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Abstract

Nutrients are a major source of water quality impairment. This paper compares efficient use of nutrients

in a wholly owned animal-crop production system versus an integrator-operator animal-crop production

system and highlights the operator’s tradeoff between prevention and utilization of excreted nutrients

under conditions of uncertainty. Results derived from the comparison of different production systems are

used to infer the consequences of implementation of nutrient land application restrictions, a key element

in the recently drafted United States Department of Agriculture and United States Environmental

Protection Agency Unified Strategy for Animal Feeding Operations.
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Introduction:

Nutrients are a major source of water quality impairment. Recently, political attention has focused on

large confined animal feeding operations as a major source of nutrients, primarily the nutrients found in

animal waste. To reduce nutrient loading from confined livestock and poultry farms the United States

Department of Agriculture and United States Environmental Protection Agency drafted the Unified

Strategy for Animal Feeding Operations. Although still in the review process, the “Unified Strategy”

could require confined animal feeding operators to account for generated nutrients from their operation

and limits the amount of land-applied nutrients to “optimal” agronomic rates. In several livestock regions

of the United States, animal nutrients are generated by animal feeding operations in excess of those

needed to land apply at optimal agronomic rates. If these excess nutrients are not properly managed, they

may enter surface or ground water and degrade water quality.

In this paper, we compare the profit maximizing decisions of a wholly owned animal-crop

production system versus an integrator-operator system in which an integrator supplies feed and animals

and the operator has sole responsibility for the excreted waste. It is assumed that the contracting

arrangement between the integrator and the operator does not incorporate the waste management costs

into the contract.1 The relevance of this analysis stems from the growing concern over the increased

concentration of the livestock industry and the hog industry in particular (Martinez 1999). If, for a given

operation, total cropland does not change and with increased concentration more animals are raised, then

less land will be available for land application thus tipping the nutrient balance toward “excess” nutrient

application. The Unified Strategy would limit this excessive application.

                                                
1 Other USDA Economic Research Service (ERS) researchers are also investigating animal waste management
issues.  Aillery et al. develops a regional model to assess waste management options for the Chesapeake Bay
Watershed. Huang, Magleby and Somwaru analyze the impact of the Unified Strategy on hog farmers in the
Heartland who maximize net returns from crop production.  The analysis in this paper differs from the Huang,
Magleby and Somwaru by focusing on the tradeoff between prevention and utilization, as well as highlighting the
role of joint production, contracting and nutrient uncertainty in the decision making process.  The examination of the
integrator-operator (contracting) system in this paper also complements ERS research that focuses on the role
contracting plays in hog farm productivity (Key and McBride).
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This paper focuses on the tradeoff between preventing nutrients from entering the production

stream versus utilizing the nutrients once they have reached the end of the animal production component

as a means by which the operator can reduce the waste management cost. The operator’s available options

are grouped into two categories: prevention and utilization. Reductions of nutrients in animal waste can

be prevented by altering feed rations or by instituting a phased feeding routine, which matches the

nutrient content of the feed to the nutrient requirement for a given age and weight of the animal. In the

analysis that follows, only feed ration alterations are considered. Utilization measures involve relocating

excess nutrients off the operator-owned land in such a way that they will not degrade water quality

elsewhere.

Once off the feeding operation the animal waste containing the excess nutrients may be applied to

cropland, composted, pelletized for use as a fertilizer or converted to bio-fuel. Again, we limit the

available options to only land application and assume that the operator leases the land thus avoiding the

complications that arise when trading animal waste between operators. These simplifying assumptions do

not alter the qualitative result and allow the analysis to clearly focus on the issue of trading off prevention

and utilization measures to satisfy the regulator’s land application constraint (the regulator’s problem will

be described below). Past research has examined the economic costs and benefits of altering feed rations

(Bosch, Zhu and Kornegay 1996, Bosch, Zhu and Kornegay 1997; Honeyman 1993; Boland, Foster and

Preckel 1999; Boland, Preckel and Foster 1998; Parker 2001). As discussed below, we enhance the fed

ration allocation problem by incorporating uncertainty about the nutrient content of the feed ration. Chen

(1973) first examined the role of nutrient uncertainty in optimal feed rationing.

Figure 1 depicts the animal-crop production stream. The nutrients are introduced into the

production stream through the feed rations. If the animals are grown under contract, then it is assumed

that the integrator, the supplier of feed and animals to the operator, does not bear the waste management

cost, a downstream pecuniary externality, that results from excess nutrients in the animal waste. The

operator bears the cost and the only option available in this integrated system is for the operator to apply

the nutrients over additional acreage. Under a contracting regime, the downstream recipient of the waste,
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the operator, may choose to enter an agreement where by the liability of the nutrient in the stream are

jointly held by the integrator and the operator thereby internalizing the externality. In actuality, co-

permitting has been discussed as a provision of the Unified Strategy. We will see in the theoretical and

empirical sections of this paper that the unencumbered integrator mixes feed rations in such a way that

fewer nutrients can be found in the generated animal waste.2

Animal Production

Crop Production

Nutrients enter upstream
via feed rations

Nutrients exit downstream
via land application

Figure 1. Flow of Nutrients through Integrated Animal-Crop Production System

The operator’s problem is complicated by the fact that the nutrients contained in the feed rations

or in the animal waste are not known with full certainty. As noted in Chen (1973), relying on the expected

quantity of the nutrients in the feed ration will fall short fifty percent of the time. We assume that the

integrator or operator in the wholly owned system wishes to meet the nutrient requirements of the animal

more often than fifty percent of the time. Chen’s analyzes on protein content presents data on different

feed ingredients with the standard deviation that vary from 1.28 to 0.20. From the data used in the

empirical analysis of this paper we see that the standard deviations for phosphorus and nitrogen

                                                
2 Sunding and Zilberman (1998) conclude that a life-cycle approach to product liability may increase efficiency over
single assignment liability.  However, their research suggests that no liability may result in a more efficient use of
the polluting input.  Walls and Palmer (2001) also provide a life-cycle assessment of externalities and waste
production.  These authors examine social optimal policies primarily taxes, which in a sense is a method for
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concentrations in manure vary from 0.868 and 1.755 respectively and correspond to expected values of

2.087 and 3.852 pounds per ton of manure.

Because the operator faces uncertainty associated with the nutrient content of the feed ration and

the animal waste, probabilistic constraints on the objective function are imposed such that the operator

meets the nutrient requirements of the animal and the crop being planted with a margin of safety. The

concept of a margin of safety allows the operator, in principle, to minimize the probability that the

realized quantity of nutrients in the feed ration or the animal waste is less than the necessary quantity for

optimal animal or plant growth. Van Kooten, Young and Krautkraemer (1997), apply a similar approach

to the problem of dynamic cropping decisions. This model allows us to investigate the role of uncertainty

associated with the nutrient requirements for “optimal” animal and plant growth when deciding between

prevention and utilization options.

The imposition of a land application restriction further complicates the operator’s decision

making process. The regulator in this analysis seeks to minimize the “over-application” of nutrients so

that water quality improvements can be realized. The regulator understands that there is uncertainty in the

nutrients that are land applied and so applies a margin of safety approach to restricting land applications.

The operator, under this type of regulatory regime, shall not exceed an upper limit on nutrient application

within an arbitrary set frequency. In other words, the probability that the nutrient application exceeds the

upper limit of the assimilative capacity of the crop and land characteristics shall be arbitrarily small.

The theoretical and empirical work on nutrient use, whether it is nutrient content of feed rations

or fertilizer use in crop production, has provided explanations for why observed levels of nutrient use

differ from recommended levels. Risk preferences and uncertainty are commonly used as explanations for

the observed “over-application.” In the analysis that follows it is shown that joint production systems can

also result in greater levels of nutrient use in feed rations. The same cannot be said for crop production.

For crop production to result in greater nutrient use the producer must face a self-imposed minimum

                                                                                                                                                            
spreading liability.  This will depend on the market structure since the incidence of the tax will depend on the
structure.
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nutrient constraint on land application. It is also shown that uncertainty, via a probabilistic constraint on

nutrient content, produces the “apparent” excess levels of nutrients. In the analysis the operator is

assumed to be risk neutral and thus the findings from this paper avoid explaining away the excessive

application of nutrients as a result of risk aversion.

The previous research on livestock feeding operations has been extensive. Unfortunately, few

have focused on a systems approach as applied in this analysis (see Roka and Hoag 1996; Hoag and Roka

1995; and Schnitkey and Miranda 1993, for exceptions). We explore a more rigorous treatment, however,

incorporating probabilistic constraints where the uncertainty about the nutrient content is applied to both

feeding rations and crop production. Also, we incorporate a probabilistic constraint as a regulator choice,

which follows from the work of Lichtenberg and Zilberman (1988) on controlling environmental risks.3

In the analysis, profit-maximizing operators of animal-crop production systems are evaluated.

While exploring the decision making process of these operators certain assumptions are made to simplify

the presentation and focus attention on the economic tradeoffs between prevention and utilization. These

assumptions include fixing the number of animals and thus the capital expenditures on buildings and

waste storage, raised by the operation. This assumption

renders this analysis as a short run examination and, although in the long run decisions on the number of

animals and capital expenditures are crucial to understanding the evolution of the livestock industry in

response to the Strategy, the tradeoff between prevention and utilization is primarily a short run problem.

Second, we assume the cultivated crop is fixed. Crop production is not typically limited to a single crop

and some crops may be more desirable from the stand point that they uptake a greater quantity of

nutrients. Nonetheless, in most instances there are only a few dominant crop options.

In the empirical analysis, we test the implications of the theoretical model, where we examine the

role production systems and land holdings play in efficient nutrient use and the imposition of downstream

                                                
3 The theoretical work posited by Lichtenberg and Zilberman originated with the work of Charnes and Cooper who
developed chance constraint optimization and Kataoka’s work on stochastic programming.  For empirical
applications of this margin of safety approach see Lichtenberg, Zilberman and Bogen, and Harper and Zilberman for



6

externalities. In addition, the cost to hog operators from complying with the Unified Strategy given the

inability of the operator to satisfy a desired level of safety in meeting nutrient requirements of the animals

and crops grown is evaluated. The data used in the empirical analysis comes from a national survey

conducted for the 1998 USDA Hogs Production Practices and Costs and Returns Report under the 1998

USDA Agricultural Resource Management Study Phase III.

In the following section the theoretical model is presented. Three separate scenarios are depicted,

highlighting the importance of uncertainty in the operator’s decision to adopt prevention measures versus

utilization measures for handling nutrients in the production stream. Section 3 details the empirical

analysis, including a brief description of the data, the empirical models and results. Section 4 concludes.

Theoretical Model:

Three models are presented that highlight the efficient use of nutrients in an animal-crop

production system. In these models it is assumed that the operator considers the nutrients contained in the

manure as a viable alternative to chemical fertilizers. First, the case of nutrient certainty is presented. It

can be shown from this first model that an operator who simply raises hogs will use fewer nutrients in the

feed ration than an operation with joint animal and crop production. This hog-only operation serves as a

proxy for the integrator-operator system, where it is assumed that the integrator hires the operator to feed

and house the hogs and all animal waste decisions are the sole responsibility of the operator. In other

words, this integrator-operator system does not internalize the costs or benefits from the nutrients

introduced into the production stream via the feeding rations. In the second model uncertainty is

introduced by imposing two probabilistic constraints on the profit maximizing objective function. Here

we see how the uncertainty associated with feed rations and manure nutrient content affect the manager’s

allocation decisions. With this second model we can infer that uncertainty about the nutrient content will

result in greater nutrient use in the feeding ration and greater overall levels of fertilizer use to supplement

                                                                                                                                                            
environmental risk to farm labor and Litchtenberg and Penn as it relates to water quality impairment from poultry
operations.
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the available manure. Finally, in the third model we introduce the land application constraint. This

constraint also embodies uncertainty by imposing a probabilistic limit on nutrient application. Although,

the hog operations are used to describe the animal production component in these models and the only

nutrient considered is phosphorus, the model can easily be adapted to other animal species and nutrients.

In all the models a risk neutral agent maximizes profits from both animal production and crop

production by selecting phytase (ρ) and rock phosphorus (r) to supplement the hog feed ration at the

animal production operation, and fertilizer application (f ) and leasing land (L) as part of the crop

production operation. There are other variables that the operator could select including the number of

animals, the manure storage technology, the crop to cultivate and many others. However, ignoring these

latter choices will not alter the qualitative result we wish to highlight, namely the difference between a

wholly owned system and an integrator-operator system, and the tradeoff between preventative measures

to reduce nutrients in the production stream versus utilizing the nutrients once they have entered the

stream.

Even with this simplified model there are still many components that must be made explicit. First,

the feed ration consists of a fixed quantity of ingredients that comprise the basic nutrient needs of the

animal. However, not all the phosphorus in this ration is available when consumed by the swine. Let us

denote the phosphorus in the ration as r . If phytase is added the swine can absorb a greater portion of

this phosphorus. Alternatively, rock phosphorus can be added which is more readily available for the

swine than r . Note, if rock phosphorus is used as a supplement, then each animal will excrete a greater

quantity of the phosphorus because not all the rock phosphorus is utilized either. Let the total quantity of

phosphorus consumed be denoted as rr + . Mathematically, we represent the retained phosphorus per

animal with the following expression

0,0,0)0(],)[( <>≠+= ρρρ φφφρφψ rr (1)
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where φ , is a concave function that determines the portion of phosphorus that the animal retains after

consuming the supplemented feed ration. It follows then that the excreted phosphorus is

])][(1[ rr +− ρφ (2)

The final specification for the animal production component is the swine growth function

0,0),( <> ψψψψ hhh . (3)

Now, without elaborating on the storage system we will assume a fixed proportion of the excreted

phosphorus is lost through spillage or runoff due to rainfall events, which will be denoted as )1,0(∈hm .

The phosphorus that remains we will define as available phosphorus from manure (m), which on a per

acre basis is

]/[])][(1[ oh LLrrxmm ++−= ρφ (4)

where x is the herd size, and Lo is the operator’s acreage holding. The crop production decision also

includes a choice of applying phosphorus fertilizer in addition to manure such that the per acre applied

phosphorus is fmap += . The final specification is the crop growth function,

0,0),( <> apapap YYapY . (5)

The objective function for the unconstrained certainty scenario is
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LcLLcfcapYpxcrchpMax Loafyrh

Lfr
−+−−+−− ]][)([])([

,,,
ρψ ρ

ρ
(6)

where ph and py are the net prices for hogs and the cultivated crop, respectively, cr and cρ are the per

pound cost of rock phosphorus and phytase, respectively, cf is the per ton cost of phosphorus fertilizer, ca

is the per acre application cost, which is assumed to be identical for applying manure and fertilizer, and cL

is the cost to lease an acre of land.4

The first order conditions are

0]][[][ ≤++− o
ap

yh LLapYpxchp ρ
ρ

ρψ ψ (7)

0]][[][ ≤++− o
rap

yr
r

h LLapYpxchp ψψ (8)

0]][[ ≤+− of
fap

y LLcapYp (9)

0])([]][[ ≤−−−++ Lafyo
Lap

y ccfcapYpLLapYp (10)

Equations (7) through (10) define the optimal levels of phytase, rock phosphorus, fertilizer and land under

conditions of full certainty about nutrient contents of the feed ration and the manure. As usual, the levels

are chosen so that the marginal cost and marginal benefit for each decision variable are equivalent. From

equation (7) we see that phytase use may be higher when production is decoupled given that the marginal

cost of phytase use in crop production 0]][[ <+ o
ap

y LLapYp ρ  is not realized in the decoupled

production scenario. This implies that phytase use may be lower in a wholly owned joint production

system. Another interpretation is that the value of manure generated via a phytase feed is lower than when

rock phosphorus is used. From equation (8) we see that rock phosphorus use will be greater in a wholly
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owned animal-crop production system given the crop production benefits attributed to additional

phosphorus in the manure, 0]][[ >+ o
rap

y LLapYp . This result can explain why some analysts have

inferred that operators use “excess quantities of nutrients.” Finally, the expansion of this farm beyond the

initial land holding (Lo) is discouraged by the loss of nutrient value when the manure is spread over a

greater quantity of land, 0]][[ <+ o
Lap

y LLapYp .

The above derivation provides a benchmark for which the model now departs to incorporate

producer uncertainty. First, the available phosphorus in the feed ration is uncertain. The producer will

supplement the feed rations with nutrients such that the probability that the available nutrients are less

than the nutrient requirement is less than a specified safety margin (α). If the phosphorus requirement of

the animal is r* then we can construct the following probability constraint

αψ −≤≤ 1*][ rP (11)

If we assume the available phosphorus in the feed (ψ ) is normally distributed then we can rewrite this

constraint as

*)()1()( rF ≥−− ψσαψµ (12)

where )(⋅F  represents the cumulative normal distribution, )(ψµ  is the expected value and )(ψσ  is the

standard deviation. In addition the operator does not want the cultivated crops to receive nutrients below

some threshold level (rL). This second margin of safety constraint is written as

β−≤≤ 1][ LrapP (13)

                                                                                                                                                            
4 The cost of leased land could be made to be an increasing function of the quantity of land to reflect the increased
cost of finding additional acreage and transporting the manure to this land but the qualitative results do not change
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where β is the margin of safety. Again, if we assume the applied phosphorus (ap) is normally distributed

then we can rewrite this constraint as

LrapFap ≥−− )()1()( σβµ (14)

The first order conditions for the producer-imposed margin of safety model are (12),(13) and

0])([])([
]][[][

21 ≤−+−+
++−

ρρψψ

ρ
ρ

ρψ
σβµλψσαµλ

ψ
apFF

LLapYpxchp

apap

o
ap

yh
(15)

0])([])([
]][[][

21 ≤−+−+
++−

rapapr

o
rap

yr
r

h

apFF
LLapYpxchp

σβµλψσαµλ
ψ

ψψ

ψ (16)

0])([]][[ 2 ≤−++− fapap
of

fap
y apFLLcapYp σβµλ (17)

0])([])([]][[ 2 ≤−+−−−++ Lapap
Lafyo

Lap
y apFccfcapYpLLapYp σβµλ (18)

From equation (15) we see that the imposition of safety margins further reduces the incentive to use

phytase and increases the incentives to use rock phosphorus. The fertilizer use is now greater than in the

unconstrained model and again we can see why hog operators and crop producers have an incentive to use

greater quantities of phosphorus. This result confers with the theoretical findings in Babcock (1992),

where uncertainty is used to explain why farmers may use “excessive” or “inefficient” quantities of

fertilizer. The imposition of safety margins also reduces the incentive for leasing land.

Now the regulator steps in and imposes a regulatory constraint. The regulator sets an upper limit

(rH) on phosphorus application per acre based on the nutrient uptake of the cultivated crop. The crop

                                                                                                                                                            
and thus we maintain the linear specification.
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producer cannot exceed this upper limit except under “special” circumstances. To account for all

possibilities the regulator requires that the probability that the applied phosphorus exceeds the upper limit

is less than a predetermined safety margin. We write this constraint as

γ≤≥ ][ HrapP (19)

where γ is the safety margin. Again, assuming that ap is distributed normally we can rewrite this

constraint as

HrapFap ≤+ )()()( σγµ (20)

Finally, in this last model we see the tradeoff between the Unified Strategy requirement limiting land

application of phosphorus and the producer’s margins of safety to insure the animals and cultivated crops

receive phosphorus at levels to insure proper economic and physical growth.

The first order conditions are now (12),(13), (20) and

0])([])([

])([]][[][
32

1

≥+−−+
−+++−

ψψ

ρψψρ
ρ

ρψ
σβµλσβµλ

ψσαµλψ
apFapF

FLLapYpxchp

apapapap

o
ap

yh
(21)

0])([])([
])([]][[][

32

1

≥+−−+
−+++−

rapaprapap

r
o

rap
yr

r
h

apFapF
FLLapYpxchp

σβµλσβµλ
ψσαµλψ ψψψ (22)

0])([])([
]][[

32 ≥+−−+
+−

fapapfapap

of
fap

y

apFapF
LLcapYp

σβµλσβµλ
(23)

0])([])([
])([]][[

32 ≥+−−+
−−−++

LapapLapap

Lafyo
Lap

y

apFapF
ccfcapYpLLapYp

σβµλσβµλ
(24)
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From equation (21) the operator’s incentive to use phytase is increased due to the reduced cost of

satisfying the regulator’s constraint 0])([3 >+− ψσβµλ apF apap . From equation (22) the opposite

can be said for rock phosphorus where the regulator’s constraint imposes a higher marginal cost from

using rock phosphorus, 0])([3 <+− rapap apF σβµλ . Equation (23) and (24) show similar incentives

for reducing fertilizer use and increasing cultivated acreage. The imposition of the regulator’s constraint

on land application therefore has wide reaching implications for trading off prevention measures,

increasing the use of phytase, and utilization measures, increasing cultivated acreage. In the next section,

an empirical analysis provides statistical evidence to support the hypotheses implicit in the first model.

These results are then used to infer the implications for animal-crop production system as it pertains to

prevention and utilization solutions to satisfying the regulator’s constraint.

Empirical Analysis:

Data from the 1998 Agricultural Resource Management Study Phase III are used in the empirical

analysis. The data set consists of 1633 observations spanning 22 hog producing states. Table 1 provides

definitions for the variable names. Table 2 lists the observations by state, the average inventory of animal

units and the percentage of the systems in each state that operate under an integrator-operator

arrangement. The number of animal units (AUs) raised on an average system varies considerably from

4,788.4 AUs in Utah to 81.2 AUs in Wisconsin. The average acreage per AU also varies across states

with 42.19 acres per AU in South Dakota to 1.48 acres per AU in North Carolina. The variation in the

percentage of the systems that are integrator-operator is perhaps the most striking with Arkansas and

North Carolina having 85 percent of the systems as integrator-operator systems and Tennessee having

only one percent of the surveyed systems as integrator-operator systems. Table 3 contains additional

summary statistics for several key parameters for both the wholly owned production systems and the
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integrator-operator systems. The integrator-operator systems have lower average values for all the

parameters of interest. These means are statistically different at the 0.001 significance level.

Table 1. Variable Definitions
Variable Name Definition
AU Animal Unit=1,000 lbs. of liveweight
IO =1, if integrator-operator system

=0, if wholly owned system
Ac/AU Acres per animal unit
P/ton Pounds of phosphorus per ton of manure
N/ton Pounds of nitrogen per ton of manure
Ac/Pton Total operation acres per pounds of phosphorus per ton
Ac/Nton Total operation acres per pounds of nitrogen per ton

Table 2. Observations, Average AUs, Average Acres/AU, and Percent IO, by State
State Observations AUs Acres/AU %IO

Alabama 65 157.1 6.86 15
Arkansas 61 436.5 1.94 85
Colorado 29 123.0 34.93 7
Georgia 71 162.7 8.38 4
Illinois 136 329.0 9.92 9
Indiana 83 357.0 5.54 10
Iowa 88 286.5 6.28 23
Kansas 54 253.1 20.97 6
Kentucky 42 200.6 9.60 5
Michigan 59 420.8 11.82 17
Minnesota 97 292.3 8.94 27
Missouri 82 302.6 8.38 5
Nebraska 64 304.4 13.31 6
North Carolina 206 1000.1 1.48 85
Ohio 116 204.1 8.06 19
Oklahoma 63 646.8 18.87 57
South Carolina 59 329.6 16.73 39
South Dakota 65 219.5 42.19 6
Tennessee 75 123.5 11.13 1
Utah 13 4788.4 8.67 39
Virginia 49 966.2 10.53 22
Wisconsin 56 81.2 16.54 4
Total 1633 44.8 12.78 27
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Table 3. Expected Value for Key Parameters
System Observations Variable Mean Median

Wholly Owned 1197 P/ton 2.21 2.21
N/ton 4.14 4.13

Ac/AU 14.25 4.99
Ac/Pton 341.45 185.41

Integrator-Operator 436 P/ton 1.74 1.52
N/ton 3.07 2.40

Ac/AU 1.51 0.14
Ac/Pton 169.78 61.88

The analysis that follows examines the differences between wholly owned animal-crop

production systems and integrator-operator systems and compares the nutrient concentrations in the

generated manure, the animal units raised, and the acreage used in the production system. Inferences

drawn from these comparisons are used to examine how the Unified Strategy will affect the different

systems as well as the tradeoff between prevention and utilization. In the near future, a simulation model

will be calibrated using this data to evaluate the cost of complying with the Unified Strategy for varying

scenarios based on producer and regulator margins of safety. This latter exercise will provide a range of

outcomes that allows us to better understand the impact that the Unified Strategy may have on livestock

operations and ultimately on water quality conditions.

First, the theoretical result that an integrator-operator production system uses a lower quantity of

rock phosphorus in the feed ration and thus generates lower phosphorus concentration in the manure is

examined. The negative correlation between P/ton and IO and the difference of means test, which showed

that P/ton for the integrator-operator systems was statistically lower at the 0.001 significance level,

support the theoretical finding that integrator-operator systems will have less nutrient concentrations in

the generated manure. Table 4 presents the correlation coefficients derived in the empirical analysis (all of

the correlation coefficients are statistically significant at the 0.001 significance level). The same

relationship exists between the nitrogen concentration and the IO variable. However, this difference in

nutrient concentration may be attributable to the manure handling system employed in the waste

management component (not specified in the theoretical model). Lagoon handling systems reduce the
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total phosphorus content by nearly 60 percent whereas a pit system retains approximately 95 percent of

the total phosphorus (Moore). Furthermore, a review of the relationship between production system, and

between lagoon versus pit systems shows that 80 percent of IO systems operate lagoon systems while

only 46 percent of wholly owned operations operate lagoon systems. The correlation between contracting

and lagoon systems is 0.43 and is statistically significant at the 0.001 level of significance.

The second test involves drawing a relationship between the acreage per animal by production

system. The correlation and difference of means tests between acreage per animal and IO, which are both

statistically significant at the 0.001 level, shows that the integrator-operator systems have significantly

less land per animal unit. This suggests that the integrator-operator systems may not have sufficient land

holding to spread the lower nutrient concentrated manure. Given lower nutrient concentrations in the

generated manure, a nutrient restriction per acre may have a greater impact on the integrator-operator

systems if the integrator-operator system has less land per animal unit and the lower acreage dominates

the lower nutrient concentrated manure.

The final test compares the acreage per pound of phosphorus per ton of manure. This test allows

us to see if the integrator-operator systems face a greater burden associated with managing “excess”

manure nutrients. The correlation coefficient between acreage per pound of phosphorus per ton of manure

and IO was negative and statistically significant at the 0.001 level. The difference of means test was also

statistically significant at the 0.001 level and showed that the acreage per pound of phosphorus per ton of

manure was lower for integrator-operator systems than for the wholly owned systems.

Table 4. Correlation Coefficients for Key Parameters
Ac/AU P/ton N/ton IO

Ac/AU 1 0.10465 0.10628 -0.18816
P/ton 0.10465 1 0.9808 -0.23865
N/ton 0.10628 0.9808 1 -0.26807
IO -0.18816 -0.23865 -0.26807 1

The following inferences are drawn from the above results and pertain to the potential

implementation of the Unified Strategy and the implications for the different systems and the tradeoff
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between prevention and utilization of nutrients in the production stream. First, the integrator-operator

systems are likely to face greater costs associated with complying with the Unified Strategy because they

must locate greater additional acres of land to spread manure than the wholly owned systems. Second, the

distribution of integrator-operator systems across the states listed in Table 2 suggests hog production will

be more adversely effected is some states than in others. In particular, Arkansas and North Carolina far

exceed all other states in the share of integrator-operator systems and thus could face greater costs

associated with the proper management of manure.

Now turning to the impact of the Unified Strategy on the prevention versus utilization tradeoff.

First, it is expected that the relative cost between prevention and utilization will influence the optimal

mix. If the Strategy increases the land acreage needed to spread the “excess” manure then the cost of

acquiring addition land will most likely increase. This increase in land costs may encourage an increase in

the use of feed supplements that increase the retention of nutrients by the animals and thus a lower

concentration of manure nutrients. Also, given that it appears that the Unified Strategy would adversely

effect the integrator-operator systems more than the wholly owned systems, the operators may place a

greater emphasis on prevention measures in the contractual arrangements between integrators and

operators. Of course, if co-permitting or joint liability is incorporated into the Unified Strategy, then we

may see a concerted effort on both the integrator and the operator to arrange for adopting preventive

measures over land application.

Concluding Remarks:

This paper examines the tradeoff between prevention and utilization of nutrients in the animal-

crop production stream and the differences in the decision making process between wholly owned

production systems and integrator-operator systems. The analysis shows that under wholly owned

production conditions some of the apparent excess nutrients in the manure is the result of an optimal

decision. Some excess application of nutrients during the crop production component can be explained by

the margin of safety used by the operator to insure that the cultivated crop receives a minimum quantity of
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nutrients. Also, the economic value of nutrients is illustrated when a joint production system is explicitly

modeled. In addition, in the empirical analysis it is shown that the operator in an integrator-operator

system faces greater challenges under the recently proposed Unified Strategy for Animal Feeding

Operations

Several issues were raised above that were conveniently assumed away. In particular, the issues

of co-permitting and contracting were not fully explored. In the future, these issues will provide greater

insight into designing regulatory schemes to control excess application of nutrients and thus improve

water quality. It may also be the case that requiring co-permitting or joint liability may result in

decreasing the percentage of operations that contract with integrators. We may see in the future a

movement toward further consolidation and less contracting given the costs involved in developing “fair”

contracts that allow the downstream externality recipient to share the cost of the externality with the

upstream producer (the integrator and its nutrient rich feed).

Overall, this analysis allows us to see that the problem of controlling nutrient runoff from

confined animal feeding operations requires a systems approach. Further, it is possible that the regulator

can better serve environmental concerns by providing information that reduces the uncertainty about

nutrient content thus reducing the “excess” use of nutrients. Also, efforts could focus on reducing the cost

of utilizing the nutrients once they have entered the production stream. Reducing the cost of utilization

may take the shape of increasing the economic value of the nutrients by supporting value-added

technologies such as composting, bio fuel generation, or conversion of manure to pelletized fertilizer.

Absent a regulatory requirement, incentives may be needed to encourage farmers to voluntarily reduce the

nutrients entering or exiting the production stream. This may require time, as farmers learn about

alternative technologies or crops to cultivate that serve to decrease the cost of meeting water quality

goals.
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