or without price
controls) and the strength of this effect increases with the steepness of the co-pollutant’s marginal
damage function. On the other hand, substitutability in abatement tends to favor emissions pricing
for the primary pollutant (either as part of a hybrid policy or a pure tax) and this effect is stronger
as the marginal damage for the co-pollutant is steeper.

Since the rules for determining the optimal instrument for a pollutant depend on how the co-
pollutant is regulated, many examples exist in which the optimal policy for the primary pollutant
changes as the form of regulation of the co-pollutant is changed. For just one example, recall
the conventional wisdom that the optimal instrument for carbon emissions is a tax because the
marginal damage function is essentially flat over a compliance period that is not too long. This
remains true in the multiple pollutant case as long as the co-pollutant is regulated with tradable
permits. However, an emissions tax may not be the optimal choice if the co-pollutant is also
regulated with an emissions tax. In fact, in this case we show that a tax for the primary pollutant
is sub-optimal if the marginal damage function for the co-pollutant is upward sloping and the two
pollutants are complements in abatement. Many such policy reversals are possible, so the intuition
about instrument choice that environmental economists have developed over many years must be
modified when policies must account for co-pollutants.

The remainder of the paper proceeds as follows. In the next section we lay out the fundamental
abatement costs and pollution damages included in the regulatory choice model. In section 3 we
characterize the optimal taxes, tradable permits, and hybrids for the primary pollutant, given that
the co-pollutant is regulated with tradable permits or an emissions tax. This exercise is simplified
somewhat because the optimal tax or emissions market are special cases of the optimal hybrid
regulation. Therefore, we derive optimal hybrid policies and then derive the pure tax and pure
trading programs as special cases. Section 4 contains the main result of the paper, which are the
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rules for instrument choice for a pollutant, given the regulation of its co-pollutant, along with
an extended discussion of these results. In section 5 we specify the performance of the optimal
policies in terms of expected aggregate emissions of the primary pollutant. Given the regulation
of the co-pollutant, we demonstrate that expected emissions of the primary pollutant under the tax
and hybrid policies are the same, and in turn these are the same as the optimal number of permits
in the optimal emissions market. We also show how these emissions levels differ according to
how the co-pollutant is regulated and whether it is regulated efficiently. Finally, since the recent
literature on instrument choice under uncertainty and regulation in the presence of co-pollutants is
motivated in large measure by debates about how best to design policies to control greenhouse gas
emissions, we conclude in section 6 with a discussion about how our results inform these debates
and how elements of the climate regulation problem suggest directions for future research.

2 Abatement costs and damages for multiple pollutants

The analysis throughout considers regulation of a fixed number of n heterogeneous, risk-neutral
firms, each of which emits two pollutants. Both pollutants are uniformly mixed so that both cause
damage that depends only on the aggregate amount emitted. In this section we specify firms’
abatement costs and derive the aggregate abatement cost function.5 We then specify damages from
their emissions and derive the second-best quantities of the pollutants to use as benchmarks at
a later point in the analysis. We take second-best to refer to aggregate emissions that minimize
expected aggregate abatement costs and damages ex ante. 6

2.1 Firms’ abatement costs and emissions

Assume that there are two kinds of pollutants. A firm i emits qi j units of jth pollutant ( j = 1,2).
The firm’s abatement cost function is:

Ci (qi1,qi2,u) = ci0− (ci1 +u)(qi1 +qi2)+
ci2

2
(
q2

i1 +q2
i2
)
−wiqi1qi2, (1)

5Ambec and Coria (2013) limit their analysis of instrument choice under uncertainty to policies for a single pollut-
ing firm. This seems to us to be unnecessarily restrictive, because it is straightforward to derive the aggregate abatement
cost function from individual abatement cost functions, at least under the assumptions that individual abatement costs
are quadratic and emissions permits are traded competitively.

6A first-best policy would minimize aggregate abatement costs and damage ex post, that is, after uncertainty about
costs and damage is resolved. All the policies in this paper are determined before uncertainty is resolved, so they
cannot result in the first-best outcome, except by accident. This is also true of the vast majority of the literature on
instrument choice under uncertainty. Of course, there are other schemes that can achieve first-best, like those that
motivate revelation of private cost information (e.g., Montero 2008) and Weitzman’s (1978) model of hybrid control,
but these schemes are not used in actual practice.
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with constants ci0 > 0, ci1 > 0, and ci2 > 0. The constant wi is positive or negative depending on
whether the two pollutants are complements or substitutes in abatement, to be specified shortly.
Random shocks that affect the abatement costs of all firms are captured by changes in u, which
is a random variable distributed according to the density function f (u) on support [u,u] with zero
expectation.7 The Hessian of the total abatement cost function is positive definite so that ci2 > 0
and c2

i2−w2
i = (ci2 +wi)(ci2−wi) > 0. This implies that each firm’s abatement cost function

is strictly convex and the abatement interaction term is limited by ci2 +wi > 0 and ci2−wi >

0. Moreover, we assume that the minimum of a firm’s abatement costs occurs at positive (and
bounded) levels of emissions for every realization of u. These minimizing values are qi j = (ci1 +

u)(ci2 +wi)/(c2
i2−w2

i ), j = 1,2, which given ci2 +wi > 0 and c2
i2−w2

i > 0, are strictly positive if
and only if ci1 +u > 0.

Throughout the analysis firms will face prices for emissions of each of the pollutants. These
are competitive prices and they are uniform across firms. Let the price of pollutant 1 be p1 and the
price of pollutant 2 be p2. Each firm will choose its emissions of the pollutants so that

−Ci
j(qi1,qi2,u) = p j, j = 1,2.

The solutions for these first order conditions are:

qi1(p1, p2,u) =
(ci1 +u)(ci2 +wi)− ci2 p1−wi p2

c2
i2−w2

i
, (2)

qi2(p1, p2,u) =
(ci1 +u)(ci2 +wi)− ci2 p2−wi p1

c2
i2−w2

i
. (3)

Note that ∂qi j/∂ p j = −ci
2/
(
c2

i2−w2
i
)
< 0 and ∂qi j/∂ pk = −wi/

(
c2

i2−w2
i
)
, for j 6= k. Thus, the

own-price effect is always negative but the cross-price effect depends on the sign of wi. If wi > 0,
then an increase in the price of emissions of one pollutant leads the firm to reduce emissions of
both pollutants; hence, the two pollutants are complements in abatement if wi > 0. In this case,
the response of both pollutants to an increase in the price of one occurs in the following way. An
increase in the price of a pollutant leads the firm to reduce its emissions of that pollutant. This,
in turn, shifts the marginal abatement cost function for the co-pollutant down, which produces
a decrease in emissions of that pollutant, given its price. On the other hand, if wi < 0, then an
increase in the price of one pollutant leads the firm to reduce its emissions of that pollutant, but
to increase emissions of the co-pollutant because the marginal abatement costs of that pollutant is

7Introducing abatement cost uncertainty via a common random term is clearly a simplification. Yates (2012) shows
how to aggregate idiosyncratic uncertainty in individual abatement costs to characterize uncertainty in an aggregate
abatement cost function.
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higher. In this case, the two pollutants are substitutes in abatement.

2.2 Aggregate abatement costs and emissions

Since policies in this paper will feature uniform prices for both pollutants, aggregate abatement
costs will be minimized, given aggregate levels of the two pollutants and the realization of u.
Let aggregate emissions of both pollutants be Q j = ∑

n
i=1 qi j, j = 1,2. The minimum aggregate

abatement cost function for the industry is C (Q1,Q2,u), which is the solution to:

min
{qi1}n

i=1,{qi2}n
i=1,

n

∑
i=1

Ci (qi1,qi2,u)

subject to Q j =
n

∑
i=1

qi j, j = 1,2. (4)

(For simplicity we assume the emissions choices are strictly positive for every firm). The minimum
aggregate abatement cost function has the following form:

C (Q1,Q2,u) = a0− (a1 +u)(Q1 +Q2)+
a2

2
(
Q2

1 +Q2
2
)
−wQ1Q2, (5)

with:

a1 =
∑

n
i=1

(
ci1 ∏

n
k 6=i (wk− ck2)

)
∑

n
i=1

(
∏

n
k 6=i (wk− ck2)

) > 0;

a2 =
∑

n
i=1

(
ci2 ∏

n
k 6=i
(
w2

k− c2
k2
))[

∑
n
i=1

(
∏

n
k 6=i (wk− ck2)

)][
∑

n
i=1

(
∏

n
k 6=i (wk + ck2)

)] > 0;

w =
∑

n
i=1

(
wi ∏

n
j 6=i
(
w2

k− c2
k2
))[

∑
n
i=1

(
∏

n
k 6=i (wk− ck2)

)][
∑

n
i=1

(
∏

n
k 6=i (wk + ck2)

)] ;

and a0 is a constant. In addition, it is easy to demonstrate that a1 + u > 0, a2−w > 0, a2 +

w > 0 and a2
2−w2 > 0.8 Therefore, the aggregate abatement cost function has the same basic

structure as individual firms’ abatement cost functions. It is quadratic with a positive definite
Hessian matrix (hence, it is strictly convex), and changes in the random variable u produce parallel
shifts of the aggregate marginal abatement cost functions. Given a realization of u, the minimum
of the aggregate abatement cost function occurs at strictly positive emissions, Q j = (a1 +u)(a2 +

8The proofs of the structure of the aggregate abatement cost function and our assertions about its characteristics
are available upon request. They are omitted here to save space.
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w)/(a2
2−w2), j = 1,2. The parameter w determines whether abatement of the two pollutants are

complements or substitutes in abatement at the aggregate level: they are complements if w > 0 and
they are substitutes if w < 0. Note that it is sufficient for complementarity (substitutability) at the
aggregate level if the two pollutants are substitutes (complements) for every firm, although this is
certainly not a necessary condition.9

2.3 Damages

Suppose the damage functions take the following quadratic forms:

D1(Q1) = d11Q1 +
d12

2
Q2

1; (6)

D2(Q2) = d21Q+
d22

2
Q2

2; (7)

with constants d11 > 0, d12 > 0, d21 ≥ 0, and d22 ≥ 0. As noted in the introduction, we do not
model a potential interaction between the two pollutants in the damage they cause. Both damage
functions are convex, though perhaps weakly convex. We assume that it will never be optimal
to chooses policies that produce zero emissions of either pollutant. In part, this requires that the
intercept of the marginal abatement cost function will never be below either of the intercepts of
the marginal damage functions; that is, a1 +u > d11 and a1 +u > d21. The damage functions are
known with certainty. Alternatively, we could assume that they are imperfectly known, but that the
uncertainty only affects the intercepts of the marginal damage functions and that this uncertainty
is uncorrelated with the abatement cost uncertainty. In this case, it is well known that damage
uncertainty has no bearing on the optimal choices of policy instruments.

2.4 Second-best emissions

It is useful to specify the second-best optimal aggregate emissions for the two pollutants, which
are the emissions that minimize expected aggregate abatement costs plus damages ex ante. These
values are useful as benchmarks for judging the environmental performance of the policies in this
paper. The second-best levels of aggregate emissions are the solutions to:

min
Q1,Q2

E
[
C (Q1,Q2,u)+D1 (Q1)+D2 (Q2)

]
. (8)

9Although we do not dwell on this feature of the model in this paper, it is interesting that two pollutants can be
complements (or substitutes ) at the aggregate level without having to be complements (or substitutes) for every firm.
This feature may have important consequences for modeling aggregate abatement costs that include firms (that may
belong to different industries) with different abatement or production technologies that produce differences in the
abatement interactions of multiple pollutants.
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Carrying out this optimization with the explicit forms of the aggregate abatement cost function and
the damage functions produces:

Q̂1 =
(a1−d11)(a2 +d22)+w(a1−d21)

(a2 +d12)(a2 +d22)−w2 ; (9)

Q̂2 =
(a1−d21)(a2 +d12)+w(a1−d11)

(a2 +d12)(a2 +d22)−w2 . (10)

To get a quick idea of how the damage caused by one pollutant affects the second-best quantity
restrictions for both pollutants, consider the effects of a change in the intercept of the marginal
damage of one pollutant on Q̂ j, j = 1,2 :

∂ Q̂ j/∂d j1 =− (a2 +dk2)/((a2 +d12)(a2 +d22)−w2)< 0; (11)

∂ Q̂k/∂d j1 =−w/((a2 +d12)(a2 +d22)−w2), j,k = 1,2, j 6= k. (12)

(11) indicates that a parallel shift of the marginal damage function of one pollutant decreases its
second-best emissions. However, the effect on the other pollutant depends on the sign of −w. If
the pollutants are complements in abatement so that w > 0, then an increase in the intercept of
the marginal damage function of one pollutant leads to a reduction in the second-best emissions
for both pollutants. If the pollutants are substitutes in abatement (w < 0), then an increase in the
intercept of the marginal damage function of one pollutant leads to a decrease in the second-best
emissions for that pollutant, but an increase in the second-best emissions of its co-pollutant.

3 Optimal policies, given the regulation of a co-pollutant

As noted in the introduction, however, joint second-best control of multiple pollutants is unlikely.
We now turn to the main focus of the paper, which is the optimal control of one pollutant, given the
not-necessarily-optimal control of its co-pollutant. In this section we specify optimal regulations
for pollutant 1 given the regulation of pollutant 2. Control of pollutant 2 is exogenous and is either
a tax t2 or competitively-traded permits L2. Pollutant 1 is controlled by a tax, tradable permits, or
a hybrid. The hybrid is an emissions permit market with a price ceiling and a price floor that was
first proposed by Roberts and Spence (1976), and studied extensively by, for example, Burtraw et
al. (2010), Fell et al. (2012), Grull and Taschini (2011), Stranlund and Moffitt (2014), and others.
A pure emissions tax and pure emissions trading are special cases of these sorts of hybrids, so we
will specify optimal hybrid policies and then use them to specify the simple tax and simple trading
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regulations. 10

To calculate the optimal policies for pollutant 1 given the regulation of pollutant 2, we need
aggregate emissions responses for all policy combinations. If both pollutants are controlled by
arbitrary prices, then the aggregate emissions responses are determined by equating the aggregate
marginal abatement costs for each pollutant to these prices; that is:

p j =−C j (Q1,Q2,u) , j = 1,2. (13)

Solving these equation simultaneously for Q1 and Q2 yields the emissions responses:

Q j
(

p j, pk,u
)
, j = 1,2and j 6= k. (14)

On the other hand, if one pollutant is controlled by a price and the other with a fixed number of
tradable permits Lk, then the emissions response of the priced pollutant is the solution to:

p j =−C j
(
Q j,Lk,u

)
, j = 1,2, and j 6= k, (15)

resulting in:
Q j
(

p j,Lk,u
)
, j = 1,2, and j 6= k. (16)

Of course, if the emissions of both pollutants are controlled with tradable permits, they are fixed at
L j, j = 1,2.

3.1 Optimal policies for pollutant 1, given a tax on pollutant 2

A hybrid policy for pollutant 1 has the following features: λ1 permits are distributed to the firms
(free-of-charge); the government commits to selling additional pollutant 1 permits at price τ1, and
it commits to buying permits from firms at price σ1. Collectively, the hybrid policy is denoted
h1 = (λ1,τ1,σ1). Note that τ1 provides a price ceiling for pollutant 1 permits, while σ1 provides
the price floor. Clearly, these policy variables are restricted by τ1 ≥ σ1.

We first derive the optimal hybrid policy for pollutant 1, given that pollutant 2 is controlled
with the tax t2. To specify the expected social cost function we must specify values of u where the
permit supply and the price ceiling bind together, and where the permit supply and the price floor
bind together. Denote these values as uτ1 and uσ1 , respectively, where uτ1 ≥ uσ1 . Using (15), these

10As noted in the introduction, a major difference between our work and Ambec’s and Coria’s (2013) is the form of
hybrid policy employed. Their approach builds on Weitzman’s (1978) combination of a price, a quantity standard and
a nonlinear penalty for exceeding the standard. This sort of policy can be designed to achieve the first-best outcome,
so it can never be less efficient than a pure tax or trading program. The approach we take–an emissions market with
price controls–is common in practice, but it cannot achieve the first-best outcome. Because none of the policies we
consider in this paper produce the first-best solution, no policy can dominate the others in every situation.
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cut-off values are the solutions to τ1 = −C1 (λ1,Q2,uτ1) and σ1 = −C1 (λ1,Q2,uσ1) . Of course,
pollutant 2 emissions depend on the pollutant 1 policy, so at uτ1 and uσ1 we have:

z =−C1 (λ1,Q2 (λ1, t2,uz) ,uz) , z = (τ1,σ1), (17)

which implicitly define the cut-off values as:

uz = uz(λ1,z, t2), z = (τ1,σ1). (18)

For values of u< uσ1 the price floor binds and the pollutant 1 permit price is equal to σ1. For values
of u between uσ1 and uτ1 , the permit supply binds and the permit price is equal to−C1 (λ1,Q2(λ1, t2,u),u).
Values of u above uτ1cause the price ceiling to bind so the permit price is equal to τ1. Given this
price schedule, equilibrium emissions of both pollutants are:

(Q1,Q2) =


(Q1 (τ1, t2,u) , Q2 (τ1, t2,u)) for u ∈ [uτ1,u]

(λ1, Q2 (λ1, t2,u)) for u ∈ [uσ1,uτ1]

(Q1 (σ1, t2,u) , Q2 (σ1, t2,u)) for u ∈ [u,uσ1].

(19)

Using (18) and (19), expected social costs are:

W (λ1,τ1,σ1, t2) =ˆ u

uτ1(λ1,τ1,t2)

[
C (Q1 (τ1, t2,u) ,Q2 (τ1, t2,u) ,u)+D1 (Q1 (τ1, t2,u))+D2 (Q2 (τ1, t2,u))

]
f (u)du

+

ˆ uτ1(λ1,τ1,t2)

uσ1(λ1,σ1,t2)

[
C (λ1,Q2 (λ1, t2,u) ,u)+D1 (λ1)+D2 (Q2 (λ1, t2,u))

]
f (u)du

+

ˆ uσ1(λ1,σ1,t2)

u

[
C (Q1 (σ1, t2,u) ,Q2 (σ1, t2,u) ,u)+D1 (Q1 (σ1, t2,u))+D2 (Q2 (σ1, t2,u))

]
f (u)du

(20)

The optimal hybrid policy for pollutant 1 is the solution to:

min
λ1,τ1,σ1

W (λ1,τ1,σ1, t2) , s.t.τ1 ≥ σ1, uτ1 ≤ u, uσ1 ≥ u. (21)

The constraints in (21) reveal how the optimal policy may turn out to be a simple tax or a pure
emissions market. If the solution to (21) produces τ1 = σ1, then the optimal policy is a pure price
instrument because there is no chance that the permit supply will be the binding instrument. In this
case, the model cannot distinguish between a policy that effectively subsidizes firms for reducing
their emissions at rate σ1 and a policy that taxes their emissions at rate τ1. This is because there are
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a fixed number of firms and tax receipts and subsidy payments are transfers with no real effects.
However, since a tax would be superior to a subsidy in an extended model, we assume that if the
optimal policy is a pure price scheme that it is implemented with a tax. In this case, no emissions
permits are issued and the optimal policy is a pure tax, which we denote as t∗1(t2). Similarly, if
the solution to (21) produces uτ1 = u and uσ1 = u, then there is no chance that either of the price
controls will bind and the optimal policy is pure emissions market. In this case, the price controls
are disabled and the optimal policy is simply L∗1(t2) tradable permits. If none of the constraints in
(21) bind at its solution, then the optimal policy is the hybrid h∗1(t2) = (λ ∗1 (t2),τ

∗
1 (t2),σ

∗
1 (t2)).

In the appendix we demonstrate that the optimal hybrid policy for pollutant 1 can be written
as:

λ
∗
1 (t2) =

{
a2

2(a1−d11)+w(a2(a1−d21)−d22(a1− t2))

+(a2(a2 +w)−wd22)E
[
u|uσ∗1 ≤ u≤ uτ∗1

]}
/A; (22)

τ
∗
1 (t2) =

{
B−

(
a2

2−w2 +a2 (d12 +d22)
)

wt2

+(a2 +w)(a2d12 +d22w)E[u|uτ∗1 ≤ u≤ u]
}
/A; (23)

σ
∗
1 (t2) =

{
B−

(
a2

2−w2 +a2 (d12 +d22)
)

wt2

+(a2 +w)(a2d12 +d22w)E[u|u≤ u≤ uσ∗1 ]
}
/A, (24)

where

A = a2
(
a2

2−w2)+a2
2d12 +d22w2;

B = a1 (a2 +w)(a2d12 +d22w)+
(
a2

2−w2)(a2d11 +d21w) ,

and E
[
u|uσ∗1 ≤ u≤ uτ∗1

]
, E[u|uτ∗1 ≤ u ≤ u], and E[u|u ≤ u ≤ uσ∗1 ] are conditional expectations of

u. ((23) through (24) are not exact ’solutions’, because the optimal policy variables appear on the
right sides of the equations in the conditional expectations).

Since a pure emissions tax and pure emissions markets are special cases of the hybrid policy,
we can specify the optimal pure instruments from (22) through (24). For the emissions tax, we
disable the permit supply above by setting uτ∗1 ≤ u. Then, E[u|uτ∗1 ≤ u ≤ u] = 0. Substitute this
into (23) and simplify to find the optimal pure tax:

t∗1 (t2) =
{

B−
(
a2

2−w2 +a2 (d12 +d22)
)

wt2
}
/A. (25)

To find the optimal pure trading program, disable the price controls by setting uσ∗1 ≤ u and
uτ∗1 ≥ u, which implies E

[
u|uσ∗1 ≤ u≤ uτ∗1

]
= 0 in (22). Therefore, the optimal supply of tradable
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permits in a pure emissions market is:

L∗1 (t2) =
{

a2
2(a1−d11)+w(a2 (a1−d21)−d22(a1− t2))

}
/A. (26)

3.2 Optimal policies for pollutant 1, given tradable permits for pollutant 2

The specification of the optimal policy for pollutant 1, given that pollutant 2 is controlled with L2

tradable permits, proceeds in the same way as when pollutant 2 is controlled with a tax. The cut-off
values in this case, uτ1 and uσ1 , are determined from:

z =−C1
(
λ1,L2,uz) , z = (τ1,σ1), (27)

with implicit solutions:
uz = uz(λ1,z,L2), z = (τ1,σ1). (28)

Equilibrium emissions as a function of u are then:

(Q1,Q2) =


(
Q1
(
τ1,L2,u

)
,L2
)

for u ∈ [uτ1,u](
λ1,L2

)
for u ∈ [uσ1,uτ1](

Q1
(
σ1,L2,u

)
,L2
)

for u ∈ [u,uσ1],

(29)

and the expected social social cost function is:

W
(
λ1,τ1,σ1,L2

)
=

=

ˆ u

uτ1(λ1,τ1,L2)

[
C
(
Q1
(
τ1,L2,u

)
,L2,u

)
+D1 (Q1

(
τ1,L2,u

))
+D2 (L2

)]
f (u)du

+

ˆ uτ1(λ1,τ,L2)

uσ1(λ1,σ1,L2)

[
C
(
λ1,L2,u

)
+D1 (λ1)+D2 (L2

)]
f (u)du

+

ˆ uσ1(λ1,σ1,L2)

u

[
C
(
Q1
(
σ1,L2,u

)
,L2,u

)
+D1 (Q1

(
σ1,L2,u

))
+D2 (L2

)]
f (u)du. (30)

The optimal policy for pollutant 1, given L2, is the solution to:

min
λ1,τ1,σ1

W
(
λ1,τ1,σ1,L2

)
, s.t.τ1 ≥ σ1, uτ1 ≤ u, uσ1 ≥ u. (31)

Again, binding constraints in this problem have the same interpretation of indicating the optimality
of pure instruments. In particular, if the solution to (31) involves τ1 = σ1, then the optimal policy
is the tax t∗1(L2). If uτ1 = u and uσ1 = u, then the optimal policy is a pure trading policy with
L∗1(L2) tradable permits. If none of the constraints bind, then the optimal policy is the hybrid
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h∗1(L2) = (λ ∗1 (L2),τ
∗
1 (L2),σ

∗
1 (L2)).

The optimal hybrid policy for pollutant 1 in this case is derived in the appendix:

λ
∗
1
(
L2
)
=

a1−d11 +wL2 +E
[

u|uσ∗1 ≤ u≤ uτ∗1
]

a2 +d12
; (32)

τ
∗
1
(
L2
)
=

a1d12 +a2d11 +wd12L2 +d12E
[

u|uτ∗1 ≤ u≤ u
]

a2 +d12
; (33)

σ
∗
1
(
L2
)
=

a1d12 +a2d11 +wd12L2 +d12E
[

u|u≤ u≤ uσ∗1
]

a2 +d12
. (34)

As when pollutant 2 is controlled with a tax, the optimal pure tax on pollutant 1 is determined from
(33) with E[u|uτ∗1 ≤ u≤ u] = 0; that is:

t∗1
(
L2
)
=

a1d12 +a2d11 +wd12L2

a2 +d12
. (35)

The optimal supply of permits in a pure trading program is found by setting E
[
u|uσ∗1 ≤ u≤ uτ∗1

]
=

0 in (33), yielding:

L∗1
(
L2
)
=

a1−d11 +wL2

a2 +d12
. (36)

4 Instrument choice in the presence of co-pollutants

We are now ready to present the main results of this work, which are complete orderings of the three
policy instruments in the terms of expected social costs, given the regulation of pollutant 2. These
orderings provide simple rules involving the parameters of the aggregate abatement cost function
and the damage functions for determining whether the optimal control policy for pollutant 1 is an
emissions tax, tradable permits, or a hybrid. These rules are presented in the following proposition,
which is proved in the appendix.

Proposition 1: If pollutant 2 is regulated with an emissions tax t2, then:

(1) The emissions tax t∗1(t2) is the optimal policy for pollutant 1 if and only if wd22 +a2d12 ≤ 0;

(2) A pure trading scheme with L∗1(t2) tradable permits is the optimal policy for pollutant 1 if and
only if wd22 ≥ a2(a2 +w);

(3) The hybrid policy h∗1(t2) is optimal for pollutant 1 if and only if wd22 ∈ (a2d12,a2(a2 +w)).
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(4) If the choice of policy for pollutant 1 is limited to a pure emissions tax or pure emissions
trading, then the tax t∗1(t̄2) is the optimal policy if and only if

wd22 <
a2(a2

2−w2−a2d12)

2a2−w
.

The trading program with L∗1(t2) tradable permits is the optimal policy if and only if the
inequality is reversed.

If pollutant 2 is regulated with L2 tradable permits, then:

(5) The emissions tax t∗1(L2) is the optimal policy for pollutant 1 if and only if d12 = 0;

(6) A pure trading scheme for pollutant 1 is never optimal.

(7) The hybrid policy h∗1(L2) is optimal for pollutant 1 if and only if d12 > 0.

(8) If the choice of policy for pollutant 1 is limited to a pure emissions tax or pure emissions
trading, then the tax t∗1(L2) is the optimal policy if and only if d12 < a2. The trading program
with L∗1(L2) tradable permits is the optimal policy if and only if the inequality is reversed.

We can visualize the orderings of the three policy instruments for pollutant 1 provided by
Proposition 1 with Figures 1 and 2. In both figures we try to make the notation as parsimonious
as possible by using the relation � to indicate social preference among the policies for pollutant 1.
This preference is in terms of lower expected social costs, so that v∗ � y∗ means that policy v∗ has
strictly lower expected social costs than policy y∗. Figure 1 illustrates the ordering of the pollutant
1 policies, given that pollutant 2 is controlled with a tax. The three cut-off values from (1) through
(4) of Proposition 1, are such that

−a2d12 <
a2(a2

2−w2−a2d12)

2a2−w
< a2(a2 +w),

for permissible values of d12, a2, and w. What the figure does not indicate, but what is clear in
Proposition 1, is that t∗1 � h∗1� L∗1 when wd22 =−a2d12, and L∗1� h∗1� t∗1 when wd22 = a2(a2+w).
Moreover, at wd22 = a2(a2

2−w2− a2d12)/(2a2−w), the pure tax and the pure trading scheme
produce the same expected social cost. Figure 2 illustrates the expected social cost ordering of
the pollutant 1 policies when pollutant 2 is controlled with tradable permits. In this figure, as in
Proposition 1, d12 = 0 implies t∗1 � h∗1 � L∗1 and d12 = a2 implies indifference between the pure tax
and pure trading policies.
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Figure 1: Instrument choice when a co-pollutant is controlled with a tax.

Figure 2: Instrument choice when a co-pollutant is controlled with tradable permits.

The specifications of the pollutant 1 policies in the previous section that the form and level of
control of pollutant 2 affects the optimal policies of pollutant 1; that is, t2 or L2 affects the level
of the pollutant 1 tax, the number of tradable permits, and the elements of a hybrid policy. And
it is clear from Proposition 1 that the form of pollutant 2 regulation affects the instrument choice
rules for pollutant 1. However, given the form of the co-pollutant regulation, the instrument choice
rules for pollutant 1 do not depend on the stringency of the co-pollutant regulation. That is, the
instrument choice rules for pollutant 1 are independent of the relative efficiency of the pollutant
2 regulation. This result may have important policy implications because it makes the instrument
choice problem for the primary pollutant much simpler.

The instrument choice problem is also quite simple when the co-pollutant is regulated with a
fixed number of tradable permits. Since the rules for determining the optimal instrument choice
in this case (parts (5) through (8) of the Proposition) do not depend on the abatement interaction
term w, they are the same as in the single pollutant case. These rules are familiar, at least when
the choice is between a tax and a pure trading scheme. (8) recalls the result that a tax is preferred
for pollutant 1 when the slope of the marginal abatement cost function is steeper than the slope
of the marginal damage function; tradable permits are preferred when the inequality is reversed.
When the instrument choice for pollutant 1 includes the hybrid policy, a pure trading scheme is
never optimal and a pure tax is optimal if and only if the marginal damage function for pollutant 1
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is flat.11 In every other case the optimal policy is a hybrid policy. In the proof of the proposition
we demonstrate that the difference between the price controls in this case is determined in part by
the slope of the marginal damage function for pollutant 1, d12. When this parameter is small, the
difference between the price ceiling and the price floor of an optimal hybrid policy is also small.
This suggests that the added complexity of constructing and implementing a hybrid policy may not
be worth it when d12is small.

The instrument choice rules for pollutant 1 do not differ from the single-pollutant case when
pollutant 2 is regulated with a fixed number of tradable permits, because the pollutant 1 regulations
cannot affect pollutant 2 emissions. The same is true if pollutant 2 is controlled with a tax but there
is no abatement interaction between the two pollutants (i.e., w= 0). In this case it is straightforward
to show that the instrument choice rules for pollutant 1–parts (1) through (4) of Proposition 1–are
the same as when pollutant 2 is controlled with tradable permits, and consequently, the rules are
the same as in the single-pollutant case.

However, when pollutant 2 is regulated with a tax and the pollutants are linked together in
abatement, pollutant 1 regulations affect pollutant 2 emissions, and hence, the instrument choice
rules for pollutant 1 are very different from the single-pollutant case. First focus on the situations
in which an emissions tax is the optimal choice for pollutant 1 (part (1) of Proposition 1). In the
single-pollutant case, or with multiple pollutants when the co-pollutant is controlled with fixed
permits, a flat marginal damage function for the primary pollutant (d12 = 0) is necessary and
sufficient for an emissions tax to be the preferred policy choice. However, when considering a
co-pollutant that is controlled with a tax, an emissions tax for 1 is optimal if and only if wd22 +

a2d12 ≤ 0. Hence, a flat marginal damage function for the primary pollutant is neither necessary or
sufficient for the tax to dominate alternative policies. Given d12 = 0, a tax on pollutant 1 is optimal
if wd22 ≤ 0, which occurs when the marginal damage function for the co-pollutant is also flat
(d22 = 0), or if not, when the two pollutants are substitutes in abatement (w< 0). In fact, abatement
substitutability of the two pollutants tends to favor a tax on pollutant 1. Conversely, the only way
the tax can dominate the other policy alternatives when the two pollutants are complements is
if the marginal damage function for both pollutants are flat (d12 = d22 = 0). If either marginal
damage function is upward sloping, then a policy with emissions trading (either a hybrid or a
simple market) will be preferred to the tax.

Turning to circumstances under which a pure permit market is the best choice for pollutant
1, from part (2) of Proposition 1, a pure trading scheme dominates when the co-pollutant is con-
trolled with a tax if and only if wd22 ≥ a2(a2 +w). A necessary condition here is that wd22 > 0,

11There are cases in which pure trading program would be optimal if a2 = 0, but we do not consider this possibility
in this paper because we would not be able to guarantee that the aggregate abatement cost function is convex in all
cases.
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which implies that the optimal policy cannot be a pure trading scheme if either the pollutants are
substitutes or if the marginal damage function for pollutant 2 is flat. Put differently, optimality of
a simple emissions market requires that the two pollutants be complements in abatement and the
marginal damage function for pollutant 2 be upward sloping. The stronger are these two effects,
the more likely a pure emissions market dominates a policy with fixed prices (either a hybrid or a
pure tax). 12

An important conclusion emerges about instrument choice when a co-pollutant is controlled
with a tax. That is, complementarity in abatement tends to favor emissions markets (with or without
price controls) and the strength of this effect increases with the steepness of the co-pollutant’s
marginal damage function. On the other hand, substitutability tends to favor emissions pricing
(either as part of a hybrid policy or a pure tax) and this effect is stronger as the marginal damage
for the co-pollutant is steeper. Of course, the sign of w and the size of d22 does not determine
everything about the instrument choice for pollutant 1, but it is clear that they play important roles
so it is important to explore these roles further.

Instrument choice is always about balancing the variation in marginal damage of a pollutant
against the variation in marginal abatement costs. In the canonical single-pollutant case, one can
interpret the preference for prices over quantities when the slope of the marginal damage function
is low compared to the slope of the marginal abatement cost function as being determined by
the fact that the variance of marginal damage is lower under a tax than the variance of marginal
abatement costs under tradable permits. The preference is reversed when the relative slopes of the
marginal functions are reversed because the relative sizes of the variance of marginal damage and
marginal abatement costs is reversed.

We can apply this same interpretation to the relative preference for prices and quantities when
a co-pollutant is controlled with a tax. To keep matters simple so that the intuition is clear, let us
focus on the choice between a simple tax and a simple emissions market. In Table 1 we present
the standard deviations of marginal damages and marginal abatement costs for both pollutants
under t∗1(t2) and L∗1(t2). These values include the standard deviation of the random variable u,

denoted δu. Marginal abatement cost for pollutant 2 is fixed at t̄2, so its standard deviation is zero.
Likewise, marginal abatement cost for pollutant 1 is fixed under t∗1(t2), so its standard deviation
is zero. Under L∗1(t2) the standard deviation of marginal damage for pollutant 1 is zero because it
is fixed at the emissions restriction. As a simple exercise, set w = 0 so that there is no abatement
interaction between the two pollutants, and calculate the difference between the standard deviation
of marginal abatement cost for pollutant 1 under L∗1(t2) and the standard deviation of marginal

12It is interesting that the slope of the marginal damage function for pollutant 1 (d12) does not affect the choice
between a hybrid and a simple emissions market. Of course, this parameter plays a key role in determining whether a
simple tax should be the optimal pollutant 1 policy, but it plays no role in instrument choice, given that there will be a
trading component of the policy.
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t∗1 (t̄2) L∗1 (t̄2)

Pollutant 1
Marginal abatement cost 0 (a2 +w)δu/a2

Marginal damage d12δu/(a2−w) 0

Pollutant 2
Marginal abatement cost 0 0

Marginal damage d22δu/(a2−w) d22δu/a2

Table 1: Standard deviations of marginal abatement costs and marginal damages for a tax
versus emissions trading, given a tax on the co-pollutant.

marginal damage of pollutant 1 under t∗1(t2) to be

(a2−d12)δu

a2
.

Thus, when the absolute value of the slope of the marginal abatement cost function is greater
than the slope of the marginal damage function (a2 > d12), there is more variation in marginal
abatement cost under L∗1(t2) than in marginal damage under t∗1(t2), and a pure tax is preferred
to a pure trading program. Of course, the conclusion is reversed when a2 < d12. This exercise
demonstrates how differences in the variation of marginal abatement costs and marginal damages
play a role in determining policy instrument choices.

Now suppose that w 6= 0. The difference between the standard deviation of marginal abate-
ment cost for pollutant 1 under L∗1(t2) and the standard deviation of marginal marginal damage of
pollutant 1 under t∗1(t2) is now

(a2
2−w2−a2d12)δu

a2(a2−w)
.

Note that the sign of this term is determined by the sign of a2
2−w2−a2d12, which also determines

the sign of the cut-off value in part (4) of Proposition 1 (also see Figure 1) that helps determine the
relative preference for t∗1(t2) and L∗1(t2). In fact, if the the marginal damage function for pollutant 2
is flat (d22 = 0), then the sign of a2

2−w2−a2d12 completely determines the choice between t∗1(t2)

and L∗1(t2).
But the most interesting aspect of this analysis is when the marginal damage function for pol-

lutant 2 is not flat (d22 > 0). From Table 1, note that the abatement interaction of the two pollutants
does not affect the standard deviation of the marginal damage of pollutant 2 under L∗1(t2). However,
the standard deviation is lower under t∗1(t2) if the two pollutants are substitutes in abatement and it
is higher if the two pollutants are complements. The difference between the standard deviations of
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the marginal damage for pollutant 2 under t∗1(t2) and L∗1(t2) is

wd22δu

a2(a2−w)
.

Hence the variation of pollutant 2 marginal damage is lower when the pollutants are substitutes
and it is higher when they are complements. This is why the substitutability in abatement tends
to favor emissions pricing while a complementary relationship tends favor quantity restrictions.
Moreover, the magnitude of these effects depend in part on the slope of the pollutant 2 marginal
damage function.13

We have focused on the choice between pure emissions trading and a pure emissions tax to
simplify the intuition. However, the same principle applies when we consider hybrid policies.
In fact, it is possible to show that the standard deviation of marginal damages for pollutant 2
under a hybrid policy lies strictly between the standard deviations under t∗1(t2) and L∗1(t2). (A
demonstration is available upon request). This implies that the variation in the pollutant 2 marginal
damage under a hybrid is greater than under the pure tax when the pollutants are complements,
which tends to favor a policy involving an emissions market. On the other hand, the variation in
pollutant 2 marginal damage is less under a hybrid than under simple emissions trading when the
pollutants are substitutes, which tends to favor a policy involving fixed prices.

5 Environmental performance of pollutant 1 policies

We complete the analysis by examining how expected emissions of pollutant 1 depends on the form
and stringency of the regulation of its co-pollutant. Our reference points for the relative leniency or
stringency of regulation of both pollutants are the second-best emissions levels, Q̂1 and Q̂2, from
(6) and (10) int subsection 2.4. The analysis begins with the following lemma.

Lemma 1: Given the regulation of pollutant 2, the optimal hybrid policy for pollutant 1 produces
the same expected aggregate emissions as the optimal tax, which in turn is the same as the optimal
number of pollutant 1 permits issued under a pure trading program; that is:

E (Q1 (h∗1(x),x,u)) = E (Q1 (t∗1(x),x,u)) = L∗1(x), x = (t2,L2). (37)

Moreover, if pollutant 2 is regulated with a tax, each of the optimal policies for pollutant 1 produce

13Unlike the case when w = 0 (or the single pollutant case), differences in the standard deviations of marginal
abatement costs and marginal damages cannot fully explain the choice between t∗1 (t2) and L∗1(t2) when w is not equal
to zero; in other words, it is not possible to derive part (4) of Proposition 1 from calculating differences in the standard
deviations of marginal abatement costs and marginal damage. It is clear, however, that differences in the variation of
marginal abatement costs and marginal damages play an important role in determining the optimal policy.
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the same expected emissions of pollutant 2; that is:

E (Q2 (h∗1(t2), t2,u)) = E (Q2 (t∗1(t2), t2,u)) = E (Q2 (L∗1(t2), t2,u)) . (38)

Lemma 1 may not be that surprising given that pure emissions trading and a pure tax are special
cases of the optimal hybrid policy. However, it does offer an important insight: whatever the
form and level of the regulation of its co-pollutant, all optimal regulations of a pollutant produce
the same level of expected emissions. All that differs in terms of emissions is the variation of
potential emissions around that expected outcome. In addition, if the co-pollutant is regulated
with a tax, then all optimal policies of the primary pollutant produce the same expected emissions
of that pollutant. While the regulations of of both pollutants differ in form and level, in terms
of environmental performance, optimal policies for pollutant center expected emissions of both
pollutants on the same values.

To simplify the notation from here on, let:

E (Q∗1 (x)) = E (Q1 (h∗1(x),x,u)) = E (Q1 (t∗1(x),x,u)) = L∗1(x), x = (t2,L2); (39)

E (Q∗2 (t2)) = E (Q2 (h∗1(t2), t2,u)) = E (Q2 (t∗1(t2), t2,u)) = E (Q2 (L∗1(t2), t2,u)) . (40)

We are now ready to specify how the form and relative stringency of the co-pollutant regulation
affects the relative stringency of the regulation of the primary pollutant.

Proposition 2: If pollutant 2 is controlled with a tax, the relationship between expected emissions
of pollutant 1 and expected emissions of pollutant 2 can be characterized as:

E (Q∗1 (t2))− Q̂1 =
−d22w

a2
2−w2 +a2d12

[
E (Q∗2 (t2))− Q̂2

]
. (41)

On the other hand, if pollutant 2 is controlled with tradable permits, the relationship between
expected emissions of pollutant 1 and emissions of pollutant 2 can be characterized as:

E
(
Q∗1
(
L2
))
− Q̂1 =

w
a2 +d12

(
L2− Q̂2

)
. (42)

As one might expect, if regulation of pollutant 2 produces its second-best level of emissions (in
expectation if pollutant 2 is controlled with a tax), then the optimal policies for pollutant 1 produce
its second-best level of emissions. More interestingly, however, if the regulation of pollutant 2
does not produce its second best emissions, then the deviation of pollutant 1 expected emissions
from its second-best level depends on: (1) the deviation of pollutant 2 emissions from its second-
best; (2) whether the pollutants are complements or substitutes in abatement, and (3) whether the
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co-pollutant is regulated with a fixed number of tradable permits or an emissions tax.
To illustrate these effects, suppose at first that pollutant 2 is controlled with tradable permits

and that the pollutants are substitutes in abatement. Then,

sgn(E
(
Q∗1
(
L2
))
− Q̂1) = sgn(L2− Q̂2).

So, for example, if regulation of pollutant 2 is too lenient relative to its second-best emissions
(L2 > Q̂2), then the optimal regulation of pollutant 1 produces expected emissions that are also
higher than its second-best emissions. The reason is that if the two pollutants are complements
and emissions of pollutant 2 are too high, then the expected marginal abatement cost for pollutant
1 is also higher, which calls for a policy that results in higher expected emissions. On the other
hand, if the two pollutants are substitutes, sgn(E

(
Q∗1
(
L2
))
− Q̂1) =−sgn(L2− Q̂2). In this case, if

emissions of pollutant 2 are too high relative to second-best, then the expected marginal abatement
cost for pollutant 1 is low and, consequently, regulation of pollutant 1 should produce expected
emissions of the pollutant that are lower than the second-best level.

Matters are very different if pollutant 2 is controlled with a tax. If the two pollutants are
complements in this case,

sgn(E (Q∗1 (t2))− Q̂1) =−sgn[d22(E (Q∗2 (t2))− Q̂2)].

Therefore, if the tax on pollutant 2 is too low so that its expected emissions are higher than the
second-best level, then the optimal regulation of pollutant 1 should work in the opposite direction
and produce expected emissions that are lower than second-best control, at least as long as the
damage function for pollutant 2 is strictly convex. The intuition here is as follows. If the tax
on pollutant 2 is too low resulting in expected emissions that are too high, then the expected
marginal abatement cost for pollutant 1 is too high. In the case of tradable permits for pollutant
2, higher expected marginal abatement costs for pollutant 1 implied that emissions of the pollutant
should be higher than second-best. However, if regulation of pollutant 1 produces higher expected
emissions when pollutant 2 is controlled with a tax, then the expected marginal abatement cost
for pollutant 2 would also be higher, which, given the fixed pollutant 2 tax, would result in even
higher expected emissions of pollutant 2. Thus, a pollutant 1 regulation that increases expected
emissions in response to a pollutant 2 tax that is too low would lead to an even larger deviation
of pollutant 2 expected emissions from the second-best level. This is costly when the marginal
damage function for 2 is upward sloping because it increases the wedge between marginal damage
for the co-pollutant and expected marginal abatement costs. To minimize the consequences of the
low tax on pollutant 2, optimal regulations of pollutant 1 will be stricter than required to reach its
second-best level of emissions.
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The opposite it true if the two pollutants are substitutes in abatement. In this case, a pollutant 2
tax that is too low calls for a more lenient pollutant 1 policy that produces expected emissions above
the second-best level to limit the deviation of expected pollutant 2 emissions from its second-best
level. Interestingly, when the marginal damage function for pollutant 2 is flat, optimal pollutant 1
policies adjust to a suboptimal tax on pollutant 2 so that expected emissions of pollutant 1 equal
the second-best level. This is due to the fact that the wedge between pollutant 2 marginal damage
and its expected marginal abatement cost is constant.

6 Lessons for climate policy

Since the issues associated with regulation under uncertainty with co-pollutants is motivated in
large part by debates about how best to design policies to control greenhouse gas emissions, it is
worthwhile to examine how our results inform these debates.

An important characteristic of the control of greenhouse gases is that the expected marginal
damage function in a relatively short compliance period is estimated to be almost perfectly flat.
This, coupled with other common assumptions, implies that the optimal control policy is a pure
emission tax—adding a quantity restriction to form a hybrid regulation or a pure trading scheme
necessarily reduces expected welfare.14 This conclusion has to be revisited if carbon regulation is
to take account of its co-pollutants, at least when changes in carbon emissions cause changes in
the emissions of co-pollutants. We show in the two pollutant case that the instrument choice rules
are the same as in the single-pollutant case if the co-pollutant is regulated with a fixed number
of emissions permits. Again, the reason for this is that regulation of the primary pollutant cannot
cause changes in the emissions of the co-pollutant. However, as noted in the introduction the most-
studied carbon co-pollutants are flow pollutants like NOX, SO2 and PM that are emitted along
with carbon. Efforts to reduce carbon can also reduce emissions of these pollutants, suggesting
that carbon and these co-pollutants are complements in abatement. Given the flat marginal damage
for carbon and a co-pollutant that is a complement in abatement, our results suggest that the only
way a carbon tax remains the optimal policy choice is if the marginal damage function for the co-
pollutant is also flat. Otherwise, the optimal carbon policy must have a trading component, most
likely as part of a hybrid scheme. Part of the reason for this is that when the marginal damage
function for the co-pollutant is increasing and the two pollutants are complements, the variation in
marginal damage of the co-pollutant is highest under a simple carbon tax.

We also show that the deviation of expected emissions of the primary pollutant from its second-
best value depends on how the co-pollutant is regulated, whether it is regulated efficiently, and

14However, Stranlund (2014) shows how a positive correlation between abatement costs and damage can call for a
hybrid regulation even when the marginal damage function is perfectly flat.
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whether the pollutants are substitutes or complements in abatement. Efficient regulation of carbon
will produce the second-best value if the co-pollutants are also regulated efficiently. However, this
is unlikely so regulation and expected emissions of carbon are likely to deviate from the second-
best value if the regulation accounts for its co-pollutants. An interesting special case is when the
marginal damage of the co-pollutant is also flat. In this case, the optimal carbon policy is a tax set
so that expected carbon emissions equal the second-best value. However, this does not imply that
the carbon tax will equal marginal damage; instead, the tax will deviate from marginal damage so
that expected carbon emissions are equal to the second-best level.

While our work has important implications for optimal carbon regulation, this context also
points out fruitful areas for future research. Important elements of our results depend on how
regulation of the primary pollutant changes emissions of the co-pollutant. We have examined
two possible cases, one in which the co-pollutant doesn’t change because it is controlled with
an exogenous number of fixed permits and the other in which emissions of the co-pollutant are
variable because it is controlled with a tax. However, other regulations of the co-pollutant will
allow it vary as emissions of the primary pollutant vary. One example, among many, is when the
co-pollutant is controlled with a performance standard. In the climate context, emissions of carbon
co-pollutants are controlled with many different policies that are unlike the pure trading and pure
tax modeled of our model in important ways. An interesting area for future work is to determine
how the rules for instrument choice change with different regulations of the co-pollutant than those
we considered in this paper.

Other elements to consider in future research include examining the consequences of multiple
co-pollutants with spatially differentiated damages. While we focus on the regulation of a pollu-
tant with one co-pollutant, carbon has several co-pollutants. In fact, some of these co-pollutants
are complements while others may be substitutes. Future work can address how the combination
of heterogeneous abatement interactions of multiple co-pollutants affects the design of greenhouse
gas policies, including instrument choice. Moreover, we have assumed that the two pollutants in
our model are uniformly mixed pollutants. While carbon is a uniformly mixed pollutant, NOX,
SO2 and PM produce spatially heterogeneous damages. This suggests that efficient regulation of
carbon that accounts for co-pollutants may have a spatial component. These and other characteris-
tics of carbon co-pollutants are important factors to consider in designing efficient greenhouse gas
regulation.
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7 Appendix

The results in this paper are derived with a large number of fairly involved calculations. Here, we
tend to provide only sketches of derivations or proofs. The complete set of derivations is available
upon request.

7.1 Derivation of second-best emissions (9) and (10).

To derive the second-best emissions, first substitute the aggregate abatement cost function (5) and
total damages for both pollutants (6) and (7) into the objective (8) to obtain

min
Q1,Q2

E
[

a0− (a1 +u)(Q1 +Q2)+
a2

2
(
Q2

1 +Q2
2
)
−wQ1Q2 +d11Q1 +

d12

2
Q2

1 +d21Q2 +
d22

2
Q2

2

]
.

The first order conditions are:

−a1 +a2Q1−wQ2 +d11 +d12Q1 = 0;

−a1 +a2Q2−wQ1 +d21 +d22Q2 = 0.

Solving this system of equations yields the desired results, (9) and (10).�

7.2 Derivations of the optimal hybrid policies, equations (22) through (24),
and equations (32) through (34).

The derivation of the optimal hybrid policies requires the emissions responses when both pollutants
are controlled by price. First, using the aggregate abatement cost function (5), note that the explicit
form of (13) is

p j = (a1 +u)−a2Q j +wQk, j = 1,2 and j 6= k. (43)

Solving these equation simultaneously for Q1 and Q2 produces the explicit forms of (14):

Q j
(

p j, pk,u
)
=

(a1 +u)(a2 +w)−a2 p j−wpk

a2
2−w2 , j = 1,2 and j 6= k. (44)

On the other hand, if one pollutant is controlled by a price and the other by fixed quantities, use
(43)to specify the emissions response of the priced pollutant:

Q j
(

p j,Qk,u
)
=

a1 +u− p j +wQk

a2
. (45)
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To derive the characterization of the optimal hybrid policy when pollutant 2 is controlled with
a tax, that is, equations (22) through (24), first use the definitions of the cut-off values uτ1 and uσ1

in (17) to specify the following relationships:

Q1 (τ1, t2,uτ1) = Q1 (σ1, t2,uσ1) = λ1; (46)

Q2 (τ1, t2,uτ1) = Q2 (λ1, t2,uτ1) ; (47)

Q2 (σ1, t2,uσ1) = Q2 (λ1, t2,uσ1) . (48)

We also have

−C1 (Q1 (z, t2,u) ,Q2 (z, t2,u) ,u) = z, z = (τ1,σ1); (49)

−C2 (Q1 (z, t2,u) ,Q2 (z, t2,u) ,u) = t2. (50)

With (46) through (50), the first order conditions for the unconstrained version of (21) are:

∂W (λ1,τ1,σ1, t2)

∂λ1
=

ˆ uτ1

uσ1

{
C1 (λ1,Q2 (λ1, t2,u) ,u)+D1

1 (λ1)+

+
[
−t2 +D2

2 (Q2 (λ1, t2,u))
] ∂Q2 (λ1, t2,u)

∂λ1

}
f (u)du = 0;

∂W (λ1,τ1,σ1, t2)

∂τ1
=

ˆ u

uτ1

{[
−τ1 +D1

1 (Q1 (τ1, t2,u))
] ∂Q1 (τ1, t2,u)

∂τ1

+
[
−t2 +D2

2 (Q2 (τ1, t2,u))
] ∂Q2 (τ1, t2,u)

∂τ1

}
f (u)du = 0;

∂W (λ1,τ1,σ1, t2)

∂σ1
=

ˆ uσ1

u

{[
−σ1 +D1

1 (Q1 (σ1, t2,u))
] ∂Q1 (σ1, t2,u)

∂σ1

+
[
−t2 +D2

2 (Q2 (σ1, t2,u))
] ∂Q2 (σ1, t2,u)

∂σ1

}
f (u)du = 0. (51)

Given the emissions responses in terms of prices from (44) we have:

Q1 (z, t2,u) =
(a1 +u)(a2 +w)−a2z−wt2

a2
2−w2 , z = (τ1,σ1); (52)

Q2 (z, t2,u) =
(a1 +u)(a2 +w)−a2t2−wz

a2
2−w2 , z = (τ1,σ1), (53)

and given the emissions responses to a price when the co-pollutant is fixed with a quantity standard
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(45) we have:

Q2 (λ1, t2,u) =
(a1 +u)− t2 +wλ1

a2
. (54)

Note that:

∂Q1 (z, t2,u)
∂ z

=− a2

a2
2−w2 , z = (τ1,σ1); (55)

∂Q2 (z, t2,u)
∂ z

=− w
a2

2−w2 , z = (τ1,σ1); (56)

∂Q2 (λ1, t2,u)
∂λ1

=
w
a2

. (57)

With (52), (53), and (54) and the functional forms of the marginal damage and marginal abatement
cost functions we have:

C1 (λ1,Q2 (λ1, t2,u) ,u) =−(a1 +u)+a2λ1−w
(a1 +u)− t2 +wλ1

a2
; (58)

D1
1 (λ1) = d11 +d12λ1; (59)

D2
2 (Q2 (λ1, t2,u)) = d21 +d22

(a1 +u)− t2 +wλ1

a2
; (60)

D1
1 (Q1 (τ1, t2,u)) = d11 +d12

(a1 +u)(a2 +w)−a2z−wt2

a2
2−w2 , z = (τ1,σ1); (61)

D2
2 (Q2 (τ1, t2,u)) = d21 +d22

(a1 +u)(a2 +w)−a2t2−wz
a2

2−w2 , z = (τ1,σ1). (62)

Substitute (52) through (57) into (51) to rewrite the first order conditions for the unconstrained
version of (21) as:
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∂W (λ1,τ1,σ1, t2)

∂λ1
=

ˆ uτ1

uσ1

[
−(a1 +u)+a2λ1−w

(a1 +u)− t2 +wλ1

a2
+d11 +d12λ1

+

(
−t2 +d21 +d22

(a1 +u)− t2 +wλ1

a2

)
w
a2

]
f (u)du = 0;

∂W (λ1,τ1,σ1, t2)

∂τ1
=

ˆ u

uτ1

{[
−τ1 +d11 +d12

(a1 +u)(a2 +w)−a2τ1−wt2

a2
2−w2

]
· −a2

a2
2−w2

+

[
−t2 +d21 +d22

(a1 +u)(a2 +w)−a2t2−wτ1

a2
2−w2

]
· −w

a2
2−w2

}
f (u)du = 0;

∂W (λ1,τ1,σ1, t2)

∂σ1
=

ˆ uσ1

u

{[
−σ1 +d11 +d12

(a1 +u)(a2 +w)−a2σ1−wt2

a2
2−w2

]
· −a2

a2
2−w2

+

[
−t2 +d21 +d22

(a1 +u)(a2 +w)−a2t2−wσ1

a2
2−w2

]
· −w

a2
2−w2

}
f (u)du = 0.

Derive (22) through (24) from these first order conditions by collecting common terms for u, λ1,
τ1, σ1 and t2 and rearranging them.

We take the same approach to derive the characterization of the hybrid policy when pollutant
2 is controlled with tradable permits, equations (32) through (34). Begin by noting the following
relationships:

Q1
(
τ1,L2,uτ1

)
= Q1

(
σ1,L2,uσ1

)
= λ1; (63)

−C1
(
Q1
(
z,L2,u

)
,L2,u

)
= z, z = (τ1,σ1). (64)

With these results we can write the first order conditions for the unconstrained version of (31) as

∂W
(
λ1,τ1,σ1,L2

)
∂λ1

=

ˆ uτ1

uσ1

[
C1
(
λ1,L2,u

)
+D1

1 (λ1)
]

f (u)du = 0;

∂W
(
λ1,τ1,σ1,L2

)
∂τ1

=

ˆ u

uτ1

[
−τ1 +D1

1
(
Q1
(
τ1,L2,u

))] ∂Q1
(
τ1,L2,u

)
∂τ1

f (u)du = 0;

∂W
(
λ1,τ1,σ1,L2

)
∂σ1

=

ˆ uσ1

u

[
−σ1 +D1

1
(
Q1
(
σ1,L2,u

))] ∂Q1
(
σ1,L2,u

)
∂σ1

f (u)du = 0. (65)

Next, with the emissions responses to a tax when the co-pollutant is fixed with tradable permits
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given by (45), note that

Q1
(
z,L2,u

)
=

a1 +u− z+wL2

a2
, z = (τ1,σ1) (66)

with

∂Q1
(
z,L2,u

)
∂ z

=− 1
a2

, z = (τ1,σ1). (67)

Given the form of Q1
(
z,L2,u

)
and the marginal damage functions, we also have

D1
1
(
Q1
(
z,L2,u

))
= d11 +d12

a1 +u− z+wL2

a2
, z = (τ1,σ1). (68)

Moreover,
D1

1 (λ1) = d11 +d12λ1, (69)

and
C1
(
λ1,L2,u

)
=−(a1 +u)+a2λ1−wL2. (70)

Substitute (66) through (70) into (65) to obtain:

∂W
(
λ1,τ1,σ1,L2

)
∂λ1

=

ˆ uτ1

uσ1

[
−a1 +d11 +(a2 +d12)λ1−wL2−u

]
f (u)du = 0;

∂W
(
λ1,τ1,σ1,L2

)
∂τ1

=

ˆ u

uτ1

(
−a1d12 +a2d11

a2
2

+
a2 +d12

a2
2

τ1−
wd12

a2
2

L2−
d12

a2
2

u
)

f (u)du = 0;

∂W
(
λ1,τ1,σ1,L2

)
∂σ1

=

ˆ uσ1

u

(
−a1d12 +a2d11

a2
2

+
a2 +d12

a2
2

σ1−
wd12

a2
2

L2−
d12

a2
2

u
)

f (u)du = 0,

which can be rearranged to obtain equations (32) through (34). �

7.3 Proof of Proposition 1

Part (1). Recall from the discussion following (21) that the optimal policy is the tax t∗1 (t2) if and
only if the solution to (21) yields τ∗1 (t2) ≤ σ∗1 (t2). To determine the conditions under which this
is true subtract (24) from (23) to obtain:

τ
∗
1 (t2)−σ

∗
1 (t2) =

(a2 +w)(a2d12 +wd22)

a2
(
a2

2−w2
)
+a2

2d12 +w2d22

{
E
[
u|uτ∗1 ≤ u≤ u

]
−E

[
u|u≤ u≤ uσ∗1

]}
.

(71)
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The denominator of (71) and a2+w are strictly positive. Moreover, since E(u)= 0, E
[
u|u≤ u≤ uσ∗1

]
≤

0 and E
[
u|uτ∗1 ≤ u≤ u

]
≥ 0, but they both cannot be zero simultaneously. Therefore, E

[
u|uτ∗1 ≤ u≤ u

]
−

E
[
u|u≤ u≤ uσ∗1

]
> 0. Consequently:

τ
∗
1 (t2)≤ σ

∗
1 (t2)⇐⇒ a2d12 +wd22 ≤ 0,

which reveals that the tax t∗1 (t2)is the optimal policy if and only if a2d12 +wd22 ≤ 0, which is Part
(1) of Proposition 3.

Part (2). To prove part (2) of Proposition 1, recall from the discussion following (21) that a simple
emissions market is optimal if and only if:

uτ∗1 = uτ1 (λ ∗1 (t2) ,τ
∗
1 (t2) , t2)≥ u and uσ∗1 = uσ1 (λ ∗1 (t2) ,σ

∗
1 (t2) , t2)≤ u.

We begin the proof by specifying uτ∗1 and uσ∗1 . Recall from (17) that the cut-off values of u are
implicitly defined by

z =−C1 (λ1,Q2 (λ1, t2,uz) ,uz) , z = (τ1,σ1).

Explicitly,
uz = z−a1 +a2λ1−wQ2, z = (τ1,σ1). (72)

Given that pollutant 2 is controlled with the tax t2, emissions of 2 at uz satisfy t2 =−C2 (λ1,Q2,uz)=

a1−a2Q2 +wλ1, z = (τ1,σ1); that is,

Q2 (λ1, t2,uz) =
a1 +uz− t2 +wλ1

a2
, z = (τ1,σ1).

Substitute Q2 (λ1, t2,uz) in for Q2 in (72) to obtain

uz (λ1, t1, t2) =−a1 +(a2−w)λ1 +
a2z

a2 +w
+

wt2

a2 +w
, z = (τ1,σ1). (73)

At the unconstrained solution to (21):

uτ1 (λ ∗1 (t2) ,τ
∗
1 (t2) , t2) =−a1 +(a2−w)λ

∗
1 (t2)+

a2τ∗1 (t2)

a2 +w
+

wt2

a2 +w
; (74)

uσ1 (λ ∗1 (t2) ,σ
∗
1 (t2) , t2) =−a1 +(a2−w)λ

∗
1 (t2)+

a2σ∗1 (t2)

a2 +w
+

wt2

a2 +w
. (75)
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After substituting (23) through (24) into (74) and (75), it is possible to show:

uτ1 (λ ∗1 (t2) ,τ
∗
1 (t2) , t2) =

(a2−w)
(
a2

2 +a2w−wd22
)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E
[

u|uσ∗1 ≤ u≤ uτ∗1
]

+
a2 (a2d12 +d22w)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E
[

u|uτ∗1 ≤ u≤ u
]

; (76)

uσ1 (λ ∗1 (t2) ,σ
∗
1 (t2) , t2) =

(a2−w)
(
a2

2 +a2w−wd22
)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E
[

u|uσ∗1 ≤ u≤ uτ∗1
]

+
a2 (a2d12 +d22w)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E [u|u≤ u≤ uσ1∗] (77)

The necessary condition (or conditions) for emissions trading to be the optimal policy is
found by evaluating the conditions under which uτ∗1 = uτ1 (λ ∗1 (t2) ,τ

∗
1 (t2) , t2) ≥ u and uσ∗1 =

uσ1 (λ ∗1 (t2) ,σ
∗
1 (t2) , t2) ≤ u. To do so, it is necessary to evaluate the conditional expectations

in (76) and (77) under these conditions. First, since E(u) = 0 and the support of u is [u,u], uτ∗1 ≥ u

and uσ∗1 ≤ u imply E
[

u|uσ∗1 ≤ u≤ uτ∗1
]
= 0. Next, we cannot directly evaluate

E[u|uτ∗1 ≤ u≤ u] =

´ u
uτ∗1

u f (u)du´ u
uτ∗1

f (u)du
,

given uτ∗1 ≥ u, but we can use l’Hopital’s rule to determine

lim
uτ∗1→u

E[u|uτ∗1 ≤ u≤ u] = u.

Similarly, we have
lim

uσ∗1→u
E[u|u≤ u≤ uσ1∗] = u.

Substitute these limiting values and E
[

u|uσ∗1 ≤ u≤ uτ∗1
]
= 0 into (76) and (77) to obtain:

uτ∗1 = uτ1 (λ ∗1 (t2) ,τ
∗
1 (t2) , t2)≥ u =⇒ a2 (a2d12 +d22w)u

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 ≥ u;

uσ∗1 = uσ1 (λ ∗1 (t2) ,σ
∗
1 (t2) , t2)≤ u =⇒ a2 (a2d12 +d22w)u

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 ≤ u.

Since a2
(
a2

2−w2)+a2
2d12 +d22w2 and a2 are strictly positive, these inequalities hold if and only
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if

a2 (a2d12 +wd22)

a2
(
a2

2−w2
)
+a2

2d12 +w2d22
≥ 1,

which simplifies to wd22 ≥ a2(a2 +w): therefore, this is a necessary condition for an simple emis-
sion trading to be the optimal policy.

To prove that wd22≥ a2(a2+w) is also sufficient for emissions trading to be the optimal policy,
suppose toward a contradiction that wd22 ≥ a2(a2 +w), but that pure trading is not optimal; that
is, uτ∗1 = uτ1 (λ ∗1 (t2) ,τ

∗
1 (t2) , t2) < u or uσ∗1 = uσ1 (λ ∗1 (t2) ,σ

∗
1 (t2) , t2) > u. Note first that since

uτ∗1 < u,
E
[
u|uτ∗1 ≤ u≤ u

]
> uτ1 (λ ∗1 (t2) ,τ

∗
1 (t2) , t2) .

Using (76),

E
[
u|uτ∗1 ≤ u≤ u

]
>

(a2−w)
(
a2

2 +a2w−wd22
)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E
[

u|uσ∗1 ≤ u≤ uτ∗1
]

+
a2 (a2d12 +d22w)

a2
(
a2

2−w2
)
+a2

2d12 +d22w2 E
[

u|uτ∗1 ≤ u≤ u
]
,

which implies

(a2−w)(a2(a2 +w)−wd22)

a2
(
a2

2−w2
)
+a2

2d12 +w2d22

{
E
[
u|uσ∗1 ≤ u≤ uτ∗1

]
−E

[
u|uτ∗1 ≤ u≤ u

]}
< 0. (78)

The first term of the left side of (78) is less than or equal to zero because a2
(
a2

2−w2)+ a2
2d12 +

w2d22 > 0, a2−w > 0, and a2(a2 +w)−wd22 ≤ 0 by assumption. The second term involving the
conditional expectations is strictly negative because

E
[
u|uσ∗1 ≤ u≤ uτ∗1

]
≤ uτ∗1 < E

[
u|uτ∗1 ≤ u≤ u

]
.

Since the first term of (78) is weakly negative and the second is strictly negative, the inequality
cannot hold and we have obtained our contradiction. Thus, wd22 ≥ a2(a2 +w) is also a sufficient
condition for the optimal policy to be a pure emissions market. As an aside, we could have obtained
a similar contradiction by showing that uσ∗1 = uσ1 (λ ∗1 (t2) ,σ

∗
1 (t2) , t2) > u cannot hold if wd22 ≥

a2(a2 +w).

Part (3). Part (3) follows directly from parts 1 and 2. Since the tax is the optimal policy pollutant 1
if and only if a2d12 +wd22 ≤ 0, the pure trading program is optimal if and only if wd22 ≥ a2(a2 +

w), then it must be the case that the hybrid policy is optimal if and only if wd22 ∈ (−a2d12, a2(a2+
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w)).

Part (4). To begin the proof of Part (4) we calculate expected social costs under t∗1(t̄2) given by
(25) and L∗1(t̄2) given by (26). With our specific functional forms, the expected social cost function
is:

W = E
[

a0− (a1 +u−d11)Q1− (a1 +u−d21)Q2 +
a2 +d12

2
Q2

1 +
a2 +d22

2
Q2

2−wQ1Q2

]
. (79)

Under the tax t∗1(t̄2), we have:

W (t∗1(t̄2), t̄2) = E [a0− (a1 +u−d11)Q1 (t∗1(t̄2), t̄2,u)− (a1 +u−d21)Q2 (t∗1(t̄2), t̄2,u)

+
a2 +d12

2
[Q1 (t∗1(t̄2), t̄2,u)]

2 +
a2 +d22

2
[Q2 (t∗1(t̄2), t̄2,u)]

2−wQ1 (t∗1(t̄2), t̄2,u)Q2 (t∗1(t̄2), t̄2,u)
]
,

(80)

where, using (44), we have:

Q1 (t∗1(t̄2), t̄2,u) =
(a1 +u)(a2 +w)−a2t∗1(t̄2)−wt̄2

a2
2−w2 ;

Q2 (t∗1(t̄2), t̄2,u) =
(a1 +u)(a2 +w)−a2t̄2−wt∗1(t̄2)

a2
2−w2 ,

and t∗1(t̄2) is given by (25). Under emissions trading with L∗1(t̄2) permits,

W (L∗1(t̄2), t̄2) = E
[

a0− (a1 +u−d11)L∗1(t̄2)− (a1 +u−d21)Q2 (L∗1(t̄2), t̄2,u)+
a2 +d12

2
[L∗1(t̄2)]

2

+
a2 +d22

2
[Q2 (L∗1(t̄2), t̄2,u)]

2−wL∗1(t̄2)Q2 (L∗1(t̄2), t̄2,u)
]
, (81)

where, using (45),

Q2 (L∗1(t̄2), t̄2,u) =
a1 +u− t̄2 +wL∗1(t̄2)

a2
,

and L∗1(t̄2) is given by (26). Subtracting W (L∗1(t̄2), t̄2) from W (t∗1(t̄2), t̄2) yields:

W (t∗1(t̄2), t̄2)−W (L∗1(t̄2), t̄2) =
(

E(u2)

2

)[
wd22(2a2−w)−a2(a2

2−w2−a2d12)

a2
2 (w−a2)

2

]
.
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Since E(u2)/2a2
2 (w−a2)

2 > 0:

sgn [W (t∗1(t̄2), t̄2)−W (L∗1(t̄2), t̄2)] = sgn
[
wd22(2a2−w)−a2(a2

2−w2−a2d12)
]

= sgn

[
wd22−

a2
(
a2

2−w2−a2d12
)

(2a2−w)

]
.

Part (4) of Proposition 1 follows directly from this equation.

Proving Parts (5) through (8) of Proposition 1 proceeds in the same way as the proofs to Parts
1 through 4.

Part (5). To prove Part (5) of Proposition 1 recall that, given that pollutant 2 is controlled by
L2 tradable permits, the optimal policy is the tax t∗1

(
L2
)

if and only if the solution to (31) yields
τ∗1
(
L2
)
≤ σ∗1

(
L2
)
. To determine the conditions under which this is true subtract (34) from (33) to

obtain
τ
∗
1
(
L2
)
−σ

∗
1
(
L2
)
=

d12

a2 +d12

{
E
[
u|uτ∗1 ≤ u≤ u

]
−E

[
u|u≤ u≤ uσ∗1

]}
(82)

The denominator of (82) is strictly positive. Moreover, since E(u) = 0, E
[
u|u≤ u≤ uσ∗1

]
≤ 0 and

E
[
u|uτ∗1 ≤ u≤ u

]
≥ 0, but both cannot be zero simultaneously. Therefore, E

[
u|uτ∗1 ≤ u≤ u

]
−

E
[
u|u≤ u≤ uσ∗1

]
> 0. Consequently, τ∗1

(
L2
)
≤ σ∗1

(
L2
)
⇐⇒ d12 ≤ 0. However, since d12 ≥ 0,

τ
∗
1
(
L2
)
≤ σ

∗
1
(
L2
)
⇐⇒ d12 = 0.

Hence, the tax t∗1
(
L2
)
is the optimal policy if and only if d12 = 0, which is the desired result.

Part (6). Recall that a simple emissions market is optimal if and only if

uτ∗1 = uτ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
≥ u and uσ∗1 = uσ1

(
λ
∗
1
(
L2
)
,σ∗1

(
L2
)
,L2
)
≤ u.

Toward specifying uτ∗1 and uσ∗1 , recall from (27) that the cut-off values of u are implicitly defined
by z =−C1

(
λ1,L2,uz) , z = (τ1,σ1). Explicitly,

uz = z−a1 +a2λ1−wL2, z = (τ1,σ1). (83)

At the unconstrained solution to (31):

uτ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
= τ

∗
1
(
L2
)
−a1 +a2λ

∗
1
(
L2
)
−wL2; (84)

uσ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
= σ

∗
1
(
L2
)
−a1 +a2λ

∗
1
(
L2
)
−wL2. (85)
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After substituting (32) and (33) into (84), it is possible to write uτ1
(
λ ∗1
(
L2
)
,τ∗1
(
L2
)
,L2
)

as

uτ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
=

d12

a2 +d12
E
[

u|uτ∗1 ≤ u≤ u
]
+

a2

a2 +d12
E
[

u|uσ∗1 ≤ u≤ uτ∗1
]
. (86)

Recall that

uτ∗1 = uτ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
≥ u and uσ∗1 = uσ1

(
λ
∗
1
(
L2
)
,σ∗1

(
L2
)
,L2
)
≤ u,

imply E
[

u|uσ∗1 ≤ u≤ uτ1∗
]
= 0 and

lim
uτ∗1→u

E[u|uτ∗1 ≤ u≤ u] = u.

Substitute these into (86) to obtain

uτ1
(
λ
∗
1
(
L2
)
,τ∗1
(
L2
)
,L2
)
≥ u =⇒ d12u

a2 +d12
≥ u.

However, this is not possible since d12/(a2 +d12)< 1. This reveals that a pure trading scheme for
pollutant 1 cannot be optimal. (We could have proved Part (6) of the Proposition by showing that
uσ1
(
λ ∗1
(
L2
)
,σ∗1

(
L2
)
,L2
)
≤ u is also not possible).

Part (7). This part follows directly from Parts (5) and (6). Since the tax is optimal if and only
if d12 = 0 and a pure trading schemes is never optimal, it must be true that the hybrid policy is
optimal if and only if d12 > 0.

Part (8). If pollutant 2 is controlled with L2 tradable permits, the social welfare function (79)
under t∗1(L2) is

W (t∗1(L2),L2) = E
[

a0− (a1 +u−d11)Q1
(
t∗1(L2),L2,u

)
− (a1 +u−d21)L2 +

a2 +d12

2
[
Q1
(
t∗1(L2),L2,u

)]2
+

a2 +d22

2
[
L2
]2−wQ1

(
t∗1(L2),L2,u

)
L2

]
, (87)

where, using (45),

Q1
(
t∗1(L2),L2,u

)
=

(a1 +u)− t∗1(L2)+wL2

a2
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and t∗1(L2) is given by (35). Under emissions trading with L∗1(L2) permits,

W (L∗1(L2),L2) = E
[

a0− (a1 +u−d11)L∗1(L2)− (a1 +u−d21)L2 +
a2 +d12

2
[
L∗1(L2)

]2
+

a2 +d22

2
[
L2
]2−wL∗1(L2)L2

]
, (88)

where L∗1(L̄2) is given by (36). Subtracting W (L∗1(L2),L2) from W (t∗1(L2),L2) yields

W (t∗1(L2),L2)−W (L∗1(L2),L2) =
E(u2)(d12−a2)

2a2
2

.

Since E(u2)/2a2
2 > 0,

sgn
[
W (t∗1(L2),L2)−W (L∗1(L2),L2)

]
= sgn(d12−a2).

Part (8) of Proposition 1 follows directly from this equation. We have now completed the proof of
Proposition 1. �

7.4 Proof of Lemma 1

The proof proceeds by first deriving expected emissions of pollutant 1 under a hybrid policy, given
the regulation of pollutant 2. we use this derivation to demonstrate (37). For each case of pollutant
2 regulation we demonstrate (37). We then derive expected emissions of pollutant 2, given that
it is regulated with a tax and pollutant 1 is regulated with the optimal hybrid policy. We use this
derivation to demonstrate (38).

Given the regulation of pollutant 2, x, expected aggregate emissions of pollutant 1 under the
optimal hybrid policy h∗1(x) = (λ ∗1 (x) ,τ

∗
1 (x) ,σ

∗
1 (x)) is:

E (Q1 (h∗1(x),x,u)) =
ˆ uσ∗1

u
Q1 (σ

∗
1 (x) ,x,u) f (u)du+

ˆ uτ∗1

uσ∗1
λ
∗
1 (x) f (u)du

+

ˆ u

uτ∗1
Q1 (τ

∗
1 (x) ,x,u) f (u)du. (89)
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Suppose that pollutant 2 is regulated with a tax t̄2. Using (52), (89) can be expressed as

E (Q1 (h∗1(t2), t2,u)) =
ˆ uσ∗1

u

(a1 +u)(a2 +w)−a2σ∗1 (t2)−wt2

a2
2−w2 f (u)du+

ˆ uτ∗1

uσ∗1
λ
∗
1 (t2) f (u)du.

+

ˆ u

uτ∗1

(a1 +u)(a2 +w)−a2τ∗1 (t2)−wt2

a2
2−w2 f (u)du. (90)

Substituting the optimal hybrid components, (22) through (24) into (90) and manipulating terms
produces

E (Q1 (h∗1(t2), t2,u)) =
a2

2(a1−d11)+w(a2 (a1−d21)−d22(a1− t2))

A
+

a2(a2 +w)−wd22

A
G,

where

G =

ˆ uσ∗1

u
u f (u)du+

ˆ uτ∗1

uσ∗1
u f (u)du+

ˆ u

uτ∗1
u f (u)du.

Clearly, G = 0 for a hybrid policy. Moreover, it is zero for the optimal tax and the optimal trading
program as well. In the case of the tax, uσ∗1 = uτ∗1 ≤ u, resulting in G = 0. In the case of a pure
trading program, uσ∗1 ≤ u and uτ∗1 ≥ u, so again G = 0. Therefore, we have

E (Q1 (h∗1(t2), t2,u)) = E (Q1 (t∗1(t2), t2,u)) = L∗1(t2)

=
a2

2(a1−d11)+w(a2 (a1−d21)−d22(a1− t2))

A
. (91)

This is (37) for x = t2.
Now suppose that pollutant 2 is regulated with L2 permits. Using (66), (89) can be expressed

as

E
(
Q1
(
h∗1(L2), L̄2,u

))
=

ˆ uσ∗1

u

(
a1 +u−σ∗1

(
L2
)
+wL2

a2

)
f (u)du+

ˆ uτ∗1

uσ∗1
λ
∗
1
(
L2
)

f (u)du

+

ˆ u

uτ∗1

(
a1 +u− τ∗1

(
L2
)
+wL2

a2

)
f (u)du. (92)

Substituting the optimal hybrid components, (32) through (34) into (92) and manipulating terms
produces

E
(
Q1
(
h∗1(L2),L2,u

))
=

a1−d11 +wL2 +H
a2 +d12

,

where

H =

ˆ uσ∗1

u
u f (u)du+

ˆ uτ∗1

uσ∗1
u f (u)du+

ˆ u

uτ∗1
u f (u)du.
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By similar arguments given in the case that pollutant 2 is regulated with a tax, H = 0 under h∗1(L2),

t∗1(L2) and L∗1(L2). Therefore,

E
(
Q1
(
h∗1(L2),L2,u

))
= E

(
Q1
(
t∗1(L2),L2,u

))
= L∗1(L2) =

a1−d11 +wL2

a2 +d12
. (93)

This is (37) for x = L2.
Deriving (38) for expected emissions of pollutant 2 follows the same approach. When pollutant

2 is regulated by a tax t̄2 and pollutant 1 is controlled with the optimal hybrid policy with given t̄2,
the expected emissions of pollutant 2 is:

E (Q2 (h∗1 (t̄2) , t2,u)) =
ˆ uσ∗1

u
Q2 (σ

∗
1 (t2) , t2,u) f (u)du+

ˆ uτ∗1

uσ∗1
Q2 (λ

∗
1 (t2) , t2,u) f (u)du

+

ˆ u

uτ∗1
Q2 (τ

∗
1 (t2) , t2,u) f (u)du. (94)

By the same process used above it is possible to show

E (Q2 (h∗1 (t̄2) , t2,u)) = E (Q2 (t∗1 (t̄2) , t2,u)) = E (Q2 (L∗1 (t̄2) , t2,u))

=
a1a2 (a2 +d12 +w)−w(a2d11 +d21w)−

((
a2

2−w2)+a2d12
)

t2

A
, (95)

which demonstrates (38). This completes the proof of Lemma 1. �

7.5 Proof of Proposition 2

Given the notation defined in (39) and (40), as well as our calculations (91), (93), and (95):

E (Q∗1 (t2)) =
a2

2(a1−d11)+w(a2 (a1−d21)−d22(a1− t2))

A
; (96)

E
(
Q∗1(L2)

)
=

a1−d11 +wL2

a2 +d12
; (97)

E (Q∗2 (t2)) =
a1a2 (a2 +d12 +w)−w(a2d11 +d21w)−

((
a2

2−w2)+a2d12
)

t2

A
. (98)

To derive (41) of Proposition 2, first subtract (9) from (96) to obtain

E (Q∗1 (t2))− Q̂1 =
N1

A [(a2 +d12)(a2 +d22)−w2]
, (99)
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where

N1 =
[
a2

2(a1−d11)+w(a2 (a1−d21)−d22(a1− t2))
][
(a2 +d12)(a2 +d22)−w2]

−A [w(a1−d21)+(a1−d11)(a2 +d22)] .

Now subtract (10) from (98) to obtain

E (Q∗2 (t2))− Q̂2 =
N2

A [(a2 +d12)(a2 +d22)−w2]
(100)

where

N2 =
[
a1a2 (a2 +d12 +w)−w(a2d11 +d21w)−

((
a2

2−w2)+a2d12
)

t2
][
(a2 +d12)(a2 +d22)−w2]

−A [w(a1−d11)+(a1−d21)(a2 +d12)] .

Dividing (99) by (100) and rearranging terms gives us

E (Q∗1 (t2))− Q̂1 =
N1

N2

[
E (Q∗2 (t2))− Q̂2

]
. (101)

It is straightforward to show that

N1

N2
=

−d22w(
a2

2−w2
)
+a2d12

,

which upon substitution into (101) gives us our desired result (41).
To derive (42), take (98) and substitute L2 = L2− Q̂2 + Q̂2 and collect terms to obtain

E
(
Q∗1(L2)

)
=

a1−d11 +wQ̂2

a2 +d12
+

w
(
L2− Q̂2

)
a2 +d12

. (102)

It is straightforward to show
a1−d11 +wQ̂2

a2 +d12
= Q̂1,

which upon substitution into (102) gives us our desired result (42). This completes the proof of
Proposition 2. @
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