Feedback, Social Nudges, and Energy Conservation

Elizabeth Hunter (ehunter@umass.edu)
Christine Crago (ccrago@resecon.umass.edu)
John Spraggon (Jmspragg@resecon.umass.edu)
Department of Resource Economics, University of Massachusetts Amherst

Copyright 2015 by Elizabeth Hunter, Christine Crago, and John Spraggon. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
FEEDBACK, SOCIAL NUDGES, and ENERGY CONSERVATION

A Field Experiment

Elizabeth Hunter*, Christine L. Crago, John Spraggon

INTRODUCTION

- Studies have suggested that total energy use in the United States can be reduced by 20% through changes in energy-use behavior (Frankel and Tai 2013).
- Feedback and social nudges as a means of promoting energy conservation have been gaining in popularity though the extent of their effectiveness is still uncertain.
- Previous empirical work on energy conservation has focused on the effect of feedback and social nudges for rate-paying households (Costa and Kahn, 2011; Allcott, 2011).

OBJECTIVE

In this study, we test whether energy-use information coupled with a message incorporating a social nudge can induce energy conservation for non-ratepayers in a household setting.

METHODS

<table>
<thead>
<tr>
<th>Experimental Setting</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>North Village Apartment Complex (NVA) is a family housing complex built in the early 1970s on the University of Massachusetts Amherst campus.</td>
<td>It is made up of 237 housing units – 120 one-bedroom and 117 two-bedroom.</td>
<td>Energy is all-electric and residents do not pay separately for their utilities.</td>
</tr>
</tbody>
</table>

EXPERIMENTAL DESIGN

64 households residing in apartment units with utility-inclusive rent agreed to participate in the study. They were randomly divided into a control group and two treatment groups.

- Phase 1: Residents in both treatment groups receive Home Electricity Reports containing feedback on their own electricity consumption (see Figure 2).
- Phase 2: Residents in Treatment Group 1 continue to receive feedback on their own electricity consumption. Residents in Treatment Group 2 also receive a social nudge (see Figure 3).

EMPIRICAL SPECIFICATION

- The preferred empirical model used to analyze the effects of feedback and social nudges is a log-linear fixed-effects model adjusted for first-order autocorrelation.

\[\ln kWh_{it} = a + \rho f dbk_{it} + \rho S_{it} + \sum \beta_t X + \epsilon_{it} \]

Natural log of hourly electricity consumption measured in kilo-Watt hours.

Dummy variable equal to 1 if the household received feedback on own-electricity consumption.

Dummy variable equal to 1 if the household received additional information containing a social nudge.

Time-variant control variables such as mean temperature, time-of-day, day-of-week, and holidays.

RESULTS

TREATMENT EFFECTS

- Feedback decreased electricity consumption by 1.9%.
 - When restricted to evening peak hours (7pm to 10pm) this reduction increased to 3.6%.
- The social nudge increased electricity consumption by 3.6%, though the findings were not significant.
- When restricted to evening peak hours (7pm to 10pm) this increase increased to 2.3%, though the findings were not significant.
- We find evidence that this is due to the “boomerang effect”, where households consuming below-average energy increase their energy use upon learning that they are low energy users.

CONCLUSION

- Our study provides evidence that feedback on energy use can reduce energy consumption when financial incentives are inappropriate.
- Our study does not find social contextualization to be an effective method of reducing energy consumption in the residential sector when no financial incentive to conserve energy exists.
- We suggest further exploration into social nudges other than social contextualization, such as environmental responsibility, and health.

* For questions, suggestions, or further information, please contact:

Elizabeth Hunter
Department of Resource Economics
University of Massachusetts Amherst
EHunter@student.umass.edu.

Funding is acknowledged from the University of Massachusetts Healey Endowment Grant. We thank the staff of UMass Residential Life, especially Director Eddie Hull and Engineer Mike Lucey for their support and logistical contributions. We also thank Eric Foegler for his invaluable assistance.