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Impacts of Federal Crop Insurance on Land Use and Environmental Quality 

Abstract  

This paper integrates economic and physical models to assess how federal crop revenue 

insurance programs might affect land use, cropping systems, and environmental quality in the 

U.S. Corn Belt region. The empirical framework includes econometric models that predict land 

conversion, crop choices, and crop rotations at the parcel-level based on expectation and 

variance of crop revenues, land quality, climate conditions, and physical characteristics at each 

site. The predictions are then combined with site-specific environmental production functions to 

determine the effect of revenue insurance on nitrate runoff and leaching, soil water and wind 

erosion, and carbon sequestration. Results suggest that crop insurance will have small impacts on 

conversions of non-cropland to cropland, and somewhat more significant impacts on crop choice. 

These changes in crop mix have small impacts on agricultural pollution.  
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Impacts of Federal Crop Insurance on Land Use and Environmental Quality 

1.  Introduction 

The focus of federal agricultural policy has shifted from direct payments towards risk 

management, and federal crop insurance has become a cornerstone of U.S. agricultural policy 

(Woodard 2013). More than 265 million acres were enrolled in the crop insurance program in 

2011, with $114 billion in estimated total liability. The corresponding costs to the federal 

government in 2011 were estimated at over $11 billion (Glauber 2013). The shift of agricultural 

policy focus continues with the Agricultural Act of 2014, which eliminates direct government 

payments and significantly expands crop insurance. The Act establishes the Supplemental 

Coverage Option (SCO), which provides additional protection to producers of covered 

commodities beyond traditional crop insurance policies. It expands the Noninsured Crop 

Assistance Program (NAP) to allow additional “buy-up” coverage above catastrophic loss levels. 

There has never been a farm bill with such a robust crop insurance program combined with 

price-sensitive commodity programs (Olen and Wu 2014). 

Crop insurance alters producers’ incentives in two broad ways. First, premium subsidies 

based on the “fair” premium, by definition, add to expected revenue for crop production. As 

such, subsidized crop insurance may create incentives for farmers to expand crop production to 

marginal lands. Second, crop insurance reduces the riskiness of growing covered crops relative 

to other crops, thus potentially affecting farmers’ choice of land use, crop mix, input use (Wu 

1999; Goodwin et al. 2004; Babcock and Hennessy 1996; Young et al. 2001; Goodwin and 

Smith 2013; Walters et al. 2012).  

Changes in land use and crop mix under crop insurance could lead to unforeseen 

secondary effects on environmental quality. Converting grassland to crop production may mean 
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increased use of fertilizers, pesticides, and other chemicals in vulnerable areas, thus potentially 

leading to additional runoff and water pollution. Changes in crop mix towards more erosive and 

chemical-intensive crops, such as from hay to corn, may also lead to increased runoff and 

leaching and water contamination (Goodwin and Smith 2003). On the other hand, if riskier crops 

have less damaging environmental effects, insurance-induced crop mix changes could improve 

environmental outcomes. However, the extent to which changes in federal crop insurance policy 

may affect land use and crop mix, as well as the magnitude of the accompanying environmental 

impacts, is not clear (Walters et al. 2012).  

In this paper we integrate economic and biophysical models to examine the potential 

effects of federal crop insurance on land use and cropping patterns, as well as the resulting 

impacts on environmental quality in the U.S. Corn Belt region (Ohio, Illinois, Indiana, Iowa, 

Missouri). The region accounts for over one third (35%) of total liability in the U.S. crop 

insurance program (USDA Risk Management Agency 2013). We estimate a set of latent class 

logit models (LCL) to assess the effects of federal crop insurance programs on farmers’ major 

land use decisions (e.g., pasture vs. crop production), crop choices (e.g. corn vs. soybeans or 

wheat), and crop rotations (e.g. continuous corn vs. corn-soybean) in the Corn Belt. These 

models link land use and crop choices on individual parcels to the means, variances, and 

covariances of revenues from alternative crops, production costs, land characteristics of the 

parcel, weather conditions at the parcel, and rotational constraints. We estimate these models 

using data from the National Resources Inventories (NRI), the most comprehensive data on 

private land use ever collected in the United States. We use the estimated land use and crop 

choice models to simulate the effect of federal crop insurance on major land use, crop choices, 

and crop rotations in the region. Finally, we link the land use models with physical models to 
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estimate the effect of crop insurance on soil erosion, nitrate runoff and leaching, and soil carbon 

sequestration.   

Our results suggest that the most significant impacts of federal crop insurance in the 

study region would be on crop choice and therefore on crop rotation patterns, whereas the effects 

on conversion from non-cropland to cropland would be small. Changes in crop rotation patterns, 

in turn, will have modest detrimental effects on environmental quality.  

 Several previous studies have examined the effects of the federal crop insurance on land 

use without examining its potential environmental impact. Wu and Adams (2001) examine the 

relationship between production risk, cropping patterns, and alternative revenue insurance 

programs in the Corn Belt. Young et al. (2001) examine the nationwide market impacts of crop 

insurance by simulating changes in acreage, production, price, and net returns induced by crop 

insurance. Most previous studies find statistically significant but modest impacts of crop 

insurance participation on crop acreage allocations. For instance, Young et al. (2001) report that 

subsidized crop insurance leads to an increase of only about 0.4% in total crop acreage. 

Similarly, Goodwin et al. (2004) find that even in their most extreme scenario (a 30% drop in 

insurance premiums), corn acreage increases by only 0.3 - 0.5%. 

 Some previous studies have considered the environmental effect of federal crop insurance 

programs. Most of these studies focus on the effect of crop insurance on chemical application 

rates without examining its effect on crop mix and land use (Babcock and Hennessy 1996; 

Young et al. 2001; Chambers and Quiggin 2002; Coble et al. 1997). Wu (1999) examines the 

effects of crop insurance on cropping patterns and chemical use in the Central Nebraska Basin 

and finds that providing crop insurance for corn will shift land from hay and pasture to corn, 

which will lead to increased chemical use at the extensive margin. This extensive effect 
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dominates the effect of insurance on the chemical application rate, leading to an increase in total 

chemical use. Goodwin et al. (2004) use a structural model of acreage, insurance and 

conservation program participation, and input usage decisions to examine the effects of increased 

participation in crop insurance programs in the Corn Belt and Upper Great Plains, including the 

effect on chemical use. Goodwin and Smith (2003) develop econometric models to estimate the 

effect of crop insurance programs on soil erosion and find no large measurable increases in 

erosion as a result of increased insurance participation. Walters et al. (2012) is the closest in 

spirit to this paper. They first use producer-level data from Iowa, North Dakota, Washington, and 

Colorado to estimate crop acreage share equations for major insured crops or crop groups and 

then use the APEX (Agricultural Policy – Environmental Extender) model to simulate effects of 

crop share changes on several measures of environmental degradation. They find modest effects 

of insurance on crop choice as well as small, positive and negative, environmental effects of 

changing cropping patterns. Walters et al. (2012), however, does not explicitly explore separate 

effects of insurance on the amount of land converted to crops from other uses and, given the 

amount of cropland, the impact on crop choice. It also does not account for crop rotation patterns 

and the limitations imposed by these patterns on crop choice, or the distinct environmental 

effects of different crop rotations.  

 This paper contributes to this literature by integrating economic models of land use and 

crop choice with physical models of environmental quality indicators to examine the 

environmental impacts of insurance. We examine how risk affects both the land allocation 

between crop and non-crop uses, including participation in the Conservation Reserve Program 

(CRP), and, conditional on land use, the crop choice decision. In contrast to most previous 

studies, which use county-level data, we conduct our analysis using fine-scale parcel-level land 
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use and crop choice data. Our model also accounts for crop choice history, thus allowing us to 

explicitly simulate specific crop rotation choices. This is an important aspect of the crop choice 

decision and its environmental consequences have not been addressed in existing models. 

Simulated crop rotations are then combined with environmental production functions to assess 

the effect of federal crop insurance on nitrogen runoff and leaching, soil carbon loss, and soil 

erosion.          

 In the next section we describe the empirical model and approaches for estimating the 

land use models. Section 3 describes the data and variable construction. Section 4 presents and 

discusses the results from the land use and crop choice models. Section 5 presents the simulation 

framework for the land use and crop choice impacts of crop insurance and discusses the results 

of the simulation. Section 6 discusses the environmental impacts. Finally, section 7 concludes. 

 

2. The Empirical Model 

Consider a landowner who makes land use decisions to maximize utility. Land use decisions 

may involve major land uses and crop choices. Major land uses include whether to allocate a 

parcel to crop production or a non-crop use such as pasture, or enrolling the parcel in the 

Conservation Reserve Program (CRP) if it is eligible. If a parcel is allocated to crop production, 

the landowner must decide which crop to grow. Suppose a landowner can choose among n crops, 

with 
  
i ÎC º{c

1
, c

2
, …, c

n
}indicating the crop choices, and 

  
i ÎM º{m

1
,m

2
,...,m

K
} indicating K 

non-crop alternatives. For each use, utility is a function of variables affecting the expected net 

returns and risk: 

 (1)     
   
U

ijt
= ¢X

ijt
b

i
+e

ijt
,   i ÎM ÈC, 
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where 
 
U

ijt
is the utility from land use i on parcel j in year t; 

 
b

i
is a vector of parameters;

 
X

ijt
is a 

vector of variables measuring the expected net returns and risk for land use i on parcel j in year t; 

and 
 
e

ijt
 is a random error term. If the errors 

 
e

ijt
 follow the i.i.d. extreme value distribution, the 

probability that utility for land use j exceeds that for other land uses equals  

(2)    

 

L
ijt

=
e

¢X
ijt

b
i

e
¢X
kj
b

k

kÎMÈC

å
, i Î M ÈC . 

For estimation purposes, it is convenient to rewrite the probability as follows: 

(3) Major land use: 

   

L
ijt

=
e

¢X
ijt

b
i

1+ e
¢X
kjt

b
k

kÎM

å
,   i ÎM

 

 (4) Crop choices:  

   

L
ijt

= L
jt
(i | i ÎC) × L

jt
(i ÎC) =

e
¢X
ijt

b
i

e
¢X
kjt

b
k

kÎC

å
×

1

1+ e
¢X
kjt

b
k

kÎM

å
,   i ÎC .

 

This decomposition is convenient as it means that we can separately study the major land use 

decision (crop vs. noncrop) and the crop choice decision (which crop to grow, conditional on the 

parcel being allocated to crop production).  

 Most previous land use studies estimate models like (3) or (4) as a multinomial logit 

(MNL) or conditional logit (CL) model (Lichtenberg 1989; Wu and Segerson 1995; Hardie and 

Parks 1997; Plantinga, Mauldin, and Miller 1999; Wu et al. 2004; Langpap and Wu 2012). An 

often-cited limitation of MNL or CL is the assumption of independence of irrelevant alternatives 

(IIA). This assumption is convenient for estimation, but not legitimate if there are omitted 

variables in estimation, as omitted variables correlated across choices may result in its violation 

(Train 2009).  

 In this paper, we follow Claassen et al. (2013) to estimate equations (3) and (4) as 
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random parameter models to overcome the IIA problem. When parameters follow parametric 

distributions (and are constant across all observations for a specific parcel), the probability of the 

observed sequence of land uses choices at parcel j is: 

(5)    

  

P
j
= L

ijt
(b )

t

Õ
æ

è
ç

ö

ø
÷ò f (b )db , 

where 
  
b = (b

m
1

,...,b
m

K

;b
c

1

,...,b
c

n

) , and
  
f (b)  is the density function of b . 

 To specify random parameters using empirical distributions, we use a latent class logit 

model (LCL) solved via an expectation-maximization (EM) algorithm (Train 2009). LCL allows 

us to fully relax IIA without splitting the data and estimating multiple models, as in Lubowski, 

Plantinga, and Stavins (2008) and Rashford, Walker, and Bastian (2010), or determining how 

land uses should be nested, as in Gardner, Parks, and Hardie (2010 ). In the LCL model each 

individual is assumed to belong to a given class, although class membership is not observed. 

Classes represent groups of relatively homogenous individuals (in terms of behavior) or parcels 

of land (in terms of unobservable attributes) and each class has its own set of parameters. 

Heterogeneity in response to economic or policy change is captured by class membership and 

class-specific parameters. The probability of class membership is estimated unconditionally (as 

the probability that any given individual belongs to class c) for individual parcels, conditional on 

the observed choices, although the number of classes is selected by the researcher. 

 Suppose each land parcel falls into one of L classes. The probability of the observed 

sequence of land use choices at parcel j is: 

(6)    

  

P
j
= s

l
L

ijt
(b

l
)

t

Õ
æ

è
ç

ö

ø
÷

l

å , 

where 
 
s

l
is the probability that any given parcel belongs to class l.  
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  Maximizing the LCL likelihood function using standard techniques can be difficult.  

Train (2009) suggests maximizing the likelihood function via the expectation-maximization 

(EM) algorithm. The EM algorithm is a method of computing maximum likelihood estimates 

from incomplete data, e.g., unobserved class membership (Dempster et al. 1977).  Repeated 

maximization of a specific expectation, which is closely related to the log-likelihood function, 

converges to the maximum of the log-likelihood function. For the LCL model, Train (2009) 

shows that the expectation to be maximized is: 

(7)   𝜀(𝑠, β) = ∑ ∑ ℎ𝑖𝑙𝑙𝑜𝑔(𝑠𝑙 ∏ 𝐿𝑖𝑗𝑡(𝑋𝑖𝑗𝑡; 𝛽𝑙)𝑡 )𝑖𝑙 , 

where ℎ𝑖𝑙 is the observation-specific probability that parcel i belongs to class l: 

(8)    ℎ𝑖𝑙 =
𝑠𝑙 ∏ 𝐿𝑖𝑗𝑡(𝑋𝑖𝑗𝑡;𝛽𝑙)𝑡

∑ 𝑠𝑙′
∏ 𝐿𝑖𝑗𝑡(𝑋𝑖𝑗𝑡;𝛽𝑙′)𝑡𝑙′

 . 

 Claassen et al. (2013) provide a detailed description of the EM algorithm. Specifically, 

starting values are calculated by randomly dividing the sample into L parts. The initial class 

probabilities are equal to 1/L. Starting values for each set of class-specific parameters are 

estimated by conditional logit using the data assigned to each of L subsets. The initial parcel- and 

class-specific weights are calculated using (8). The class probabilities, parameter vectors, and the 

parcel- and class-specific weights (hil) are updated sequentially until they converge (do not 

change with several updates). The class probabilities are updated using the parcel- and class-

specific weights. The variance-covariance matrix and the marginal effects are given in the 

appendices A and B, respectively. 

 To determine the number of classes (and, implicitly, the number of parameters) to be 

used in an LCL model, Pacifico and Yoo (2013) recommend using the Bayesian Information 

Criterion (BIC) or the Consistent Akaike’s Information Criterion (CAIC).  BIC and CAIC are 

related to AIC, but use penalty functions that increase more rapidly as the number of model 
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parameters increases.  Specifically, AIC = −2𝑙𝑛𝐿 + 2𝑚, were lnL is the log-likelihood and m is 

the total number of estimated parameters, while BIC = −2𝑙𝑛𝐿 + 𝑚𝑙𝑛𝑁𝑖  and CAIC = −2𝑙𝑛𝐿 +

𝑚(1 + 𝑙𝑛𝑁𝑖), where 𝑁𝑖 is the number of individuals or (in our case) parcels of land, each of 

which may have repeated observations. Different criteria sometimes support different models, 

leading to uncertainty about which criterion is the most trustworthy (Dziak et al. 2012). In our 

application, both criteria lead to the same model, as shown below.  

 

3. Data and Variable Construction 

The land use and crop choice models require a substantial amount of data for estimation, which 

must be integrated from multiple sources. These data include land use and crop choices, expected 

returns and variance of returns to alternative crops, and land characteristics (soil properties, 

topographic features, climate conditions). In this section we describe the data sources and 

construction of the variables used to estimate the models.  

 The annual, parcel-level data on land use and crop choices from 1997 to 2010 were 

obtained from the Natural Resources Inventories (NRI). NRI inventories are conducted by the 

USDA Natural Resources Conservation Service (NRCS) to determine the status, condition, and 

trend of the nation's soil, water, and related resources. Information on land use, land quality and 

many other attributes was collected at more than 800,000 points at 5-year intervals beginning in 

1982.  For a subsample of roughly 110,000 “core” points, annual land use observations are 

available for 1997-2010.  Our dataset, which is limited to the Corn Belt states (Illinois, Indiana, 

Iowa, Missouri, and Ohio) and excludes counties (mostly in Southern Missouri) that lack data on 

crop yields, includes 7,787 NRI points and a total of 97,929 observations, or on average roughly 

12.4 observations per NRI point.   One observation is lost on every point because the previous 



 
 

11 

year land use is an explanatory variable; other observations are lost because of missing or 

incomplete information.   Roughly 75 percent of land is in crop production, 18 percent in 

pasture, and 7 percent is in CRP.  Each NRI site was assigned a weight to indicate the acreage it 

represents.
1
  The sampling design ensures that inferences at the national, regional, state, and sub-

state levels can be made in a statistically reliable manner.  

3.1. Mean and variance of net returns to alternative land uses  

The key explanatory variables for our major land use model are the expected net returns and 

variance of net returns to alternative land uses in the region. Net returns to crop production are 

estimated as the difference in revenue and operating costs. Specifically, expected net crop return 

is the acre-weighted average revenue less operating cost for four crops: Corn, soybeans, wheat, 

and hay.  

(9)     𝐸(𝑅𝑐𝑡) = ∑ 𝑤𝑖𝑡(𝐸(𝐺𝑖𝑡) − 𝐶𝑖𝑡)𝑖 ,  

where 𝐸(𝐺𝑖𝑡) is expected gross revenue for crop i at time t, 𝐶𝑖𝑡 is operating cost for crop i at time 

t, and 𝑤𝑖𝑡 is the acreage weight for crop i at time t  and is derived from a rolling average of 

acreage in the three most recent years: 𝑤𝑖𝑡 =
�̅�𝑖𝑡

∑ �̅�𝑗𝑡𝑗
 , where �̅�𝑖𝑡 = (𝐴𝑖,𝑡−1 + 𝐴𝑖,𝑡−2 + 𝐴𝑖,𝑡−3)/3, 

and 𝐴𝑖,𝑡−1 is the number of acres in crop i at time t-1. For example, acreage weights for 2005 

were derived from average acreage for 2002-04.  

 Crop revenue variance is based on the variances for individual crops and covariance 

across crops: 

(10)    𝑉(𝑅𝑐𝑡) = ∑ ∑ 𝑤𝑖𝑡𝑤𝑗𝑡𝑉(𝐺𝑖𝑡, 𝐺𝑗𝑡)𝑗𝑖  , 

where 𝑉(𝐺𝑖𝑡, 𝐺𝑗𝑡) is the covariance between gross revenue for crops i and j. 

                                                        
1 For example, the sum of weights at all NRI sites planted to corn gives an estimate of corn acreage in the region.  
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 The only pasture rental rate data available going back to the mid-1990s are at the state 

level. Even with state data, data for Indiana and Ohio had to be imputed for some years. Missing 

rents were imputed by calculating the ratio of rents in Indiana and Ohio to the average rent for 

Illinois, Iowa, and Missouri for years when data are available. For both states the ratio is 1.2. For 

years when data are not available for Ohio and Indiana, pasture rents are imputed as 1.2 times the 

average rent for Illinois, Iowa, and Missouri.      

 To approximate county-level rates, county average hay revenue is used as an indicator of 

county-level variation in forage revenue on pastureland. Ideally, these variations would be based 

on grass (non-alfalfa) hay, but the only reliable county-level data is for total hay production.  

(11)    𝐸(𝑅𝑝𝑡) = 𝑅𝑠𝑝𝑡 (1 +
𝐸(𝐺ℎ𝑡)−�̅�ℎ𝑡

�̅�ℎ𝑡
) 

where 𝑅𝑝𝑡 is the estimated county-level pasture rental rate for year t; 𝑅𝑠𝑝𝑡 is the state-average 

pasture rental rate in year t; 𝐸(𝐺ℎ𝑡) is county-average expected gross revenue for hay in year t 

(based on 5-year Olympic average yield (high and low yield removed) and a three year average 

(state-level) price); �̅�ℎ𝑡 is the state average expected gross revenue for hay (state average of 

𝐸(𝐺ℎ𝑡)).  

 The variance of pasture return is also based on variance of hay revenue: 

(12)    𝑉(𝑅𝑝𝑡) =
𝑅𝑠𝑝𝑡

2

�̅�ℎ𝑡
2 𝑉(𝐺ℎ𝑡) 

where 𝑉(𝐺ℎ𝑡) is the county-level variance of hay revenue.  

A government program that has a major effect on agricultural land use is the 

Conservation Reserve Program (CRP). Under the CRP, farmers convert environmentally 

sensitive land to resource-conserving covers, such as native grasses, trees, and filter strips. In 

return, they receive an annual rental payment from the government for a contract period of 10–15 
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years.  CRP enrollment reached its historical high of 36.8 million acres in 2007, and declined to 

24.2 million acres in 2014, at an annual cost of $1.8 billion. At the end of fiscal year 2010 

(September 30, 2010) there were 4.68 million acres of land enrolled in CRP in the five Corn Belt 

states (Illinois, Indiana, Iowa, Missouri, and Ohio) and a total of 26.66 million acreage nation-

wide. 

As a measure of return to Conservation Reserve Program (CRP) participation, we use the 

county-average Soil Rental Rate (SRR) used by the Farm Service Agency (FSA) in establishing 

CRP annual payments.
2
  Because annual CRP payments are fixed, the variance of CRP net return 

is zero.    

The NRI data captures only “General Signup” CRP enrollments.  Under General Signup, 

landowners can enroll whole fields or whole farms for a period of 10-15 years.  In 2007, at the 

peak of CRP acreage enrollment, general signup accounted for 91 percent of CRP acreage; in 

2010, general signup still accounted for 83 percent of land in CRP.
3
  General Sign-up enrollment 

was available only on land meeting eligibility criteria and only in years when the USDA enrolled 

land under General Signup.  To be eligible for CRP enrollment, land must (1) have been 

previously in crop production or enrolled in CRP and (2) be highly erodible or located in a CRP-

designated conservation priority area.  Based on the timing of signup periods, little or no land 

entered the CRP through continuous signup in 2002, 2003, or 2008-10 (land enters CRP on 

                                                        
2 FSA uses a soil productivity indicator to adjust the county average SRR to field-specific conditions.  We use 
the county average SRR because it is consistent with our use of county data to represent crop and pasture 
returns.  We use site-specific data on soil quality and topography to account for intra-county variation in 
returns to land.   
3 The balance of CRP enrollment is based on Continuous Signup which largely supports the adoption of 
“partial field” practices including filter strips, riparian buffers, grass waterways and other “buffer” practices.  
These practices require very little land compared to the whole fields or farms enrolled through General 
Signup.  For more information see the FY2010 CRP annual summary report available at 
https://www.fsa.usda.gov/Internet/FSA_File/annual2010summary.pdf.  
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October 1, so land that we observe “entering” CRP in 2002 was actually enrolled on October 1, 

2001.)    

 

3.2. Mean and variance of revenue from individual crops  

To estimate the mean and variance of returns to individual crops, we need to estimate yield and 

price distributions. Yield distributions are based on NASS county average yields. For corn, 

soybeans, wheat, and hay, the expected yield for crop i, )( iyE , is an Olympic average of yields 

for the most recent five years (the average with the high and low values removed). Yield 

deviations are the difference between the observed yields and a linear trend fitted using yields for 

the most recent 22 years:  

(13)    
T

iz

T

iziziz yyyy /)(  ,  

where izy is the yield deviation in year z, izy is the realized yield, and 
T

izy is the trend yield. 

 Because farm-level yield variation is typically larger than the variation in county-average 

yields, the county yield deviations are inflated using crop insurance actuarial data. Following 

Coble, Dismukes, and Thomas (2008), the absolute value of the yield deviations are increased by 

a constant multiplier until expected losses based on a yield guarantee of 65 percent, equal yield-

based crop insurance premium rates for 65 percent coverage. The yield distribution vector for 

crop i denoted iŷ , contains Z elements (one element for each of the past yields used to derive the 

distribution) are defined as:   

(14)      )1)((ˆ  iziiiz yyEy  , 

where i is the inflation factor, which is chosen so that: 
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where )( iy is the premium rate for 65 percent coverage (excluding the fixed rate load), 

calculated from RMA county actuarial data for 2010  and iy is the average county yield for 2002-

2011 (the APH yield for the representative farm).  The first terms in the bracket ( )( iy ) is the 

expected loss based on the crop insurance continuous rating model and the second term is the 

expected loss given 65 percent coverage, yield deviations calculated from county yield data, and 

the variance inflation factor, i .  

 Price distributions are based on futures market and cash price data. Expected prices for 

corn, soybeans, and wheat are planting time prices for the harvest month futures contract. For 

example, the expected price of corn is the average of daily closing prices in February for the 

December CME Group corn contract. The realized price is the average of daily closing prices 

during October for the CME Group December corn contract. Expected and realized soybean 

prices are based on the February and October prices, respectively, for the December CME Group 

soybean contract. For winter wheat, expected and realized prices are based on August 15-

September 14 and June prices, respectively, for the Kansas City Board of Trade (KCBOT) July 

contract. For hay, expected prices are an average of state-level prices for the previous three 

years.  

 The price distribution vector for crop i at time t, denoted itp̂ , contains Z elements defined 

as: 

(16)  1)(ˆ  iziiz ppEp ,  
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where )( ipE is the expected price, 
)(

)(

iz

iziz
iz

pE

pEp
p


  is the price deviation, and izp is the 

realized price.  Each element of the price distribution is adjusted for expected basis, estimated as 

the 5-year average difference between the harvest month futures price (October for corn) for a 

post-harvest futures contract (December for corn) and the harvest month cash price (October for 

corn). To approximate local cash prices, each element of price distribution vector is multiplied 

by the ratio of the county crop loan rate to the national average loan rate.  

 The revenue distribution vector for crop i contains Z elements defined as iziziz ypG ˆˆˆ  . 

Expected revenue is:  

(17)   
z

izi GZGE ˆ)( 1 . 

Revenue variance/covariance is 

(18)       

z

jzjzizizij GEGGREGZGV )ˆ(ˆ)ˆ(ˆ)( 1 .  

3.3. Variables capturing differences among parcels   

The most detailed data available for measuring the mean and variance of net returns and revenue 

are at the county level. To capture the differences in mean and variance of net returns and 

revenue among NRI sites, we include several physical variables reflecting both land quality and 

weather condition at individual sites. Slope is a continuous variable measured as a percentage. 

High quality land is a dummy variable set equal to one if the parcel has a land capability class of 

1 or 2, and set equal to zero otherwise. Similarly, low-quality land is a dummy variable set equal 

to one if a site has a land capability class above 4, and set to zero otherwise.  

 We also control for the effect of weather on land use and crop choices. We use historical 

weather data from weather stations across the study region, which were obtained from the 
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Midwestern Climate Center. For each NRI site, we used data from the nearest weather station to 

estimate the mean and standard deviations of maximum daily temperature as well as means and 

standard deviations of precipitation during the corn and wheat growing seasons.
4
 To capture 

rotational constraints we include dummy variables indicating the crop grown on the site in the 

previous year.  

3.3. The effect of federal crop insurance  

The effect of federal crop insurance on expected revenue and revenue variance is estimated by 

adding estimated net indemnity to crop revenue for each point, z, in the empirical distribution. 

Farmers can choose from a wide range of insurance products, although a handful of products 

dominate the market for major crop commodities. In recent  years the most common is Revenue 

Protection (RP), which covers producers against yield loss, intra-season price declines, or intra-

season price increases (the revenue guarantee is based on the higher of the base (planting time) 

price or the harvest-time (realized) price). The RP indemnity is: 

(19)   )0),ˆˆ),ˆmax(max((,, iziz

aph

i

b

iizzRPi ypyppI  
 
,  

where   is the coverage level selected by the producer,
b

ip is the Risk Management Agency base 

price (we use this as the expected price), and 
aph

iy is the farm’s Actual Production History (APH) 

yield.  

 We assume that crop insurance is actuarially fair, as required by law, so the total 

premium equals the expected indemnity.
5
 Premium subsidies depend only on the coverage level 

                                                        
4 Because the long-run average of weather conditions changes little over time, farmers’ expectations of weather 

conditions were assumed to be constant and were represented by the averages of the means and variances of 

temperatures and precipitation during the corn and wheat growing seasons from 1975 to 1994. 
5 There is evidence that premiums are higher than actuarially fair for some producers while they are lower than 

actuarially fair for others. Glauber (2004), Babcock (2008), and Woodward et al. (2011) all note that losses are 

consistently larger in the Great Plains when compared to the Corn Belt. Across crops, regions, and time, however, 
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selected by producers. So the crop insurance indemnity, net of the producer-paid premium, is 

specified as  

(20)    )())(1( iqiq IEIN  ,  

where iqI  is the indemnity paid for crop i and insurance product q and )( is the premium 

subsidy rate. We also model revenue protection insurance with the harvest price exclusion, yield 

protection policies, and catastrophic coverage. 

 For each county in our data, the share of each crop covered by each of these four crop 

insurance products and the associated coverage level is based on Risk Management Agency 

county-level Summary of Business data. Insured acreage reported by RMA is compared to crop 

acreage data collected by the National Agricultural Statistics Service (NASS) to determine the 

level of uninsured acreage. We assume that each farm’s insurance purchases reflect the county-

level mix of insurance products. Coverage levels for each product represent the most popular 

coverage level (by county and year) for each product modeled. These assumptions ensure that 

our revenue estimate reflect shift in the crop insurance market during the study period (1997-

2010). During this period, farmers shifted from traditional yield products, to revenue products, 

and, in recent years, to revenue products that also insurance against intra-season price declines 

(e.g., Revenue Protection). The summary statistics for all variables used in the analysis are 

presented in Table 1. 

4. Results for Land Use and Crop Choice Models  

We start by discussing results for the major land use models and then focus on the crop choice 

models.   

                                                                                                                                                                                   
total crop insurance premiums exceeded indemnities, with an average loss ratio of 0.88 for 1995-2007 (Woodward 

et al. 2011). 
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4.1. Major land use models 

As already noted, some parcels are eligible for the CRP and others are not.  Even on eligible 

parcels, General Signup enrollment was not available in every year of our study period.  Thus, 

we estimate two major land use models. One is a three-alternative LCL model (crop, pasture, 

CRP) for CRP-eligible NRI sites and years when eligible land could have entered CRP under 

General Signup. The other model is a simple logit model (crop or pasture) for NRI sites that are 

ineligible for the CRP and for all NRI sites during years when land could not have entered the 

CRP through General Signup.   

 For the LCL model for NRI sites eligible for the CRP, information criteria reported in 

Table 2 supports a two latent classes logit model. The estimates of elasticities for the two latent 

classes model with respect to changes in net returns and variance of net returns to alternative 

land uses are reported in Table 3. The estimated coefficients are reported in appendix C. It is 

noteworthy that all own-net return elasticities are positive and cross-net return elasticities are 

negative. In addition, all own net-return-variance elasticities are negative and all cross net-return-

variance elasticities are positive. These results suggest that landowners respond to increasing 

return or decreasing risk for a land use by increasing land allocation to the use and decreasing 

land allocation to other uses. 

 The class-conditional elasticities indicate that there are considerable differences between 

the two classes in their response to changes in expected net returns or variance of net returns.  

Specifically, class 1 landowners are much less responsive to changes in the economic variables 

than class 2 landowners.  For example, a 1% increase in the net return to crop production will 

increase the probability of a parcel being allocated to crop production by 0.154% for class 1 

landowners, compared with 0.232% for class 2 landowners. On the other hand, if the variance of 
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net return for crop production goes up by 1%, the probability that a parcel is used for crop 

production decreases by 0.038% for class 1 landowners, compared with 0.034% for class 2 

landowners.  

 The results for the crop-pasture logit model for NRI sites ineligible for the CRP are 

reported in Table 4. Both the elasticities with respect to the expected net returns and variance of 

net returns have signs consistent with economic theory. Compared with land parcels eligible for 

CRP, land parcels ineligible for CRP are less responsive to changes in the economic variables on 

average.    

4.2. Crop choice model 

Results for the LCL crop choice model are reported in Tables 5-7. Specifically, Table 5 reports 

the information criteria, which support a LCL model with six classes. Table 6 reports the 

unconditional elasticities of crop choices with respect to changes in the expected revenue and 

variance of revenue for alternative crops. The coefficient estimates are reported in the appendix.  

 Consistent with economic theory, all own-revenue elaticities are positive, and all cross-

revenue elasticities are negative. In addition, all own revenue variance elasticities are negative, 

while cross-variance revenue elasticities are positive. These results suggest that an increase in the 

expected revenue for a crop increases the likelihood that the crop is planted, and decreases the 

likelihood that other crops are planted. In contrast, the own revenue variance elasticities are 

negative and cross revenue variance elasticities are positive, suggesting that more variability in 

revenues for a crop reduces the likelihood that the crop is planted, but increases the likelihood 

that other crops are planted. For example, a 1% increase in the expected revenue for corn 

increases the probability of a cropland parcel being allocated to corn by 0.974%, and decreases 

the probability of a cropland parcel being allocated to soybeans by 0.664%, to wheat by 0.031%, 
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and to hay by 0.055%. On the other hand, if the variance of revenue for corn goes up by 1%, the 

probability that a cropland parcel is used for corn decreases by 0.147%, but the probability that a 

cropland parcel is used for soybeans, wheat and hay increases by 0.063%, 0.008% and 0.009%, 

respectively. 

 The results indicate that the probabilities of crop choices are generally inelastic to 

changes in economic variables.  These results are consistent with previous finding (e.g., Wu et al. 

2004), and may be explained by agronomic (rotational) constraints and the relatively few crops 

grown in the study region.  

5. The Effect of Crop Insurance on Land Use 

In this section we use the estimated land use and crop choice models to evaluate the impact of 

crop revenue protection insurance on land use and crop choice. We compare a no-insurance 

baseline with an insurance scenario by modifying the expected revenue and variance of revenue 

variables to reflect the effects of a revenue protection crop insurance plan. Specifically, we 

estimate the value of insurance using a simulation model in which the distribution of 

revenue or yield is truncated at the crop insurance guarantee level. We use expected 

revenue and variance of revenue from the truncated distribution to simulate the insurance 

case, and expected revenue and variance without the truncation to simulate the no-

insurance case.  

We establish land use and crop rotations at each NRI point in both scenarios using the 

following procedure. First, we use the data and the estimated coefficients for the land use choice 

models to predict the probability that each NRI parcel in our sample will be used for crops. Then 

we use these predicted probabilities and a random number generator to determine land use (crop, 

pasture, or CRP) at each parcel. Next, for the parcels designated as cropland, we use the data and 
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the estimated coefficients from the crop choice model to calculate the probabilities of choosing 

alternative crops in the first baseline year. Based on these predicted probabilities, we again use a 

random number generator to determine crop choice at each NRI site in the first baseline year. 

Once the crop choice in the first year is determined, we repeat the process for a second and then 

a third year, because environmental impacts of land use depend on crop rotations rather than 

simply on crop choice. For example, a continuous corn rotation uses between 175% and 250% 

more nitrogen fertilizer than corn following soybeans. Similarly, the corn-corn-soybean rotation 

and the corn-soybean rotation may have different environmental impacts.  Finally, based on the 

crop choices in the three baseline years, we determine the crop rotation at each NRI site. For 

example, if a choice of corn is predicted in each of the three years at a site, we have continuous 

corn at that site.    

The land use and crop choice simulation results are presented in table 8. Results show 

land use (acreage in crop, pasture, and CRP), the three-year average of acres of the various crops, 

and total acreage of land in various crop rotations. The results indicate that revenue protection 

insurance would have small impacts on land use. Cropland acreage increases by only 0.18%, 

whereas pasture and CRP acreage decrease by 1.07% and 0.23%, respectively. This result is 

consistent with existing literature on the effects of crop insurance, which has found similarly 

small impacts on crop acreage (e.g. Young et al. 2001; Goodwin et al. 2004). The results suggest 

that the meaningful impact of crop insurance might be on crop choice and thus on crop rotations. 

The acreage of cropland devoted to continuous corn and continuous soybeans increases by 

4.07% and 3.29%, respectively, whereas less land is planted with continuous wheat, which 

decreases by 14.4%.    

6. Impacts of Crop Insurance on Environmental Quality 
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The changes in land use can in turn affect environmental quality. In this section we use 

environmental production functions to predict changes in agricultural externalities resulting from 

cropping changes induced by crop revenue insurance. The environmental production functions 

are estimated using a metamodeling approach (Wu and Babcock 1999).
6
  For a sample of NRI 

points, the Erosion Productivity Impact Calculator (EPIC) (Sharpley and Williams 1990) is used 

to simulate environmental impacts based on crop management practices (crop rotation, tillage, 

and conservation practices), soil characteristics, and climatic factors at that site. Environmental 

production functions are then estimated by regressing simulated environmental data (e.g., 

measures of nitrate runoff and leaching) on the vector of crop management practices and site 

characteristics using appropriate econometric methods.
7
 The estimated environmental production 

functions are then used to predict environmental impacts. These functions use the same 

information as the simulation model, but they eliminate the need to conduct model simulations 

for all input combinations, since they predict the outcome of such simulations (Wu et al. 2004). 

The nitrate runoff and percolation production functions are taken from Wu and Babcock (1999). 

The methodologies used to develop the erosion and carbon sequestration production functions, 

similar to those used in this analysis, are described in Lakshminarayan et al. (1996) and Mitchell 

at al. (1998), respectively.  

 The land use, crop choice, and environmental quality models described thus far 

collectively form an assessment framework. We apply this framework to evaluate how crop 

insurance might affect agricultural nonpoint source pollution in the Corn Belt. Levels of fertilizer 

                                                        
6 Metamodeling is required because it is not feasible to simulate environmental impacts at all sites and for all sets of 

conditions that arise in a large regional analysis such as performed here. Furthermore, metamodels simplify the 

analysis of changes in crop management practices because instead of conducting new simulations, regression 

coefficients can reveal how changes affect predicted outcomes. 
7 For example, Wu and Babcock (1999) use a generalized Tobit model to estimate the nitrate-N runoff and 

percolation production functions to account for heteroskedasticity and censoring problems. 
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and pesticide use are calculated using average application rates for each crop rotation and state 

(U.S. Department of Agriculture 1998). Then we substitute the predicted crop rotations and the 

corresponding level of nitrogen application at each NRI site for each of the two scenarios into the 

environmental production functions. This allows us to predict levels of nitrate runoff, nitrate 

percolation, soil water erosion, soil wind erosion, and carbon sequestration at each NRI site for 

the no-insurance and insurance scnearios. The site-specific measures of environmental impacts 

are aggregated to the entire sample using the expansion factor to facilitate presentation of the 

results. We compare the results under both scenarios to determine the impacts of crop revenue 

insurance.  

 The simulated environmental impacts are presented in table 9. The results suggest that 

changes in cropping patterns under crop insurance would have rather modest detrimental impacts 

on environmental quality in our sample area. The largest effect is on wind erosion, which is 

predicted to increase by 6.82%. Other impacts are small or negligible: nitrogen percolation is 

predicted to go up by 1.1%, and nitrogen runoff, loss of soil carbon, and water erosion are all 

predicted to increase by less than 1% with crop insurance. These results suggest that the 

environmental impacts of crop insurance in our study region are modest.  

7. Conclusions 

This study develops an empirical modeling framework to assess the effects of federal crop 

insurance on land use and agricultural non-point source pollution. We use econometric models to 

predict land use, crop choices, and crop rotations at the parcel level based on expectations and 

variances of agricultural revenues, as well as land quality, weather conditions, and other physical 

characteristics at each parcel. We then combine the data on crop rotations, nitrogen application 

rate, land quality and other physical characteristics with site-specific environmental production 
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functions to determine the effect of crop revenue insurance on nitrate runoff and leaching, soil 

water and wind erosion, and carbon sequestration at each NRI site.  

Our simulation suggests that crop insurance does not result in significant conversion of 

pasture or CRP land to cropland in the U.S. Corn Belt region. This result is consistent with the 

existing literature. Our results indicate that the more meaningful impact of revenue insurance 

will be on crop choice and therefore on crop rotation patterns. Total acreage of corn is predicted 

to increase by roughly 3%, whereas the amount of acres planted with wheat will decrease by 

about 16%. Accordingly, the acreage planted with most crop rotations involving corn increases, 

by about 4% for continuous corn and 9% for corn-corn-soybeans. On the other hand, acres of 

continuous wheat decline by as much as 14%. These changes in cropping systems will have 

small effects on agricultural runoff and environmental quality, with the largest predicted impact 

being a roughly 7% increase in wind erosion. In sum, we find that crop insurance has likely had 

small effects on land use, and modest impacts on crop rotation systems and therefore on 

environmental quality in the U.S. Corn Belt region. 
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Table 1.  Summary Statistics for the Explanatory Variables 

  Variable Obs Mean Std. Dev. Min Max 

Mean and variance of net return for major land uses 

Expected net return for crop production 24780 204.39 65.10 -2.29 441.89 

Variance of net return for crop production 24780 4449.24 2599.26 402.91 20552.85 

Expected net return for pasture  24780 32.38 7.03 14.89 52.16 

Variance of net return for pasture  24780 45.44 30.83 2.73 183.32 

Expected net return for CRP 24547 90.86 22.52 26.00 154.00 

Variance of net return for CRP 24547 0.00 0.00 0.00 0.00 

Mean and variance of revenue from alternative crops 

Expected corn revenue 77973 469.86 141.97 234.76 992.38 

Variance of corn revenue 77973 13117.23 11560.73 1598.01 131318.60 

Expected soybean revenue 77973 358.51 104.19 140.02 765.72 

Variance of soybean revenue 77973 7312.78 5793.20 795.80 67622.82 

Expected wheat revenue 77973 278.85 102.38 125.46 778.20 

Variance of wheat revenue 77973 10664.32 10389.05 561.67 106451.40 

Expected hay revenue 77973 398.28 117.51 110.90 824.09 

Variance of hay revenue 77973 7560.87 5904.89 172.35 49827.98 

Land quality and weather variables 

Goodland 77973 0.65 0.48 0.00 1.00 

Badland 77973 0.03 0.16 0.00 1.00 

Slope 77973 3.30 3.62 0.10 40.00 

Mean of maximum temperature during corn 

growing season 77973 79.83 2.46 70.84 86.67 

Mean precipitation during corn growing 

season 77973 0.13 0.02 0.04 0.19 

Standard deviation of precipitation during 

corn growing season 77973 0.32 0.04 0.13 0.51 
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Mean precipitation during wheat growing 

season 77973 0.10 0.07 0.07 1.58 

Standard deviation of precipitation during 

wheat growing season 77973 0.27 0.06 0.19 1.21 

Dummy variables for previous year’s crop 

Previous crop is corn 77973 0.41 0.49 0.00 1.00 

Previous crop is soybeans 77973 0.39 0.49 0.00 1.00 

Previous crop is wheat 77973 0.04 0.19 0.00 1.00 

Previous crop is hay 77973 0.07 0.26 0.00 1.00 

 

 

 

 

Table 2.  Information Criterion for the Latent Class Logit Major Land Use Model 

# Classes BIC CAIC LL 

2 5,698.9 5,735.9 -2,697.9 

3 5,768.3 5,824.3 -2,654.7 
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Table 3.  Estimates of Elasticities for the LCL Crop-Pasture-CRP Model 

                   Change in Net Return to:     Change in Return Variance: 

  

Change in 

Probability: Cropland Pasture CRP   Cropland Pasture CRP 

Class-conditional Elasticities 

           Class 1: Cropland 0.154** -0.009** -0.046** 

 

-0.038 0.0001 0 

 

Pasture -0.718** 0.128** -0.046** 

 

0.172 -0.0019 0 

 

CRP -0.718** -0.009** 0.346** 

 

0.172 0.0001 0 

            Class 2: Cropland 0.371** -0.029** -0.094** 

 

-0.034 0.0001 0 

 

Pasture -2.161** 0.369** -0.094** 

 

0.187 -0.0020 0 

 

CRP -2.161** -0.029** 1.042** 

 

0.187 0.0001 0 

Unconditional Elasticities 

       

 

Cropland 0.232** -0.019** -0.056** 

 

-0.039 0.0001 0 

 

Pasture -1.242** 0.213** -0.056** 

 

0.176 -0.0020 0 

  CRP -1.242** -0.019** 0.605**   0.176 0.0002 0 

** indicates p≤0.01;  *indicates p≤0.05 

 

 

Table 4.  Estimates of Elasticities for the Crop-Pasture Logit Model 

   Change in Net Return to:          Change in Variance of: 

Change in Probability: Cropland Pasture   Cropland Pasture 

Cropland 0.1782** -0.0276** 

 

-0.0249** 0.0002** 

Pasture -0.8242** 0.1137**   0.1181** -0.0009** 

** indicates p≤0.01;  *indicates p≤0.05 
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Table 5.  Information Criterion for the Latent Class Logit Crop Choice Model 

# Classes BIC CAIC LL 

2 107,892.3 108,053.3 -53,681.3 

3 104,530.9 104,637.9 -51,798.4 

4 102,822.7 102,965.7 -50,787.2 

5 101,924.9 102,103.9 -50,181.1 

6 101,539.6 101,754.6 -49,831.4 

7 101,724.2 101.975.2 -49,766.6 

 

 

 

Table 6.  Unconditional Elasticities for the Latent Class Logit Crop Choice Model                 

                Change in Revenue:     

 

             Change in Revenue Variance:   

Change in 

Probability: Corn 

         

Soybeans Wheat Hay 

 

Corn                 Soybeans Wheat  Wheat      Hay 

Corn 0.974** -0.664** -0.031 -0.055** 

 

-0.147** 0.063** 0.008 0.009** 

Soybeans -1.036** 0.876** -0.031 -0.055** 

 

0.111** -0.081** 0.008 0.009** 

Wheat -1.036** -0.664** 1.136** -0.055** 

 

0.111** 0.063** -0.200** 0.009** 

Hay -1.036** -0.664** -0.031 1.650**   0.111** 0.063** 0.008 -0.136** 

** indicates p≤0.01;  *indicates p≤0.05 
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Table 7.  Class-conditional Elasticities for the LCL Crop Choice Model                  

             Change in Revenue:     

 

   Change in Revenue Variance:   

  

Change in 

Probability: Corn 

      

Soybeans Wheat Hay 

 

Corn Soybeans Wheat Hay 

Class 1: corn 0.061* -0.016 -0.003 -0.029 

 

-0.039 0.007 0.002 0.011 

 

soy -0.106 0.111* -0.003 -0.029 

 

0.055 -0.046 0.002 0.011 

 

wheat -0.106 -0.016 0.095 -0.029 

 

0.055 0.007 -0.073 0.011 

 

hay -0.106 -0.016 -0.003 0.110* 

 

0.055 0.007 0.002 -0.041 

           Class 2: corn 1.122** -0.808** -0.022 -0.035** 

 

-0.132** 0.069** 0.004 0.003** 

 

soy -1.010** 0.823** -0.022 -0.035** 

 

0.120** -0.072** 0.004 0.003** 

 

wheat -1.010** -0.808** 1.231** -0.035** 

 

0.120** 0.069** -0.200** 0.003** 

 

hay -1.010** -0.808** -0.022 1.752** 

 

0.120** 0.069** 0.004 -0.138** 

           Class 3: corn 0.199** -0.088** -0.012** -0.053** 

 

-0.112** 0.034** 0.009** 0.018** 

 

soy -0.076** 0.123** -0.012** -0.053** 

 

0.040** -0.052** 0.009** 0.018** 

 

wheat -0.076** -0.088** 0.150** -0.053** 

 

0.040** 0.034** -0.115** 0.018** 

 

hay -0.076** -0.088** -0.012** 0.178** 

 

0.040** 0.034** 0.009** -0.067** 

           Class 4: corn 0.726** -0.353** -0.122** -0.053** 

 

-0.168** 0.059** 0.038** 0.007** 

 

soy -0.285** 0.420** -0.122** -0.053** 

 

0.069** -0.074** 0.038** 0.007** 

 

wheat -0.285** -0.353** 0.472** -0.053** 

 

0.069** 0.059** -0.153** 0.007** 

 

hay -0.285** -0.353** -0.122** 0.794** 

 

0.069** 0.059** 0.038** -0.125** 

           Class 5: corn 1.421** -0.945** -0.053** -0.129** 

 

-0.113** 0.056** 0.007** 0.007** 

 

soy -2.858** 2.328** -0.053** -0.129** 

 

0.239** -0.142** 0.007** 0.007** 

 

wheat -2.858** -0.945** 2.461** -0.129** 

 

0.239** 0.056** -0.278** 0.007** 

 

hay -2.858** -0.945** -0.053** 3.457** 

 

0.239** 0.056** 0.007** -0.190** 

           Class 6: corn 1.352** -0.953** -0.057** -0.010** 

 

-0.333** 0.167** 0.018** 0.002** 

 

soy -0.521** 0.480** -0.057*** -0.010** 

 

0.119** -0.086** 0.018** 0.002** 

 

wheat -0.521** -0.953** 1.044** -0.010** 

 

0.119** 0.167** -0.348** 0.002** 

 

hay -0.521** -0.953** -0.057** 1.560** 

 

0.119** 0.167** 0.018** -0.252** 

** indicates p≤0.01;  *indicates p≤0.05 
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Table 8.  Estimated Impacts of Crop Insurance on Land Use and Cropping Systems  
 Baseline:  

No Insurance       

 

Insurance 

 

% Change 

 (1000 acres) (1000 acres)  
Land Use       
Acres of cropland         13,095  13,119 0.18% 

Acres of pasture land        2,069  2,047 -1.07% 

Acres of CRP land        750  748 -0.23% 

Acres of corn (3 year average) 4,282 4,410 2.99% 

Acres of soybeans (3 year average)        3,891  3,877 -0.36% 

Acres of wheat (3 year average)          367  308 -15.90% 

Acres of hay (3 year average) 661 618 -6.42% 

Cropping Systems    

Continuous corn        2,278  2,370 4.07% 

Continuous soybeans        1,670  1,725 3.29% 

Continuous wheat             216  185 -14.40% 

Corn-Soybeans        2,849  2,865 0.54% 

Corn-Corn-Soybeans             502  549 9.41% 

Corn-Soybeans-Wheat             2  1 -13.33% 

Soybeans-Soybeans-Corn             512  461 -9.88% 

Wheat-Soybeans             115 105 -8.81% 

Corn-Corn-Hay         609  579 -4.96% 

 

 

 

Table 9.  Estimated Impacts of Crop Insurance on Environmental Quality  
 

Indicator 

 

Baseline: 

No 

Insurance       

 

Insurance 

 

% Change 

    Nitrogen Runoff (1000s lbs.)      484.26  488.58 0.89%   
Nitrogen Percolation (1000s lbs)     885.29  894.99 1.10% 

Loss of Soil Organic Carbon  

(1000s metric tons) 

         873.22  873.49 0.03% 

Wind Erosion (1000s tons) 6.97 7.45 6.82% 

Water Erosion (1000s tons)      177.96  179.19 0.69% 
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Appendix A:  Variance-Covariance Matrix for Latent Class Logit 

The probability of land use i on parcel j at time t and, conditional on membership in class c is 

𝑃𝑖𝑗𝑡𝑐 = 𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡), where 𝐿𝑖(𝑥𝑗𝑡; 𝛽𝑐) is the logit function for land use i , 𝑥𝑗𝑡 is the vector of 

independent variables at time t and location j, and 𝛽𝑐 is the parameter vector for class c. 

 Using the BHHH method to estimate VC matrix gives: 

 VC =

[
 
 
 
 
 
 
 

𝜕𝜀

𝜕𝛽𝑐𝑘

𝜕𝜀

𝜕𝛽𝑐𝑘′

𝜕𝜀

𝜕𝛽𝑐𝑘′

𝜕𝜀

𝜕𝑠𝑐

𝜕𝜀

𝜕𝛽𝑐𝑘

𝜕𝜀

𝜕𝑠𝑐

𝜕𝜀

𝜕𝑠𝑐

𝜕𝜀

𝜕𝑠𝑐

⋯
     0         0

     0         
𝜕𝜀

𝜕𝑠𝑐

𝜕𝜀

𝜕𝑠𝑐′

⋮ ⋱ ⋮

     0         0

     0         
𝜕𝜀

𝜕𝑠𝑐′

𝜕𝜀

𝜕𝑠𝑐

⋯

𝜕𝜀

𝜕𝛽𝑐′𝑘

𝜕𝜀

𝜕𝛽𝑐′𝑘′

𝜕𝜀

𝜕𝛽𝑐′𝑘′

𝜕𝜀

𝜕𝑠𝑐

𝜕𝜀

𝜕𝛽𝑐′𝑘′

𝜕𝜀

𝜕𝑠𝑐′

𝜕𝜀

𝜕𝑠𝑐′

𝜕𝜀

𝜕𝑠𝑐′ ]
 
 
 
 
 
 
 
−1

 , 

where 𝛽 and s are elements of 𝜃, k indexes individual parameters (parameters can appear in more 

than one equation) and  

 
𝜕𝜀

𝜕𝛽𝑐𝑘
= ∑ ℎ𝑗𝑐

𝜕log (∏ 𝐿𝑖𝑛𝑡
(𝑥𝑗𝑡;𝛽𝑐)𝑡 )

𝜕𝛽𝑐𝑘
𝑗   

 
𝜕𝜀

𝜕𝑠𝑐
  = ∑ ℎ𝑗𝑐𝑠𝑐

−1
𝑗    

where   

𝜕log  (∏ 𝐿𝑖𝑗𝑡
(𝑥𝑗𝑡;𝛽𝑐)𝑡 )

𝜕𝛽𝑐𝑘
= ∑ (1 − 𝐿𝑖𝑗𝑡

)𝑥𝑗𝑡𝑖𝑗𝑡𝑘𝑡  for parameters that appear only in the utility for the 

selected option 

𝜕log (∏ 𝐿𝑖𝑗𝑡
(𝑥𝑗𝑡;𝛽𝑐)𝑡 )

𝜕𝛽𝑐𝑘
= −∑ 𝐿𝑖𝑗𝑡𝑥𝑗𝑡𝑖𝑗𝑡𝑘𝑡  for parameters that appear in one utility function but not for 

the selected option 
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𝜕log (∏ 𝐿𝑖𝑗𝑡
(𝑥𝑗𝑡;𝛽𝑐)𝑡 )

𝜕𝛽𝑐𝑘
= ∑ ∑ (𝑦𝑙𝑗𝑡 − 𝐿𝑙𝑗𝑡)𝑥𝑗𝑡𝑙𝑘𝑙𝑡   for parameters that appear in all of the utility 

functions (expected net revenue and revenue variance), where 𝑦𝑙𝑗𝑡 = 1 when alternative l 

is selected, zero otherwise. 

The zero terms in the cross-class portions of the VC matrix recognize that 
𝜕2𝜀

𝜕𝛽𝑐𝑘𝜕𝛽𝑐′𝑘′
= 0. 

 

Appendix B: Marginal Effects and Elasticities for the Latent Class Logit Model 

Marginal effects and elasticities are calculated for individual observations then aggregated. The 

probability of land use i on parcel j at time t, conditional on membership in class c is 𝑃𝑖𝑗𝑡𝑐 =

𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡), where 𝐿𝑖(𝑥𝑗𝑡; 𝛽𝑐) is the logit function for land use i , 𝑥𝑗𝑡 is the vector of independent 

variables at time t and parcel j and 𝛽𝑐 is the parameter vector for class c. 

 

Class-conditional, observation-specific, marginal effects: 

Own effect: 
𝜕𝑃𝑗𝑡𝑐𝑖

𝜕𝑥𝑗𝑡𝑘𝑖
= 𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡) (1 − 𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡)) 𝛽𝑐𝑘𝑖 

Cross effect: 
𝜕𝑃𝑗𝑡𝑐𝑖

𝜕𝑥𝑗𝑡𝑘𝑙
= (−𝐿𝑙(𝛽𝑐; 𝑥𝑗𝑡)𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡)) 𝛽𝑐𝑘𝑙 

𝑥𝑗𝑡𝑘𝑖 is a single element of 𝑥𝑗𝑡 and 𝛽𝑐𝑘𝑖 is a single element of 𝛽𝑐 where k indexes individual 

covariates and i indexes the equation in which they appear. 

 

Class-conditional, observation-specific, elasticities: 

Own: 𝜂𝑘𝑖𝑖
𝑗𝑡𝑐

=
𝜕𝑃𝑗𝑡𝑐𝑖

𝜕𝑥𝑗𝑡𝑘𝑖

𝑥𝑘𝑖

𝑃𝑗𝑡𝑐𝑖
= (1 − 𝐿𝑖(𝛽𝑐; 𝑥𝑗𝑡)) 𝛽𝑐𝑘𝑖𝑥𝑗𝑡𝑘𝑖 

Cross: 𝜂𝑘𝑖𝑗
𝑗𝑡𝑐

=
𝜕𝑃𝑗𝑡𝑐𝑖

𝜕𝑥𝑗𝑡𝑘𝑗

𝑥𝑘𝑗

𝑃𝑗𝑡𝑐𝑖
= (−𝐿𝑗(𝛽𝑐; 𝑥𝑗𝑡)) 𝛽𝑐𝑘𝑗𝑥𝑗𝑡𝑘𝑗 
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Class-conditional average elasticities: 

Own: 𝜂𝑘𝑖𝑖
𝑐 = ∑ ∑ 𝑤𝑗𝜂𝑘𝑖𝑖

𝑗𝑡𝑐
𝑡𝑗 (∑ ∑ 𝑤𝑗𝑡𝑗 )

−1
 

Cross: 𝜂𝑘𝑖𝑗
𝑐 = ∑ ∑ 𝑤𝑗𝜂𝑘𝑖𝑗

𝑗𝑡𝑐
𝑡𝑗 (∑ ∑ 𝑤𝑗𝑡𝑗 )

−1
 

𝑤𝑗 is the NRI weight 

 

Unconditional, observation-specific, elasticities: 

Own: 𝜂𝑘𝑖𝑖
𝑗𝑡

= ∑ ℎ𝑐𝜂𝑘𝑖𝑖
𝑗𝑡𝑐

𝑐  

Cross: 𝜂𝑘𝑖𝑗
𝑗𝑡

= ∑ ℎ𝑐𝜂𝑘𝑖𝑗
𝑗𝑡𝑐

𝑐  

ℎ𝑗𝑐 is the posterior probability of class membership for NRI point j . 

 

Unconditional, average elasticities: 

Own: 𝜂𝑘𝑖𝑖
𝑗𝑡

= ∑ ∑ 𝑤𝑗𝑡𝑗 ∑ ℎ𝑐𝜂𝑘𝑖𝑖
𝑗𝑡𝑐

𝑐  (∑ ∑ 𝑤𝑗𝑡𝑗 )
−1

 

Cross: 𝜂𝑘𝑖𝑗
𝑗𝑡

= ∑ ∑ 𝑤𝑗𝑡𝑗 ∑ ℎ𝑐𝜂𝑘𝑖𝑗
𝑗𝑡𝑐

𝑐  (∑ ∑ 𝑤𝑗𝑡𝑗 )
−1

 

 

  



 
 

39 

Appendix C 

Table C-1. Latent Class Logit Parameter Estimates for Cropland-

Pasture-CRP Model 

Equation Variable Class1   Class2   

    Estimate   Estimate   

All Expected Return 0.00430 ** 0.01249 ** 

All Variance of Return -0.00005 

 

-0.00005 

 Cropland Goodland (LCC=1, 2 0.32850 

 

1.14028 ** 

Cropland Badland (LCC=6-8) -0.16726 

 

-1.51909 ** 

Cropland Slope (percent) -0.11944 ** -0.00264 

 Cropland Avg. Max. Temp -0.04257 ** -0.11031 ** 

Cropland Avg, Precip. 8.33340 

 

10.40074 

 Cropland Std. Dev. Precip. -5.62609 

 

15.45405 ** 

Cropland Previous Use Cropland  9.32834 ** 7.42487 ** 

Cropland Prevous Use Pasture 6.37483 ** 7.65312 ** 

Pasture Goodland (LCC=1, 2 1.54705 ** -0.73510 

 Pasture Badland (LCC=6-8) 1.45039 ** -7.20241 ** 

Pasture Slope (percent) -0.03403 

 

0.01040 

 Pasture Avg. Max. Temp -0.05034 ** -0.07526 ** 

Pasture Avg, Precip. 12.39873 

 

25.24859 

 Pasture Std. Dev. Precip. -8.18315 

 

0.22386 

 Pasture Previous Use Cropland  4.21501 ** 5.09734 ** 

Pasture Prevous Use Pasture 8.31504 ** 13.39265 ** 

  Class Share 0.364 ** 0.636 ** 

 

Table C-2. Logit Parameter Estimates for 

Cropland-Pasture Model 

  Estimate   

Expected Return 0.00430 ** 

Variance of Return -0.00002 ** 

Goodland (LCC=1, 2 0.35538 ** 

Badland (LCC=6-8) -0.87830 ** 

Slope (percent) -0.09780 ** 

Avg. Max. Temp -0.02347 ** 

Avg, Precip. -10.09286 ** 

Std. Dev. Precip. 1.78281 

 Previous Use Cropland  6.31634 ** 
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Table C-3.  Latent Class Logit Parameter Estimates for Crop Choice  

Equation Variable Class1   Class2   Class3   Class4   Class5   Class6   

All Expected Crop Revenue 0.00036 

 

0.00456 ** 0.00059 ** 0.00216 ** 0.00915 ** 0.00400 ** 

All  Variance Crop Revenue  -0.00001 

 

-0.00002 ** -0.00001 ** -0.00002 ** -0.00003 ** -0.00003 ** 

Corn Goodland (LCC=1, 2 1.53650 ** 1.81917 ** 0.18283 ** 0.57642 ** 0.96759 ** 0.24912 ** 

Corn Badland (LCC=6-8) 0.77279 ** -1.28166 ** 3.50433 ** 0.27067 

 

-6.30983 ** 1.71731 ** 

Corn Slope (percent) 0.00389 

 

-0.08769 ** -0.09952 ** -0.31371 ** -0.29482 ** 0.24647 ** 

Corn Avg. Max. Temp (corn) 0.01455 

 

0.07110 ** -0.00826 

 

0.05363 ** -0.03123 ** -0.07640 ** 

Corn Avg, Precip. (corn) 8.24797 

 

-16.43661 ** -20.26399 ** -105.80730 ** -63.49595 ** 47.86373 ** 

Corn Std. Dev. Precip. (corn) -90.08988 ** -0.90503 

 

5.03338 * -4.81539 * 48.48307 ** 16.04172 ** 

Corn Avg, Precip. (wheat) 
-

258.59140 ** -96.32451 ** 5.34969 ** -43.78834 ** 2.18268 ** 1.23528 

 
Corn Std. Dev. Precip. (wheat) 190.04850 ** 31.47584 ** -3.08515 ** 68.60491 ** -3.43016 ** -6.30281 ** 

Corn Previous crop corn 4.38017 ** 1.35041 ** 2.97551 ** 1.80522 ** 3.71536 ** 0.47433 ** 

Corn Previous crop soybeans 3.44583 ** 4.64030 ** 4.11688 ** 2.97565 ** 5.61848 ** 1.85722 ** 

Corn Previous crop wheat 1.72760 ** 1.31333 ** 2.38251 ** 1.65483 ** 0.35940 ** -0.56785 ** 

Soy Goodland (LCC=1, 2 1.59216 ** 1.64049 ** -0.02123 

 

-0.34186 ** 0.97563 ** -0.13221 

 
Soy Badland (LCC=6-8) 1.58358 ** -1.57504 ** 4.64800 ** -3.37156 ** -4.81032 ** 1.31532 ** 

Soy Slope (percent) -0.09269 ** -0.11496 ** -0.14146 ** -0.32411 ** -0.34556 ** 0.09181 ** 

Soy Avg. Max. Temp (corn) 0.03795 ** 0.06910 ** -0.01733 ** 0.12869 ** -0.04650 ** -0.09595 ** 

Soy Avg, Precip. (corn) -61.23530 ** -16.71993 ** -17.25841 ** -117.07360 ** -56.78893 ** 51.58368 ** 

Soy Std. Dev. Precip. (corn) -93.35084 ** -1.62056 

 

6.07997 ** 0.86650 

 

49.33816 ** 24.65954 ** 

Soy Avg, Precip. (wheat) 

-

216.35880 ** -70.02289 ** 4.24385 ** -27.32821 ** 3.17991 ** 0.56190 
 

Soy Std. Dev. Precip. (wheat) 199.86280 ** 25.38336 ** -1.69310 
 

41.24083 ** -3.27282 ** -6.10467 ** 

Soy Previous crop corn 4.60146 ** 4.12687 ** 4.41031 ** 3.78880 ** 4.78059 ** 1.51463 ** 

Soy Previous crop soybeans 2.61243 ** 2.27090 ** 3.55202 ** 2.51257 ** 3.92316 ** 1.69155 ** 

Soy Previous crop wheat 0.67626 * 0.77358 ** 2.19086 ** 0.99575 ** 0.02577 
 

-0.48254 ** 

Wheat Goodland (LCC=1, 2 1.24244 ** 1.36299 ** -0.06933 
 

0.22757 ** -0.65345 ** 0.09656 
 

Wheat Badland (LCC=6-8) 0.28561 
 

-1.77308 ** 5.28079 ** -3.02660 ** -4.05999 ** 1.48011 ** 

Wheat Slope (percent) -0.04143 
 

-0.11345 ** -0.19042 ** -0.34908 ** -0.38517 ** 0.12521 ** 

Wheat Avg. Max. Temp (corn) -0.10185 ** 0.08757 ** -0.00701 
 

0.06997 ** 0.03136 ** -0.19895 ** 

Wheat Avg, Precip. (corn) -24.42634 
 

-72.84136 ** -63.34625 ** -116.80570 ** -91.49550 ** 72.83481 ** 

Wheat Std. Dev. Precip. (corn) 

-

125.64520 ** 14.61743 ** 16.88038 ** -2.24881 

 

37.49138 ** 28.02539 ** 

Wheat Avg, Precip. (wheat) 
-

136.85920 ** 5.76236 

 

-1.97522 

 

-42.34171 ** -3.56848 

 

-25.39980 ** 

Wheat Std. Dev. Precip. (wheat) 219.93810 ** -9.97402 * 1.84588 

 

66.14657 ** 3.46788 

 

10.72222 ** 

Wheat Previous crop corn 5.63862 ** 1.34008 ** 3.10396 ** 1.88466 ** 3.01635 ** 0.69588 * 

Wheat Previous crop soybeans 2.19192 ** 3.96321 ** 4.33121 ** 3.54635 ** 5.03629 ** 1.69665 ** 

Wheat Previous crop wheat 0.99415 ** -0.16207 

 

2.50328 ** -0.64816 ** -0.41929 

 

0.98513 ** 

  Shares 0.061 ** 0.463 ** 0.11 ** 0.098 ** 0.175 ** 0.093 ** 

 


