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Since the seminal work of Marschak and Andrews (1994), studies on production function 

estimation have developed by constant efforts to reexamine how to deal with endogenous 

labor input. Because of unobserved productivity or managerial ability of producers, these 

studies gave up estimating production functions using cross sectional data and instead 

proposed estimation methods based on panel data (e.g., Griliches and Mairesse, 1998). 

Popular methods include fixed effects (FE) estimation (e.g., Mundlak, 1961), generalized 

method of moments (GMM) using lags or differences of inputs and outputs as instrumental 

variables (e.g., Blundell and Bond, 1999), and proxy variable approaches of Olley and Pakes 

(1996) and Levinsohn and Petrin (2003).  

Although panel data might be available for more regions than before, there are still many 

other regions for which only cross sectional data are available for production function 

estimation. Furthermore, those cross sectional data might contain much more observations 

and information than typical panel data can provide. In this case, we hope to find an 

appropriate way to estimate a production function using cross sectional data. 

Moreover, those popular estimation methods for panel data tend to impose strong and 

untestable assumptions. FE estimation assumes unobserved productivity to be constant 

over time and the estimated production elasticity of capital tends to be biased downward. 

GMM estimation assumes that instrumental variables (IVs) have sufficient correlation 

with endogenous regressors and no correlation with the error term, but full investigation of 

the latter is impossible. Olley-Pakes and Levinsohn-Petrin methods convert unobservable 

productivity into observable proxies (capital investment or intermediate inputs) and 

require that the proxies take only positive values, increase strictly with productivity, and 

should not include measurement errors. 

These observations show that it is important to propose a practical method for production 

function estimation using cross sectional data and weaker assumptions. For this purpose, 

we adopt and improve a partial identification approach of Nevo and Rosen (2012) to 
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estimate the upper and lower bounds of production elasticities by the imperfect 

instrumental variables (IIV) method. The most attractive feature of IIV method is to allow 

correlation between labor inputs and the error term, which is one of the most difficult 

issues and paves the way to production function estimation using cross sectional data. 

Although the IIV method enables us to estimate only intervals of production elasticities, we 

believe that their intervals can be more helpful than their biased point estimates, as 

emphasized by other studies taking a partial identification approach. 

The second section explains data used in our empirical analysis. The third section 

estimates Cobb-Douglas production functions using the methods of ordinary least squares 

(OLS) and instrumental variables (IVs) for comparison purpose. The fourth section 

introduces the IIV method, explains how to choose IIVs, and proposes an alternative way to 

determine the weight of combining two IIVs. It then shows results of the estimated upper 

and lower bounds of the production elasticity of labor. The final section concludes the paper. 

 

Data 

 

Our empirical analysis uses data of rural households in the Chinese Household Income 

Project (CHIP) survey in 2002 (Li, 2002), which covers 22 out of 31 provinces in China (see 

Gustafsson, Li, and Sicular (2008) and Knight, Deng, and Li (2011) for a detailed 

description of the survey). We specifically examine 4174 typical households for which data 

on relevant variables are not missing and the following conditions are satisfied: 1) 

value-added, costs of producing crops or livestock, and cultivated areas are all positive, 2) 

the household head is a married male, 3) both the household head and his wife work on 

their own farm, and 4) sample villages include at least two households. We also use 

village-level data from the Administrative Village Questionnaire annexed to the CHIP 

survey. 
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Output (value_added) is defined as the difference between value of output and costs of 

producing grain, economic crops, and livestock products. Labor (farmlabor) is measured by 

total farm work hours of family members to produce crops (grain and economic crops) and 

livestock products. Farm capital (capital) is total value of large and medium sized farm 

tools, farm machinery and equipment, livestock, transportation machinery and equipment, 

and structures used for production. Land (land) is measured by cultivated areas of own and 

rented land. 

Table 1 presents sample means of the output and inputs. To allow for regional differences 

in farm production and apply our IIV method to different data, we classify the 22 provinces 

into the eastern, central, and western regions. Mean of value-added is 4637, 4800, and 4054 

yuan (1 yuan = 0.16 dollar) for the eastern, central, and western regions, respectively. In 

the eastern region, where economy has been developing most rapidly, farm work hours are 

the shortest (2351), cultivated land is the smallest (6.4 mu = 0.4 ha), and farm capital is the 

largest (4639 yuan) of the three regions. These results reflect higher incomes and more 

participation in wage work for farm households in this region. In the western region, where 

economy has been developing most slowly, farm work hours are 37% longer and farm 

capital is 22% smaller than those in the eastern region. In addition to fewer opportunities 

for wage work, farm households in this region produce more livestock products, which 

partly explains their longer hours on farm and smaller cultivated land. In the central 

region, value share of grain in total farm products is 52% and cultivated land is the largest 

(8.8 mu = 0.6 ha). Although farm mechanization progressed and it helped shorten farm 

work hours, farm capital in this region is similar to that in the western region and it is 20% 

smaller than the one in the eastern region.  

 

Production Function Estimation Using OLS and IV Methods 
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We specify and estimate a Cobb-Douglas production function: 

         𝑙𝑛 (𝑣𝑎𝑙𝑢𝑒_𝑎𝑑𝑑𝑒𝑑) = 𝛼0 + 𝛼1 𝑙𝑛(𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟) + 𝛼2 𝑙𝑛(𝑐𝑎𝑝𝑖𝑡𝑎𝑙) + 𝛼3 𝑙𝑛(𝑙𝑎𝑛𝑑) 

                 +𝛼4𝑖𝑟𝑟_𝑠ℎ𝑎𝑟𝑒 + 𝛼5𝑒𝑑𝑢𝑐_ℎ𝑒𝑎𝑑 + 𝛼6𝑎𝑔𝑒_ℎ𝑒𝑎𝑑 + 𝛼7𝑎𝑔𝑒_ℎ𝑒𝑎𝑑2 + 𝑢,   (1) 

where 𝑢 denotes an error term. Following Jacoby (1993), production function (1) includes 

four variables to control for household fixed effects to some extent. Schooling years of the 

household head (𝑒𝑑𝑢𝑐_ℎ𝑒𝑎𝑑), his age (𝑎𝑔𝑒_ℎ𝑒𝑎𝑑), and its square are used to control for 

managerial ability. The share of irrigated land (𝑖𝑟𝑟_𝑠ℎ𝑎𝑟𝑒) is used to control for land quality. 

Sample means of these variables are shown in Table 1. We always include province dummy 

variables when estimating the production function (1). 

We first use OLS to estimate equation (1) for the three regions. Table 2 presents the 

results. Production elasticities of labor, capital, and land are estimated statistically 

significant and positive for all regions. Production elasticity of capital is lower than 0.1 and 

that of land is nearly 0.45 for all regions. Production elasticity of labor varies greatly with 

regions: it is 0.43, 0.20, and 0.16 for the eastern, central, and western regions, respectively. 

The share of irrigated land and age of the household head have statistically significant 

effects for some cases, while education of the household head does not have significant 

effects. 

Our result is most appropriately compared with Yang (1997a) because he uses OLS to 

estimate a Cobb-Douglas production function which has value added for crops and livestock 

as outputs and includes the household head’s education as a shift factor. Using cross 

sectional data on 197 households in Sichuan, a province in western China, he estimates 

production elasticities of labor, capital, and land at 0.23, 0.04, and 0.49, respectively. These 

estimates are similar to ours for the western region, 0.16, 0.08, and 0.44.  

We next estimate equation (1) using the IV method. We assume that only 𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟 is 

potentially endogenous throughout this study, which seems plausible because we use cross 

sectional data and only 8% of households rent land from other households in our sample. 
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We simply choose two IV sets similar to Yang (1997b) and Jacoby (1993) because candidates 

for IVs are limited for the cross sectional data. Set 1 includes only the number of adults in 

the household. Set 2 includes ten variables: a dummy variable for drinking water from tap 

(tapwater), a dummy variable for using firewood for fuel (firewood), share of own cultivated 

land (ownland), number of adult males and females (num_adult_male, num_adult_female), 

number of children younger than 6 years old (num_childyt6), number of children between 6 

and 15 years old (num_childge6), a village dummy variable of large population (vill_large), 

village-level daily wage (vill_wage), and village-level rice price (vill_p_rice). Sample means 

of the variables are shown in Table 1. 

Table 3 presents the results. IV estimation with set 2 yields similar production 

elasticities to those obtained by OLS. In particular, production elasticity of labor is 

estimated at 0.49, 0.19, and 0.18 for the eastern, central, and western regions, respectively. 

IV estimation with set 1 yields slightly different production elasticities from those obtained 

by OLS particularly for the western region: production elasticity of labor is estimated at 

0.35 for this region. 

Table 3 also presents an F statistic to test significance of instruments (F stat.) and the 

adjusted coefficient of determination (�̅�2) in the first stage regression, and a 𝜒2 statistic to 

test overidentifying restrictions (OIR stat.). The F statistic for IVs in set 2 is smaller than 

the critical value of Stock and Yogo (2005), which indicates weakness of these IVs. 

Furthermore, the OIR statistic for these IVs is greater than the critical value of 𝜒2 

statistic for all regions, which indicates rejection of their orthogonality. On the other hand, 

the number of adults (the only IV in set 1) is not weak, although we cannot test its 

orthogonality. Finally, Table 3 presents Durbin-Wu-Hausman statistic (D-W-H stat.) to test 

exogeneity of  𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟 in equation (1), which is not rejected at the 5% level for all cases.  

Consequently, we use the OLS estimates as a benchmark in the analysis below. However, 

it should be noted that the D-W-H test critically depends on untestable assumptions: at 
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least one instrument is indeed exogenous for each of the two IV sets. We next ask validity of 

these assumptions using IIV methods. 

 

Production Function Estimation Using IIV Methods 

 

Basic Theoretical Conditions for IIVs 

 

To focus on endogeneity of labor, we rewrite production function (1) as 

  𝑌 = 𝛼𝑋 + 𝑾′𝜹 + 𝑢,                              (2) 

where 𝑌, 𝑋, 𝑾, and 𝑢 respectively denote 𝑙𝑛 (𝑣𝑎𝑙𝑢𝑒_𝑎𝑑𝑑𝑒𝑑), 𝑙𝑛(𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟), the vector of 

exogenous variables, and the error term. As in Nevo and Rosen (2012), our main concern is 

identification and estimation of parameter 𝛼, production elasticity of labor, which can be 

safely assumed to be non-negative. To further focus on 𝛼, we rewrite equation (2) as a 

simple regression model: 

  �̃� = 𝛼�̃� + 𝑢,  𝛼 ≥ 0                              (3) 

Variable �̃�  (�̃� ) represents residuals in the population regression of 𝑋  (𝑌 ) on 𝑾 and 

therefore 𝐸�̃� = 𝐸�̃� = 0. 

According to the IIV method, the upper and lower bounds of 𝛼 are given by OLS 

estimator, 𝛼𝑂𝐿𝑆, or IV estimator, 𝛼𝐼𝑉(𝑍), applied to equation (3). 

  𝛼𝑂𝐿𝑆 = 𝜎�̃��̃�/𝜎�̃��̃�,  𝛼𝐼𝑉(𝑍) = 𝜎𝑧�̃�/𝜎𝑧�̃�                        (4) 

where 𝜎𝑎𝑏 = 𝑐𝑜𝑣(𝐴, 𝐵) for random variables 𝐴 and 𝐵. For simplicity, we refer to 𝛼𝑂𝐿𝑆 and 

𝛼𝐼𝑉(𝑍) as OLS and IV estimators of 𝛼, respectively, rather than their probability limits. 

Variable 𝑍 is called an IIV if it satisfies the following conditions: 

  (C1)  𝜌𝑧�̃� ≠ 0 

  (C2)  𝜌𝑥𝑢𝜌𝑧𝑢 ≥ 0 

where 𝜌𝑎𝑏 denotes correlation coefficient between random variables 𝐴 and 𝐵. Condition 



7 

 

(C1) requires 𝑍 to be correlated with endogenous regressor �̃�. Condition (C2) requires that 

correlation between 𝑍 and the error term 𝑢 cannot have the opposite sign to correlation 

between 𝑋 and 𝑢.  

For production function estimation using cross sectional data, these conditions can be 

made more specific. First, we assume positive correlation between 𝑋 and 𝑢, which has 

been supported by most studies of production function estimation (e.g., Olley and 

Pakes,1996). It is justified if favorable productivity shocks cause a neutrally upward shift of 

the production function and if this shift expands the demand for labor. In this case, (C2) is 

rewritten as 

  (C2’)  𝜌𝑥𝑢 > 0 and 𝜌𝑧𝑢 ≥ 0 

Second, we assume availability of IIVs which have positive partial correlation with farm 

work hours. 

  (C1’)  𝜌𝑧�̃� > 0 

This condition is easily checked because 𝑋 (�̃�) and 𝑍 are observable (or estimable). To 

exemplify a potential variable satisfying both (C1’) and (C2’), we can invoke the demand for 

intermediate inputs, a proxy in the Levinsohn-Petrin method. This demand is likely to 

respond positively to productivity shocks for a similar reason for the positive correlation 

between 𝑋 and 𝑢. Furthermore, 𝑋 and 𝑍 are likely to move in the same direction in 

response to productivity shocks, given fixed amount of land and/or capital, which is likely to 

support positive correlation between �̃� and 𝑍. 

In addition to (C1’) and (C2’), a narrower interval of 𝛼 might be obtained if correlation 

between 𝑍 and 𝑢 is weaker than correlation between 𝑋 and 𝑢. 

  (C3)  |𝜌𝑥𝑢| ≥ |𝜌𝑧𝑢| 

We will examine plausibility of (C3) for each IIV candidate to be introduced below. 

Conditions (C1’), (C2’), and (C3) for IIVs are weaker than conditions required by other 

estimation methods if we appropriately choose 𝑍 to satisfy relations in these conditions. 
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The IV or GMM method requires the orthogonality condition, 𝜌𝑧𝑢 = 0. The Olley-Pakes or 

Levinsohn-Petrin method requires that the proxy for productivity (capital investment or 

intermediate inputs) takes only positive values, increases strictly with productivity, and 

should not include measurement errors. The cost of this advantage of IIV method is 

unavailability of a point estimate of 𝛼. Given conditions (C1’) and (C2’), we find only the 

upper bound of 𝛼 using a single IIV, and we find the lower and upper bounds of 𝛼 using 

two IIVs together. To minimize this cost, we try to find a narrower range of 𝛼 by choosing 

better IIVs and by deriving useful relations to impose plausible assumptions. 

 

Choice of IIVs and Additional Requirements for Them 

 

Following Nevo and Rosen (2012), we will use two IIVs together to derive two-sided bounds 

of 𝛼 under conditions (C1’), (C2’) and (C3). A practical issue to apply their method is how to 

find a better pair of IIVs among candidates satisfying these conditions. We begin with two 

candidates which seem to satisfy the three conditions and were used as a potentially 

invalid IV or a proxy variable for productivity shocks. 

The first candidate is the number of household members who work on their own farm. It 

has positive partial correlation with farm work hours (𝜌𝑧�̃� > 0) as shown below. The 

number of farm workers might not respond to productivity shocks (𝜌𝑧𝑢 = 0). However, it can 

respond positively to favorable productivity shocks (𝜌𝑧𝑢 > 0) because the household head 

may ask help of his/her family members who usually do not work on farm (his/her parents 

or children). Furthermore, we expect the number of farm workers to respond more weakly 

to productivity shocks than farm work hours, as condition (C3) requires. 

The second candidate is cost of intermediate inputs in farm production. As explained 

above, it is likely to have positive partial correlation with farm work hours (𝜌𝑧�̃� > 0) and 

respond positively to favorable productivity shocks ( 𝜌𝑧𝑢 > 0 ). Furthermore, farm 
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households (particularly in developing countries) might adjust their demand for labor more 

flexibly than their demand for intermediate inputs in response to productivity shocks 

because the latter often needs immediate cash payment. We will return to plausibility of 

condition (C3) for this candidate later.  

Allowing for data availability, our IIV candidates include the number of male and female 

adults who work on their own farm (𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒 and 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒), the sum 

of these adults (𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟), and the logarithm of total costs of producing crops and 

raising livestock (𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙)). Sample means of these variables are presented in Table 1. 

Although these candidates might satisfy the three theoretical conditions, they might not be 

good enough to obtain a narrow interval of 𝛼. 

To explain this point, we review choice of IIVs by Nevo and Rosen (2012). They estimate a 

market share function for various cereal brands, which has the price 𝑝𝑗,𝑡 of cereal brand 𝑗 

in market 𝑡 as an endogenous regressor (𝑡 = 𝐵 for Boston and 𝑡 = 𝑆 for San Francisco). 

Similarly to our case, their IIVs satisfy conditions (C1’) and (C2’) above and they use two 

IIVs together to derive two-sided bounds of parameters of the share function. One is the 

price 𝑝𝑗,𝑟 of cereal brand 𝑗 in the other market  (𝑟 = 𝐵, 𝑆;  𝑟 ≠ 𝑡). The other is its average 

price �̅�𝑗,𝑅 in other cities 𝑘 (≠ 𝑡) of the same region 𝑅, where 𝑅 is New England for 𝑡 = 𝐵 

and northern California for 𝑡 = 𝑆. Focusing on partial correlation between these IIVs and 

the endogenous price, they report it to be 0.81 for 𝑝𝑗,𝑟 and 0.48 for and �̅�𝑗,𝑅.  

Their choice of IIVs suggests additional requirements for IIVs. First, correlation of each 

IIV with �̃� must be not only statistically significant but also moderately high. Second, for a 

pair of IIVs, one must have relatively high correlation with �̃� and the other must have 

relatively low correlation with �̃�. Columns “hh vars” (household-level variables) in Table 4 

present correlation 𝜌𝑧�̃� between �̃� and 𝑍 for the three regions, where t-value for 𝑍 in the 

regression of �̃� on 𝑍 is shown in parentheses. The table shows that 𝜌𝑧�̃� is statistically 

significant and ranges from 0.12 to 0.24 for the four candidates in all regions. Consequently, 
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these candidates barely satisfy the first requirement, whereas few pairs of them seem to 

satisfy the second requirement. 

To introduce another candidate which satisfies the three conditions for IIVs and has 

higher correlation with �̃�, we recall relation between the prices 𝑝𝑗,𝑡 and �̅�𝑗,𝑅 in the above 

application. Let 𝑋𝑗 denote the logarithm of farm work hours for household 𝑗 and let ℎ 

(≠ 𝑗) index other households in the village where household 𝑗 lives, with 𝑁𝑗 denoting the 

number of these households. By defining the average of 𝑋ℎ for other households in the 

village, �̅�−𝑗 ≡ (𝑁𝑗 − 1)−1 ∑ 𝑋ℎℎ≠𝑗 , it proves to satisfy the conditions (C1’), (C2’), and (C3) 

under plausible assumptions. Furthermore, since the logarithm of production cost, 

𝑊𝑗 ≡ 𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙𝑗), might not satisfy condition (C3), we replace it with the village average 

�̅�−𝑗, which is constructed in a similar way to �̅�−𝑗. 

Columns “v. mean” (village mean) in Table 4 present correlation between �̃�  and 

variables averaged over other households in the village. As expected, �̅�−𝑗  in the row 

𝑙𝑛 (𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟) has high correlation with �̃�: it is 0.57, 0.59, and 0.50 for the eastern, central, 

and western regions. This high correlation will help our IIV candidates satisfy the second 

requirement. Moreover, correlation coefficient of �̅�−𝑗 with �̃�, which is shown in the row 

𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙), is 0.17, 0.11, and 0.05 for the three regions and seems to satisfy the first 

requirement at least for the eastern and central regions. In summary, we use 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟, 

𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒, 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒, �̅�−𝑗 , and �̅�−𝑗  for our IIVs in the subsequent 

analysis.  

 

Identification and Estimation with a Single IIV 

 

To identify and estimate production elasticity of labor, 𝛼, we first use a single IIV and apply 

Proposition 2 of Nevo and Rosen (2012). In addition to (C1’), (C2’), and (C3), we assume a 

condition which can be checked by the data:  
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  (C4)  𝜏𝑧𝑥 ≡ (𝜎𝑧𝜎𝑥�̃� − 𝜎𝑥𝜎𝑧�̃�)𝜎𝑧�̃� > 0 

Under the four conditions, only the upper bound of 𝛼 is identified as 

  𝛼 ≤ 𝛼  = 𝑚𝑖𝑛 {𝛼𝐼𝑉(𝑍), 𝛼𝐼𝑉(𝑉)},                         (5) 

where 𝛼𝐼𝑉(𝑉) = 𝜎𝑣�̃�/𝜎𝑣�̃� , 𝑉 = 𝜎𝑥𝑍 − 𝜎𝑧𝑋 , and 𝜎𝑎  denotes standard deviation of random 

variable 𝐴. Using definition of 𝑉,  𝛼𝐼𝑉(𝑉) is rewritten as 

   𝛼𝐼𝑉(𝑉) = 𝛽 𝛼𝐼𝑉(𝑍) + (1 − 𝛽 )𝛼𝑂𝐿𝑆 = 𝛼𝑂𝐿𝑆 + 𝛽{𝛼𝐼𝑉(𝑍) − 𝛼𝑂𝐿𝑆},            (6) 

where 𝛽 ≡ −𝜎𝑥𝜎𝑧�̃�
2 /𝜏𝑧𝑥. Since condition (C4) means 𝛽 < 0, relation (6) implies that 

  𝛼 = 𝛼𝐼𝑉(𝑉)  if  𝛼𝑂𝐿𝑆 ≤ 𝛼𝐼𝑉(𝑍),                         (7) 

    = 𝛼𝐼𝑉(𝑍)  if  𝛼𝑂𝐿𝑆 > 𝛼𝐼𝑉(𝑍). 

A seemingly natural estimator of 𝛼 might be 𝑚𝑖𝑛 {�̂�𝐼𝑉(𝑍), �̂�𝐼𝑉(𝑉)}, where �̂�𝐼𝑉(𝑍) and 

�̂�𝐼𝑉(𝑉)  are obtained by replacing 𝜎𝑎  and 𝜎𝑎𝑏  by their sample analogues. However, 

discussion of Chernozhukov, Lee, and Rosen (2013) shows that the estimator 

𝑚𝑖𝑛 {�̂�𝐼𝑉(𝑍), �̂�𝐼𝑉(𝑉)} tends to be downward biased in finite samples and does not account for 

unequal sampling errors between �̂�𝐼𝑉(𝑍) and �̂�𝐼𝑉(𝑉). Following Chernozhukov et al., we 

use a simulation-based estimator of 𝛼: 

  �̂�(𝑝) = 𝑚𝑖𝑛𝑞∈𝑄{�̂�𝐼𝑉(𝑞) + 𝑘�̂�(𝑝)𝑠(𝑞)},  𝑞 ∈ 𝑄 = {𝑍, 𝑉}               (8) 

In particular, �̂�(0.50)  represents a half-median unbiased estimator of 𝛼 , which is 

comparable with a point estimate of �̂�𝑂𝐿𝑆. Furthermore, 𝛼 ≤ �̂�(0.975) provides a 97.5% 

confidence interval of the identified region (5), which is comparable with a confidence 

interval 𝛼 ≤ �̂�𝑂𝐿𝑆 + 𝑐0.975 𝑠𝑒(�̂�𝑂𝐿𝑆)  for OLS estimator ( 𝑐0.975 : 97.5th percentile in the 

standard normal distribution, 𝑠𝑒(�̂�𝑂𝐿𝑆): standard error of �̂�𝑂𝐿𝑆). In equation (8), principal 

critical value, 𝑘�̂�(𝑝), represents the 𝑝th quantile of the distribution of 𝑚𝑎𝑥𝑞∈�̂�{𝑍∗(𝑞)}, 

where 𝑍∗(𝑞) is the weighted average of two standard normal variables. The set �̂� is an 

adaptive inequality selector developed by Chernozhukov et al. and 𝑠(𝑞)  denotes an 

estimator of the normalizing factor for 𝑍∗(𝑞) (see Appendix A for detailed computation of 

(8)). 
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Table 5 presents estimates of �̂�𝑂𝐿𝑆, �̂�𝐼𝑉(𝑍), �̂�𝐼𝑉(𝑉), and �̂�(0.50), where standard errors 

are shown in parentheses and estimates of �̂�(0.975) are shown in brackets. The five IIVs 

are 𝐶1 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟 , 𝐶2 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒 , 𝐶3 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒 , 𝐶4 = �̅�−𝑗  and 

𝐶5 = �̅�−𝑗. The table also presents the weight 𝛽 in relation (6), which is negative for all 

cases and verifies the condition (C4).  

We can interpret estimates of �̂�(0.50)  in two steps. First, we examine 

�̃� = 𝑚𝑖𝑛 {�̂�𝐼𝑉(𝑍), �̂�𝐼𝑉(𝑉)} by ignoring sampling errors. In the central and western regions, 

�̃� = �̂�𝐼𝑉(𝑉) for 𝑍 = 𝐶1, ⋯ , 𝐶4 and �̃� = �̂�𝐼𝑉(𝑍) for 𝑍 = 𝐶5: �̃� is estimated between 0.05 and 

0.19 for the central region and between 0.04 and 0.13 for the western region, both of which 

are slightly lower than the corresponding OLS estimates. In the eastern region, �̃� = �̂�𝐼𝑉(𝑍) 

for 𝑍 = 𝐶1, ⋯ , 𝐶3 and �̃� = �̂�𝐼𝑉(𝑉) for the other IIVs: �̃� is estimated between 0.09 and 0.35, 

which is much lower than the OLS estimate. Next, if we take account of sampling errors, 

difference between �̂�(0.50) and �̃� is found to be positive for all cases but it is small for 

most cases: the difference is nearly 0.10 for 𝑍 = 𝐶1, ⋯ , 𝐶3 in the eastern region but it is at 

most 0.04 for the other cases. Consequently, �̂�(0.50) is lower than the corresponding OLS 

estimate for most cases, in which cases �̂�(0.50) is estimated between 0.22 and 0.33 in the 

eastern region, between 0.07 and 0.19 in the central region, and between 0.09 and 0.14 in 

the western region. 

Now, we examine estimates of �̂�(0.975). The difference between �̂�(0.975) and �̂�(0.50) is 

composed of the difference between the two critical values, 𝑘�̂�(0.975) and 𝑘�̂�(0.50), and 

the “standard error” 𝑠(𝑞) of chosen IV estimator �̂�𝐼𝑉(𝑞). The difference between the two 

critical values is approximately 1.80 for all IIVs in all regions. The “standard error” 𝑠(𝑍) 

varies with IIVs and regions, but 𝑠(𝑉) is smaller than 0.06 for all IIVs in all regions. These 

relations imply that the difference between �̂�(0.975)  and �̂�(0.50)  is at most 0.10 if 

�̂�𝐼𝑉(𝑉) + 𝑘�̂�(0.975)𝑠(𝑉)  is smaller than �̂�𝐼𝑉(𝑍) + 𝑘�̂�(0.975)𝑠(𝑍)  and it exceeds 0.10 

otherwise. 
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In the central and western regions, �̂�(0.975) is greater than �̂�(0.50) at most by 0.10 for 

all cases but one: �̂�(0.975) is between 0.13 and 0.31 in the central region and it is between 

0.21 and 0.26 in the western region. On the other hand, 97.5% confidence intervals 

computed from the OLS estimates are 𝛼 ≤ 0.25 in the central region and 𝛼 ≤ 0.23 in the 

western region. Consequently, 𝛼 ≤ �̂�𝑂𝐿𝑆 + 𝑐0.975 𝑠𝑒(�̂�𝑂𝐿𝑆)  cannot be partly contained in 

𝛼 ≤ �̂�(0.975)  for 𝑍 = 𝐶1, 𝐶3, 𝐶4  in the central region and for 𝑍 = 𝐶3, 𝐶4  in the western 

region. 

In the eastern region, �̂�(0.975) is estimated between 0.53 and 0.57 for 𝑍 = 𝐶1, ⋯ , 𝐶3 

because �̂�𝐼𝑉(𝑍) + 𝑘�̂�(0.975)𝑠(𝑍) is smaller or because �̂�𝐼𝑉(𝑉) is much greater than �̂�𝐼𝑉(𝑍). 

Nonetheless, �̂�(0.975) exceeds �̂�(0.50) at most by 0.10 and it is estimated at 0.40 for 

𝑍 = 𝐶4 and 𝑍 = 𝐶5. On the other hand, 97.5% confidence intervals computed from the OLS 

estimates are 𝛼 ≤ 0.48. Consequently, 𝛼 ≤ �̂�𝑂𝐿𝑆 + 𝑐0.975 𝑠𝑒(�̂�𝑂𝐿𝑆) cannot be partly contained 

in 𝛼 ≤ �̂�(0.975) for 𝑍 = 𝐶4, 𝐶5. 

 

Identification and Estimation with Paired IIVs 

 

To obtain a two-sided bound of 𝛼 using a pair (𝑍1, 𝑍2) of IIVs, we assume that each 𝑍𝑗 

(𝑗 = 1, 2) satisfies (C1’), (C2’), (C3), and (C4). We also assume a condition which can be 

checked by the data: 

  (C5)  𝜏𝑥𝑦𝑧 ≡ 𝜎𝑧1�̃�𝜎𝑧2�̃� − 𝜎𝑧2�̃�𝜎𝑧1�̃� < 0 

Combined with (C1’) for 𝑍 = 𝑍𝑗, condition (C5) implies that 

  𝛼𝐼𝑉(𝑍1) < 𝛼𝐼𝑉(𝑍2)                               (9) 

This is not a strong requirement because we can choose 𝑍1  and 𝑍2  to satisfy it. 

Furthermore, in place of (C2’), each 𝑍𝑗 is assumed positively correlated with 𝑢. 

  (C2’’)  𝜌𝑥𝑢 > 0 and 𝜌𝑧𝑢 > 0 

This assumption is not strong because our difficulty in production function estimation 
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using cross sectional data is unavailability of valid instruments. 

Given these conditions and applying Proposition 5 and Lemma 2 of Nevo and Rosen 

(2012), we find the following two-sided bounds of 𝛼 for some values of 𝛾 which satisfy 

0 < 𝛾 < 1, 𝜎𝜔(𝛾)�̃� < 0, and 𝜎𝜔(𝛾)𝑢 ≥ 0: 

  𝛼 ≤ 𝛼 ≤ 𝛼                                  (10) 

  𝛼 = 𝛼𝐼𝑉(𝜔(𝛾)) 

  𝛼 = 𝑚𝑖𝑛 {𝛼𝐼𝑉(𝑍1), 𝛼𝐼𝑉(𝑉1), 𝛼𝐼𝑉(𝑉2), 𝛼𝐼𝑉(𝑉∗(𝛾))}, 

where 𝜔(𝛾) = 𝛾𝑍2 − (1 − 𝛾)𝑍1 , 𝑉𝑗 = 𝜎𝑥𝑍𝑗 − 𝜎𝑧𝑗
𝑋 , and 𝑉∗(𝛾) = 𝜎𝑥𝜔(𝛾) − 𝜎𝜔(𝛾)𝑋 . We use 

relation (9) to exclude 𝛼𝐼𝑉(𝑍2) from candidates of the upper bound 𝛼. 

In addition to choosing a better pair of IIVs, another practical issue to estimate the 

bounds (10) is how to set the value of 𝛾. Nevo and Rosen (2012) set 𝛾 = 0.5 or 𝛾 = 𝛾𝑁𝑅 ≡

𝜎𝑧1
/(𝜎𝑧1

+ 𝜎𝑧2
). To determine 𝛾 by using more information from data and economic theory, 

we investigate how the upper and lower bounds of 𝛼 are related to values of 𝛾. Given the 

five conditions above, we will show that the choice of 𝛾 = 0.5 or 𝛾 = 𝛾𝑁𝑅 can easily cause a 

negative estimate of the lower bound 𝛼 and that the upper bound 𝛼 might not depend on 

𝛾. Furthermore, we will use these results to determine a more plausible value of 𝛾. For this 

analysis, Figure 1 helps understand relations between estimators of 𝛼 and values of 𝛾, 

where the circles in white indicate candidates for 𝛼 , the circle in black indicates a 

candidate for 𝛼, and the circle in gray indicates the OLS estimator. 

We first examine the lower bound 𝛼  in relation to values of 𝛾 . This bound, 𝛼 =

𝛼𝐼𝑉(𝜔(𝛾)), can be written as follows: 

  𝛼𝐼𝑉(𝜔(𝛾)) = 𝛼∗ + 𝐴/(𝛾 − 𝛾∗),                         (11) 

      𝛾∗ = 𝜎𝑧1�̃�/(𝜎𝑧1�̃� + 𝜎𝑧2�̃�), 

      𝛼∗ = 𝛾∗𝛼𝐼𝑉(𝑍1) + (1 − 𝛾∗)𝛼𝐼𝑉(𝑍2), 

where 𝐴 ≡ −𝜏𝑥𝑦𝑧/(𝜎𝑧1�̃� + 𝜎𝑧2�̃�)2 and it is positive from (C5). Relation (11) shows that the 

lower bound 𝛼 represents a rectangular hyperbola on the (𝛾, 𝛼) plane, with its asymptotes 
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given by 𝛾 = 𝛾∗ ∈ (0, 1) and 𝛼 = 𝛼∗ ∈ (𝛼𝐼𝑉(𝑍1), 𝛼𝐼𝑉(𝑍2)). Figure 1 illustrates a typical locus 

of 𝛼𝐼𝑉(𝜔(𝛾)): it crosses the horizontal axis at 𝛾 = 𝛾0, where 𝛾0 ≡ 𝜎𝑧1�̃�/(𝜎𝑧1�̃� + 𝜎𝑧2�̃�) and it 

ranges from 0 to 𝛾∗. This figure shows that 𝛼 can take a negative value or an extremely 

large positive value if 𝛾 is set at values close to 𝛾∗. It should be noted that 𝛾∗ can be close 

to 0.5 or 𝛾𝑁𝑅 because 𝛾∗ = 0.5 if 𝜎�̃�𝑧1
= 𝜎�̃�𝑧2

 and 𝛾∗ = 𝛾𝑁𝑅 if 𝜎𝑧1
: 𝜎𝑧2

= 𝜎�̃�𝑧1
: 𝜎�̃�𝑧2

. 

We next examine the upper bound 𝛼  in relation to values of 𝛾 . For this purpose, 

comparison of the four candidates of 𝛼 is useful. To show a typical case in which we can 

determine their ranking of the candidates, we assume relations (12) and (13): 

  𝛼𝐼𝑉(𝑍𝑗) > 𝛼𝑂𝐿𝑆                               (12) 

  {𝛼𝐼𝑉(𝑍1) − 𝛼𝑂𝐿𝑆}/{𝛼𝐼𝑉(𝑍2) − 𝛼𝑂𝐿𝑆} < 𝛽2/𝛽1 if 𝛼𝐼𝑉(𝑍1) < 𝛼𝐼𝑉(𝑍2),         (13) 

where 𝜏𝑧𝑗𝑥 ≡ (𝜎𝑧𝑗
𝜎𝑥�̃� − 𝜎𝑥𝜎𝑧𝑗�̃�)𝜎𝑧𝑗�̃� and 𝛽𝑗 ≡ −𝜎𝑥𝜎𝑧𝑗�̃�

2 /𝜏𝑧𝑗𝑥 are the scalar 𝜏𝑧𝑥 and the weight 

𝛽 that are defined for 𝑍 = 𝑍𝑗. Relations (7) and (12) imply 𝛼𝐼𝑉(𝑍𝑗) > 𝛼𝐼𝑉(𝑉𝑗). Relations (6) 

and (13) imply 𝛼𝐼𝑉(𝑉1) > 𝛼𝐼𝑉(𝑉2). These results mean that 𝛼 = 𝑚𝑖𝑛 {𝛼𝐼𝑉(𝑉2), 𝛼𝐼𝑉(𝑉∗(𝛾))}. 

To compare the two remaining candidates, we can show that 𝛼𝐼𝑉(𝑉∗(𝛾))  has the 

following properties: 

  1) 𝛼𝐼𝑉(𝑉∗(𝛾)) is a linear combination of 𝛼𝐼𝑉(𝜔(𝛾)) and 𝛼𝑂𝐿𝑆. In particular, 

   1a) 𝛼𝐼𝑉(𝑉∗(𝛾)) internally divides 𝛼𝐼𝑉(𝜔(𝛾)) and 𝛼𝑂𝐿𝑆 for 0 ≤ 𝛾 < 𝛾∗ and externally  

divides them for 𝛾∗ < 𝛾 ≤ 1, 

   1b) 𝛼𝐼𝑉(𝑉∗(0)) is a weighted average of 𝛼𝐼𝑉(𝑍1) and 𝛼𝑂𝐿𝑆, 

   1c) 𝛼𝐼𝑉(𝑉∗(𝛾∗∗)) = 𝛼𝐼𝑉(𝜔(𝛾∗∗)) = 𝛼𝑂𝐿𝑆 with 𝛾∗∗ ≡ (𝛼∗𝛾0 − 𝛼𝑂𝐿𝑆𝛾∗)/(𝛼∗ − 𝛼𝑂𝐿𝑆), 

   1d) 𝛼𝐼𝑉(𝑉∗(𝛾∗)) = 𝛼𝑂𝐿𝑆 − 𝐴/𝐵𝜎𝜔(𝛾∗) with 𝐵 ≡ 𝜎𝑥�̃�/𝜎𝑥(𝜎𝑧1�̃� + 𝜎𝑧2�̃�) > 0, and 

   1e) 𝛼𝐼𝑉(𝑉∗(1)) = 𝛼𝐼𝑉(𝑉2). 

2) 𝛼𝐼𝑉(𝑉∗(𝛾)) decreases monotonically if 𝛼∗ > 𝛼𝑂𝐿𝑆  and if 

     (∂𝜎𝜔(𝛾)/𝜕𝛾)(𝛾 − 𝛾∗∗)/𝜎𝜔(𝛾) < 1  or  (𝜎𝑧+
2 𝛾∗∗ − 𝜎𝑧+𝑧1

)𝛾 > 𝜎𝑧+𝑧1
𝛾∗∗ − 𝜎𝑧1

2 ,    (14) 

     where 𝑍+ ≡ 𝑍1 + 𝑍2. 

Figure 1 illustrates a typical locus of 𝛼𝐼𝑉(𝑉∗(𝛾)) which satisfies these properties: it takes a 
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value between 𝛼𝐼𝑉(𝑍1) and 𝛼𝑂𝐿𝑆 at 𝛾 = 0, crosses the lower bound curve 𝛼 = 𝛼𝐼𝑉(𝜔(𝛾)) at 

𝛾 = 𝛾∗∗, reaches a point slightly below 𝛼 = 𝛼𝑂𝐿𝑆 at 𝛾 = 𝛾∗, and finally reaches 𝛼 = 𝛼𝐼𝑉(𝑉2) 

at 𝛾 = 1 . Consequently, we expect a relation 𝛼𝐼𝑉(𝑉∗(𝛾)) ≥ 𝛼𝐼𝑉(𝑉2)  and therefore 𝛼 =

𝛼𝐼𝑉(𝑉2). 

Using the relations among 𝛼, 𝛼, and 𝛾 derived above, we propose an alternative way to 

set 𝛾 which reflects more information from data and economic theory. Lemma 2 of Nevo 

and Rosen (2012) shows that condition (C5) is equivalent to the following two conditions: 

  (C5’)  𝜎𝜔(𝛾)�̃� < 0 and 𝜎𝜔(𝛾)𝑢 ≥ 0 

Combining (C5’) with (C1’) and (C2’’) yields the following interval of 𝛾: 

  𝛾∗∗∗ ≤ 𝛾 < 𝛾∗,  𝛾∗∗∗ = 𝜎𝑧1𝑢/(𝜎𝑧1𝑢 + 𝜎𝑧2𝑢)                    (15) 

Because the lower bound 𝛾∗∗∗ is not estimable, a practical interval of 𝛾 is 

  0 ≤ 𝛾 < 𝛾∗                                 (16) 

To obtain a narrower interval of 𝛾, we maintain (16) and add two conditions to exclude 

unlikely values of 𝛾. First, recalling non-negativity of 𝛼 in relation (3), we impose the 

following condition on the lower bound of 𝛼: 

  (C6)  𝛼 = 𝛼𝐼𝑉(𝜔(𝛾)) ≥ 0 

This condition is solved for 𝛾 to derive 𝛾 ≤ 𝛾0, where 𝛾0 is defined above and satisfies 

𝛾∗∗∗ ≤ 𝛾0 < 𝛾∗. Interval (16) then narrows to 

  0 ≤ 𝛾 < 𝛾0                                 (17) 

Second, we assume that the lower bound of 𝛼 cannot exceed its upper bound. 

  (C7)  𝛼 = 𝛼𝐼𝑉(𝜔(𝛾)) ≤ 𝛼 

We examine two cases to derive the interval of 𝛾 from condition (C7). In the case where the 

upper bound 𝛼 is given by 𝛼𝐼𝑉(𝑍1) or 𝛼𝐼𝑉(𝑉∗(𝛾)), we cannot gain any information to 

restrict 𝛾 because (C7) is always satisfied for 0 < 𝛾 < 𝛾∗. In the case where 𝛼 is given by 

𝛼𝐼𝑉(𝑉1) or 𝛼𝐼𝑉(𝑉2), we solve (C7) for 𝛾 to find 

  𝛾 ≥ 𝛾𝑚𝑖𝑛 ≡ 𝛤1/(𝛤1 + 𝛤2) ≥ 0,  𝛤𝑗 = 𝜎𝑧𝑗�̃�{𝛼𝐼𝑉(𝑍𝑗) − 𝛼}  (𝑗 = 1, 2)          (18) 
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where 𝛤𝑗 > 0 under condition (C1’).  

Using the values of 𝛾 in relations (16), (17), and (18), which reflect information of data 

and economic theory, we set 𝛾 in the following way:  

  �̂� = 𝛾𝑣       if 𝛼 = 𝛼𝐼𝑉(𝑉∗(𝛾𝑣))  for 𝛾𝑣 ∈ (�̃�𝑣, 𝛾0),            (19) 

    = (𝛾𝑚𝑖𝑛 + 𝛾0)/2  if 𝛼 ≠ 𝛼𝐼𝑉(𝑉∗(𝛾))   for 𝛾 ∈ (0, 𝛾0) 

where �̃�𝑣 ≡ 𝑚𝑎𝑥 {0, 𝛾∗∗} and we define 𝛾𝑚𝑖𝑛 = 0 for 𝛼 = 𝛼𝐼𝑉(𝑍1).  

The upper bound of 𝛼 in the interval (10) is estimated by using the formula (8) for �̂�(𝑝) 

and procedures explained in Appendix A, with 𝑄 = {𝑍1, 𝑉1, 𝑉2, 𝑉∗(𝛾)} and 𝛾 = �̂� defined in 

(19). Although an estimator of the lower bound 𝛼 can be defined as �̂�(𝑝) in a similar way 

to �̂�(𝑝) , the only candidate for 𝛼  is 𝛼𝐼𝑉(𝜔(𝛾)) . For this reason, �̂�(0.50)  is simply 

estimated by �̂�𝐼𝑉(𝜔(�̂�)) and �̂�(0.975) is estimated by the left end of a 95% (two-sided) 

confidence interval of 𝛼𝐼𝑉(𝜔(�̂�)) . To estimate these bounds, we recall our previous 

discussion and choose IIV pairs (𝑍1, 𝑍2) with and without the village mean of farm work 

hours, 𝐶5 = �̅�−𝑗. Specifically, we choose pairs (𝐶5, 𝐶4) and (𝐶1, 𝐶4) for the eastern region 

and pairs (𝐶5, 𝐶1)  and (𝐶2, 𝐶3)  for the other regions, where 𝐶1 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟 , 𝐶2 =

𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒, 𝐶3 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒, and 𝐶4 = �̅�−𝑗  (village mean of production 

costs).  

Table 6 presents estimates of �̂�(0.50) and �̂� = �̂�𝐼𝑉(𝜔(�̂�)), where estimates of �̂�(0.975) 

and the left ends of two-sided 95% confidence intervals of 𝛼𝐼𝑉(𝜔(�̂�)) are shown in brackets. 

It also presents estimates of �̂�𝐼𝑉(𝑍𝑗), �̂�𝐼𝑉(𝑉𝑗), �̂�𝐼𝑉(𝑉∗(�̂�)), �̂�𝐼𝑉(𝜔(�̂�)), values of various 

constants (𝜏𝑥𝑦𝑧 , 𝛾𝑚𝑖𝑛 , 𝛾0 , 𝛾∗ , 𝛾∗∗ , �̂�, 𝛾𝑁𝑅 ), and estimated lower bounds �̂�𝐼𝑉(𝜔(𝛾)) with 

𝛾 = 0.5 and 𝛾 = 𝛾𝑁𝑅 . The negative values of 𝜏𝑥𝑦𝑧  show that condition (C5) or (C5’) is 

satisfied for all IIV pairs in each region.  

The two IIV pairs produce very similar estimates of �̂�(0.50) in each region, although we 

find various values of the upper bound using a single IIV in Table 5. For the selected pairs, 

�̂�(0.50) is estimated at 0.321 and 0.322, 0.184 and 0.181, and 0.112 and 0.128 in the 
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eastern, central, and western regions, respectively. On the other hand, if we use 𝐶1, 𝐶4, or 

𝐶5 (𝐶1, 𝐶2, 𝐶3, or 𝐶5) as a single IIV in the eastern region (in the other regions), Table 5 

shows that �̂�(0.50) is estimated to be 0.32-0.33, 0.18-0.22, and 0.09-0.16 in the eastern, 

central, and western regions, respectively. Furthermore, the two IIV pairs estimate 

�̂�(0.975) to be 0.361 and 0.365, 0.185 and 0.201, and 0.118 and 0.161 in the eastern, central, 

and western regions, respectively. If we use relevant IIVs as a single IIV, Table 5 shows that 

�̂�(0.975) is estimated to be 0.39-0.56, 0.23-0.31, and 0.23-0.26 in the eastern, central, and 

western regions, respectively. These results suggest that paired IIVs produce a lower and 

more precise estimate of the upper bound of 𝛼 (particularly �̂�(0.975)) than a single IIV. 

They also suggest that choice of 𝐶5 does not have a significant impact on estimates of the 

upper bound of 𝛼. 

On the other hand, the two IIV pairs produce different estimates of �̂� in each region. For 

IIV pairs with and without 𝐶5, �̂� is estimated at 0.201 and 0.143, 0.140 and 0.111, and 

0.023 and 0.059 in the eastern, central, and western regions, respectively. Furthermore, 

these IIV pairs estimate the left end of a two-sided confidence interval of 𝛼𝐼𝑉(𝜔(�̂�)) to be 

0.022 and -0.241, 0.002 and -0.408, and -0.132 and -0.863 in the three regions.  

Since the lower bound 𝛼𝐼𝑉(𝜔(�̂�)) depends on values of 𝛾, we explain these results by 

focusing on two values of 𝛾. We first focus on 𝛾∗, which gives one of the asymptotes of a 

rectangular hyperbola representing 𝛼𝐼𝑉(𝜔(�̂�)). From definition 𝛾∗ = 𝜎𝑧1�̃�/(𝜎𝑧1�̃� + 𝜎𝑧2�̃�), it is 

closely related to correlation between 𝑍1 and �̃�. Our discussion in Table 4 finds that this 

correlation is the highest for 𝑍1 = 𝐶5, which tends to raise 𝛾∗, given correlation of �̃� with 

𝑍2. A higher value of 𝛾∗ makes the asymptote 𝛾 = 𝛾∗ to stand more rightward in Figure 1, 

which slows down the speed of decreasing 𝛼𝐼𝑉(𝜔(𝛾)) as 𝛾 increases in the interval (0, 𝛾∗). 

Table 6 shows that values of 𝛾∗ for IIV pairs with and without 𝐶5 are 0.74 and 0.48, 0.66 

and 0.51, and 0.51 and 0.54 in the eastern, central, and western regions, implying that the 

slow-down effect related to 𝛾∗ is stronger in the eastern and central regions. 
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We next focus on �̂�, which is determined in two ways for the results shown in Table 6. 

Specifically, �̂� is given by 𝛾0/2 for IIV pair (𝐶1, 𝐶4) in the eastern region and (𝐶5, 𝐶1) in 

the western region. For the other cases, �̂� is given by (𝛾𝑚𝑖𝑛 + 𝛾0)/2. In the former case, �̂� 

is very small (0.09 or 0.07) because �̂�𝐼𝑉(𝑍1) is the smallest of the four candidates of the 

upper bound 𝛼 and therefore 𝛾0, which sets 𝛼𝐼𝑉(𝜔(�̂�)) to be zero, is small. In the latter 

case, �̂� ranges from 0.33 and 0.52. Given the position of 𝛾 = 𝛾∗, a higher value of �̂� causes 

a lower value of �̂�𝐼𝑉(𝜔(�̂�)). Consequently, the case of �̂� = 𝛾0/2 tends to produce a higher 

estimate of �̂�𝐼𝑉(𝜔(�̂�)), whereas the case of �̂� = (𝛾𝑚𝑖𝑛 + 𝛾0)/2 tends to produce a lower 

estimate of �̂�𝐼𝑉(𝜔(�̂�)). 

These interpretations of 𝛾∗ and �̂� can be used to explain why IIV pairs with 𝐶5 tend to 

raise estimates of the lower bound 𝛼𝐼𝑉(𝜔(𝛾)) in all regions. In the eastern region, �̂� is 

higher but the slow-down effect related to 𝛾∗ is much stronger for pair (𝐶5, 𝐶4). In the 

central region, the values of �̂� are similar but the slow-down effect is stronger for pair 

(𝐶5, 𝐶1). In the western region, the slow-down effects are similar but the value of �̂� is much 

lower for pair (𝐶5, 𝐶1). In particular, these relations explain much lower values of the left 

end of the confidence interval of 𝛼𝐼𝑉(𝜔(�̂�)): IIV pairs without 𝐶5 estimate this left end at 

-0.24, -0.41, and -0.86 in the eastern, central, and western regions.  

Now, using IIV pairs with 𝐶5, we construct an interval of 𝛼 from �̂�𝐼𝑉(𝜔(�̂�)) and �̂�(0.50) 

to compare it with the OLS estimate of 𝛼. This interval is estimated to be (0.20, 0.32), (0.14, 

0.18), and (0.02, 0.11) in the eastern, central, and western regions, respectively, each of 

which does not include the corresponding OLS estimates 0.43, 0.20, and 0.16 in the three 

regions. Furthermore, we use the same IIV pairs to construct another interval of 𝛼 from 

the left end of the confidence interval of �̂�𝐼𝑉(𝜔(�̂�)) and �̂�(0.975), which can be compared 

with a 95% confidence interval of 𝛼 derived from OLS estimation. The former interval is 

estimated to be (0.02, 0.36), (0.00, 0.19), and (-0.13, 0.12) for the eastern, central, and 

western regions, respectively, each of which have no or narrow intersection with the latter 
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intervals (0.37, 0.48), (0.15, 0.25), and (0.08, 0.23) in the three regions. These results show 

serious bias of the OLS estimates and the related confidence intervals. 

Finally, we compare the values of �̂� determined by (19) and those set by Nevo and Rosen 

(2012). Table 6 shows in most cases that �̂� is smaller than 0.5 and 𝛾𝑁𝑅, both of which are 

smaller than 𝛾∗ . This relation means that 𝛼𝐼𝑉(𝜔(�̂�))  is higher than 𝛼𝐼𝑉(𝜔(0.5))  and 

𝛼𝐼𝑉(𝜔(𝛾𝑁𝑅)). Furthermore, when we choose IIV pairs without 𝐶5, 𝛾𝑁𝑅 takes very close 

values to 0.5 and 𝛾∗  and causes extremely large positive or negative estimates of 

�̂�𝐼𝑉(𝜔(𝛾𝑁𝑅)). These results show that our choice of 𝛾 helps obtain a narrow interval of 𝛼 

particularly when we choose 𝐶5 as an IIV. 

 

Conclusion 

 

This study adopts and improves the imperfect instrumental variables (IIV) method of Nevo 

and Rosen (2012) in production function estimation using cross sectional data. Because the 

error term in the production function (productivity shock) typically has a positive 

correlation with labor input, IIVs are also required to have positive correlation with the 

error term. Consequently, we must use two IIVs together to derive the upper and lower 

bounds of production elasticities.  

To apply this method to cross sectional data of Chinese farm households, we choose a key 

IIV, the mean of farm work hours for other households in the village, and combine it with 

the other IIV, the number of farm workers or the mean of production costs for other 

households in the village. Furthermore, by finding important properties and relations of 

candidates for the upper and lower bounds of the production elasticity of labor, we propose 

an alternative way to determine the weight of combining two IIVs, which uses more 

information from data and economic theory.  

Our estimation results show that OLS estimates of the production elasticity of labor are 
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not included in the corresponding intervals estimated from our IIV method. The results 

also show that 95% confidence intervals of the elasticity derived from OLS estimation only 

have narrow intersection with the corresponding “95% confidence intervals” estimated from 

our IIV method. 

 

Appendix A: Detailed Procedures to Compute Principal Critical Values 

 

This appendix explains procedures to compute the principal critical value 𝑘�̂�(𝑝) in the 

simulation-based estimator (8), by following the Algorithm 1 of Chernozhukov, Lee, and 

Rosen (2013). For notational readability, we denote variables 𝑍 and 𝑉 in the text by 1 and 

2, and write �̅� = 𝑚𝑖𝑛𝑞∈𝑄{ 𝛼𝐼𝑉(𝑞)}, 𝑄 = {1, 2} in this appendix.  

Define column vector 𝜶𝐼𝑉 = (𝛼𝐼𝑉(1), 𝛼𝐼𝑉(2))′ and let 𝜴 denote the covariance matrix of 

the limiting distribution of 𝑛1/2(�̂�𝐼𝑉 − 𝜶𝐼𝑉) (𝑛: sample size), where �̂�𝐼𝑉 and �̂� respectively 

denote consistent estimators of 𝜶𝐼𝑉 and 𝜴. Then, 𝑘�̂�(𝑝) is computed in five steps: 

(Step 1) Obtain 400 estimates of �̂�𝐼𝑉  by bootstrap, use them to compute a sample 

covariance matrix 𝑛−1�̂� of �̂�𝐼𝑉, and obtain a matrix (𝑛−1�̂�)1/2 = (�̂�𝑞𝑟
∗ ) (𝑞, 𝑟 = 1, 2). 

(Step 2) Define �̂�∗(𝑞) = (�̂�𝑞1
∗ , �̂�𝑞2

∗ ) and compute (𝑞) = ‖�̂�∗(𝑞)‖ (𝑞 = 1, 2). 

(Step 3) Generate standard normal random variables 𝐺1𝑖 and 𝐺2𝑖 (𝑖 = 1, … ,1000), which 

are statistically independent, and define 𝑮𝑖 = (𝐺𝑖1, 𝐺𝑖2)′. 

(Step 4) Obtain 𝑍𝑖
∗(𝑞) = �̂�∗(𝑞)𝑮𝑖/𝑠(𝑞) (𝑞 = 1, 2) for each 𝑖 and define the auxiliary critical 

value 𝑘𝑄(𝛾𝑛) as the 𝛾𝑛th quantile of 𝑚𝑎𝑥𝑞∈𝑄{ 𝑍𝑖
∗(𝑞)}, where 𝛾𝑛 = 1 − 0.1/𝑙𝑛 (𝑛). This value 

is used to compute �̃�𝐼𝑉 = 𝑚𝑖𝑛𝑞∈𝑄{�̂�𝐼𝑉(𝑞) + 𝑘𝑄(𝛾𝑛)𝑠(𝑞)} and to define the adaptive inequality 

selector �̂� = {𝑞 ∈ 𝑄 | �̂�𝐼𝑉(𝑞) ≤ �̃�𝐼𝑉 + 2𝑘𝑄(𝛾𝑛)𝑠(𝑞)}.  

(Step 5) Use the same random sample of 𝑍𝑖
∗(𝑞) (𝑞 = 1, 2; 𝑖 = 1, ⋯ ,1000) in Step 4 but use 

the set �̂� to compute the 𝑝th quantile of 𝑚𝑎𝑥𝑞∈�̂�{ 𝑍𝑖
∗(𝑞)}, which gives the principal critical 

value 𝑘�̂�(𝑝). 
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Table 1. Sample Means of Variables by Region  

Region East Center West 

Sample size 1212 1642 1320 

Variables in production functions 

value_added [yuan] 4637 (5117) 4800 (4105) 4054 (3790) 

farmlabor [hour] 2351 (1887) 2361 (1581) 3219 (1893) 

capital [yuan] 4639 (15978) 3726 (6013) 3630 (6118) 

land [mu] 6.399 (7.272) 8.800 (9.076) 6.825 (6.496) 

irr_share 0.645 (0.398) 0.532 (0.424) 0.513 (0.367) 

educ_head 7.723 (2.405) 7.343 (2.369) 6.761 (2.597) 

age_head 47.31 (9.755) 43.73 (9.697) 44.57 (10.25) 

Instrumental variables 

tapwater 0.420 (0.494) 0.164 (0.371) 0.283 (0.450) 

firewood 0.658 (0.475) 0.576 (0.494) 0.695 (0.461) 

ownland_share 0.969 (0.113) 0.979 (0.083) 0.977 (0.087) 

num_adult_male 1.370 (0.579) 1.380 (0.591) 1.527 (0.725) 

num_adult_female 1.330 (0.565) 1.344 (0.582) 1.404 (0.627) 

num_childyt6 0.111 (0.325) 0.180 (0.414) 0.223 (0.482) 

num_childover6 0.581 (0.738) 0.812 (0.812) 0.916 (0.932) 

vill_large 0.288 (0.453) 0.312 (0.464) 0.361 (0.481) 

vill_wage [yuan/day] 19.12 (6.307) 17.45 (4.872) 14.85 (3.651) 

vill_p_rice [yuan/kg] 1.066 (0.098) 1.039 (0.189) 0.991 (0.099) 

Imperfect instrumental variables 

pcost_all [yuan] 3298 (8768) 2517 (2789) 3315 (4505) 

num_farmer_male 1.325 (0.544) 1.334 (0.562) 1.507 (0.711) 

num_farmer_female 1.278 (0.521) 1.293 (0.541) 1.386 (0.619) 

Note: Standard deviations are shown in parentheses and units are shown in brackets. One 

yuan is approximately equal to 0.16 dollar and one mu is approximately equal to 0.16 acre 

or 0.067 ha. 

 

  



25 

 

Table 2. OLS Estimates of Parameters of Production Function (1) 

Region East Center West 

Sample size 1212 1642 1320 

ln(farmlabor) 0.429* 

(0.028) 

0.201* 

(0.025) 

0.157* 

(0.037) 

ln(capital) 0.023* 

(0.008) 

0.054* 

(0.007) 

0.077* 

(0.012) 

ln(land) 0.471* 

(0.035) 

0.438* 

(0.028) 

0.438* 

(0.040) 

irr_share 0.390* 

(0.073) 

0.078 

(0.045) 

0.626* 

(0.062) 

educ_head -0.001 

(0.010) 

0.006 

(0.007) 

0.012 

(0.009) 

age_head 0.044* 

(0.020) 

0.026 

(0.014) 

0.019 

(0.016) 

age_head
2
 -0.005* 

(0.002) 

-0.003 

(0.002) 

-0.002 

(0.002) 

Adjusted R
2 

0.423 0.371 0.316 

Note: Standard errors are shown in parentheses. The coefficient and standard error of 

age_head
2
 are multiplied by 10. * indicates statistical significance at 5% level. Coefficients 

of province dummy variables are omitted to save space. 

 

  



26 

 

Table 3. IV Estimates of Parameters of Production Function (1) 

Region East Center West 

Sample size 1212 1642 1320 

IV set Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

ln(farmlabor) 
0.378* 

(0.137) 

0.485* 

(0.106) 

0.167 

(0.116) 

0.189* 

(0.070) 

0.347* 

(0.143) 

0.184 

(0.116) 

ln(capital) 
0.025* 

(0.010) 

0.020* 

(0.009) 

0.056* 

(0.009) 

0.055* 

(0.007) 

0.067* 

(0.014) 

0.076* 

(0.014) 

ln(land) 
0.488* 

(0.056) 

0.453* 

(0.048) 

0.446* 

(0.038) 

0.441* 

(0.032) 

0.384* 

(0.056) 

0.431* 

(0.050) 

irr_share 
0.397* 

(0.074) 

0.383* 

(0.074) 

0.073 

(0.047) 

0.076 

(0.045) 

0.636* 

(0.063) 

0.627* 

(0.062) 

educ_head 
-0.003 

(0.011) 

0.002 

(0.011) 

0.005 

(0.008) 

0.006 

(0.007) 

0.017 

(0.010) 

0.013 

(0.009) 

age_head 
0.047* 

(0.021) 

0.041* 

(0.020) 

0.028 

(0.016) 

0.027 

(0.015) 

0.013 

(0.016) 

0.018 

(0.016) 

age_head
2 -0.005* 

(0.002) 

-0.004* 

(0.002) 

-0.003 

(0.002) 

-0.003 

(0.002) 

-0.002 

(0.002) 

-0.002 

(0.002) 

�̅�2 0.275 0.290 0.280 0.337 0.347 0.365 

F stat. 
50.49 

{16.38} 

8.586 

{38.54} 

78.88 

{16.38} 

23.57 

{38.54} 

94.65 

{16.38} 

14.48 

{38.54} 

OIR stat. NA 
32.27 

[0.000] 
NA 

19.41 

[0.022] 
NA 

17.10 

[0.047] 

D-W-H stat. 
0.147 

[0.701] 

0.294 

[0.588] 

0.091 

[0.763] 

0.034 

[0.853] 

1.922 

[0.166] 

0.059 

[0.809] 

Note: IV set 1 includes only the number of adults in the household. IV set 2 includes the ten 

instrumental variables listed in Table 1. Standard errors are shown in parentheses ( ). The 

coefficient and standard error of age_head
2
 are multiplied by 10. * indicates statistical 

significance at 5% level. �̅�2 and F stat. are the adjusted coefficient of determination and F 

statistic to test joint significance of instruments in the first stage regression, respectively. 

The number in braces { } is a critical value of the Wald statistic given by Stock and Yogo 

(2005), which tests significance of ln(farmlabor) in production function (1) at the 5% level. 

OIR stat. is 𝜒2 statistic for overidentifying restrictions test, which has degrees of freedom 

equal to (number of IVs) – 1, and p-values are shown in brackets [ ]. D-W-H stat. is 

Durbin-Wu-Hausman statistic to test endogeneity of ln(farmlabor). Coefficients of province 

dummy variables are omitted to save space. 
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Table 4. Correlation of �̃� with candidates for imperfect instrumental variables (IIVs) 

Region East Center West 

Sample size 1212 1642 1320 

IIV candidate 𝑍 hh vars v. mean hh vars v. mean hh vars v. mean 

𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟 
0.164 

(5.79) 

0.050 

(1.74) 

0.207 

(8.58) 

0.115 

(4.69) 

0.240 

(8.99) 

0.034 

(1.24) 

𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒 
0.141 

(4.96) 

0.024 

(0.82) 

0.170 

(6.97) 

0.104 

(4.25) 

0.195 

(7.21) 

0.043 

(1.54) 

𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒 
0.122 

(4.29) 

0.063 

(2.20) 

0.168 

(6.90) 

0.091 

(3.69) 

0.195 

(7.20) 

0.015 

(0.55) 

𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙) 
0.236 

(8.43) 

0.167 

(5.91) 

0.183 

(7.56) 

0.105 

(4.26) 

0.153 

(5.60) 

0.046 

(1.68) 

𝑙𝑛 (𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟) 
0.864 

(59.80) 

0.567 

(23.95) 

0.866 

(69.97) 

0.591 

(29.64) 

0.833 

(54.58) 

0.499 

(20.90) 

Note: Column “hh vars” (household-level variables) shows correlation 𝜌𝑧�̃� between �̃� and 

IIV candidate 𝑍, which equals 𝜌𝑥�̃� for 𝑍 = 𝑙𝑛 (𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟). Column “v. mean” shows similar 

correlation between �̃� and the village-mean of 𝑍, where the mean is taken for data of 

others than household 𝑗 in the village. The number in parentheses shows t-value for the 

coefficient of 𝑍 in the regression of �̃� on 𝑍. 
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Table 5. Upper Bounds of the Production Elasticity of Labor () Estimated with 

a Single IIV 

IIV (𝑍) 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

Eastern region: �̂�𝑂𝐿𝑆 = 0.429 (0.028),  sample size = 1212 

�̂�𝐼𝑉(𝑍) 
0.232 

(0.171) 

0.346 

(0.195) 

0.094 

(0.238) 

0.957 

(0.187) 

0.492 

(0.049) 

�̂�𝐼𝑉(𝑉) 
0.475 

(0.048) 

0.445 

(0.047) 

0.484 

(0.047) 

0.302 

(0.043) 

0.309 

(0.070) 

�̂�(0.50) 
0.320 

[0.558] 

0.450 

[0.526] 

0.223 

[0.570] 

0.323 

[0.389] 

0.329 

[0.397] 

𝛽 -0.234 -0.195 -0.165 -0.240 -1.907 

Central region: �̂�𝑂𝐿𝑆 = 0.201 (0.025),  sample size = 1642 

�̂�𝐼𝑉(𝑍) 
0.295 

(0.121) 

0.229 

(0.147) 

0.364 

(0.150) 

1.279 

(0.349) 

0.182 

(0.042) 

�̂�𝐼𝑉(𝑉) 
0.171 

(0.044) 

0.194 

(0.043) 

0.162 

(0.043) 

0.053 

(0.040) 

0.241 

(0.069) 

�̂�(0.50) 
0.188 

[0.241] 

0.210 

[0.262] 

0.178 

[0.230] 

0.072 

[0.132] 

0.219 

[0.314] 

𝛽 -0.315 -0.244 -0.241 -0.137 -2.149 

Western region: �̂�𝑂𝐿𝑆 = 0.157 (0.037),  sample size = 1320 

�̂�𝐼𝑉(𝑍) 
0.287 

(0.154) 

0.233 

(0.189) 

0.348 

(0.191) 

1.566 

(1.155) 

0.041 

(0.074) 

�̂�𝐼𝑉(𝑉) 
0.104 

(0.069) 

0.134 

(0.067) 

0.098 

(0.069) 

0.074 

(0.058) 

0.331 

(0.088) 

�̂�(0.50) 
0.135 

[0.232] 

0.164 

[0.258] 

0.129 

[0.227] 

0.107 

[0.211] 

0.089 

[0.262] 

𝛽 -0.406 -0.305 -0.305 -0.059 -1.495 

Note: Imperfect instrumental variables (IIVs) include 𝐶1 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟 , 

𝐶2 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒 , 𝐶3 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒 , 𝐶4 = �̅�−𝑗  and 𝐶5 = �̅�−𝑗 , where �̅�−𝑗 

and �̅�−𝑗  denote sample means of 𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙)  and 𝑙𝑛 (𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟)  for others than 

household 𝑗 in the village. �̂�𝑂𝐿𝑆 and �̂�𝐼𝑉(𝑍) respectively denote OLS and IV estimators of 

𝛼  and their standard errors are shown in parentheses, where 𝑉 = 𝜎𝑥𝑍 − 𝜎𝑧𝑋 . �̂�(0.50) 

denotes a half-median unbiased estimator of the upper bound of 𝛼 and the right end of 

97.5% confidence interval of this bound is shown in brackets. 𝛽 is the weight to express 

𝛼𝐼𝑉(𝑉) as a linear combination of 𝛼𝑂𝐿𝑆 and 𝛼𝐼𝑉(𝑍) in equation (6). 
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Table 6. Upper and Lower Bounds of the Production Elasticity of Labor ()  

Estimated with Paired IIVs 

 East  Center West 

Sample size 1212 1642 1320 

IIVs (𝑍1, 𝑍2) (𝐶5, 𝐶4) (𝐶1, 𝐶4) (𝐶5, 𝐶1) (𝐶2, 𝐶3) (𝐶5, 𝐶1) (𝐶2, 𝐶3) 

�̂� = �̂�𝐼𝑉(𝜔(�̂�)) 
0.201 

[0.022] 

0.143 

[-0.241] 

0.140 

[0.002] 

0.111 

[-0.408] 

0.023 

[-0.132] 

0.059 

[-0.863] 

�̂�(0.50) 
0.321 

[0.361] 

0.322 

[0.365] 

0.184 

[0.185] 

0.181 

[0.201] 

0.112 

[0.118] 

0.128 

[0.161] 

�̂�𝐼𝑉(𝑍1) 0.492 0.232 0.182 0.229 0.041 0.233 

�̂�𝐼𝑉(𝑍2) 0.957 0.957 0.295 0.364 0.287 0.348 

�̂�𝐼𝑉(𝑉1) 0.309 0.476 0.241 0.194 0.331 0.134 

�̂�𝐼𝑉(𝑉2) 0.302 0.302 0.173 0.162 0.104 0.098 

�̂�𝐼𝑉(𝑉∗(�̂�)) 0.369 0.388 0.183 0.192 0.109 0.148 

𝛾∗∗ 0.251 -0.510 -0.603 0.155 -17.409 0.313 

𝛾𝑚𝑖𝑛 0.449 0.000 0.145 0.260 0.000 0.382 

𝛾0 0.591 0.180 0.541 0.398 0.130 0.434 

𝛾∗ 0.738 0.475 0.656 0.512 0.514 0.535 

�̂� 0.520 0.090 0.343 0.329 0.065 0.408 

𝜏𝑥𝑦𝑧 -0.020 -0.010 -0.003 -0.001 -0.005 -0.001 

𝛾𝑁𝑅 0.454 0.480 0.401 0.501 0.337 0.535 

�̂�𝐼𝑉(𝜔(0.5)) 0.236 7.712 0.058 -2.463 -4.403 -0.541 

�̂�𝐼𝑉(𝜔(𝛾𝑁𝑅)) 0.297 36.721 0.122 -13.590 -0.188 -162.060 

Note: Imperfect instrumental variables (IIVs) include 𝐶1 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟 , 

𝐶2 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑚𝑎𝑙𝑒 , 𝐶3 = 𝑛𝑢𝑚_𝑓𝑎𝑟𝑚𝑒𝑟_𝑓𝑒𝑚𝑎𝑙𝑒 , 𝐶4 = �̅�−𝑗  and 𝐶5 = �̅�−𝑗 , where �̅�−𝑗 

and �̅�−𝑗  denote sample means of 𝑙𝑛 (𝑝𝑐𝑜𝑠𝑡_𝑎𝑙𝑙)  and 𝑙𝑛 (𝑓𝑎𝑟𝑚𝑙𝑎𝑏𝑜𝑟)  for others than 

household 𝑗  in the village. �̂�𝐼𝑉(𝑍)  denotes an IV estimator of 𝛼  with 𝑍  used as an 

instrument, where 𝜔(𝛾) = 𝛾𝑍2 − (1 − 𝛾)𝑍1 , 𝑉𝑗 = 𝜎𝑥𝑍𝑗 − 𝜎𝑧𝑗
𝑋, and 𝑉∗(𝛾) = 𝜎𝑥𝜔(𝛾) − 𝜎𝜔(𝛾)𝑋. 

�̂�(0.50) denotes a half-median unbiased estimator of the upper bound of 𝛼 and the right 

end of 97.5% confidence interval of this bound is shown in brackets. The lower bound 𝛼 is 

given by a point estimate of �̂�𝐼𝑉(𝜔(�̂�)) and the left end of a 95% confidence interval of 

�̂�𝐼𝑉(𝜔(�̂�)) is shown in brackets. 𝜏𝑥𝑦𝑧 is a scalar defined in condition (C5) and various 

values of 𝛾 (𝛾𝑚𝑖𝑛, 𝛾0, 𝛾∗, 𝛾∗∗, �̂�, 𝛾𝑁𝑅) are defined in Figure 1.  
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Figure 1. Relation among Various Estimators of Production Elasticity of Labor (𝜶) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛼 𝛾 = 𝛾∗ 

𝛼𝐼𝑉(𝑍2) 

 
𝛼 = 𝛼∗ 

𝛼𝐼𝑉(𝑍1) 

 𝛼𝐼𝑉(𝑉∗(�̂�)) 
𝛼𝑂𝐿𝑆 

𝛼𝐼𝑉(𝑉1) 
 𝛼 = 𝛼𝐼𝑉(𝑉2) 

𝛼 = 𝛼𝐼𝑉(𝜔(�̂�)) 

 𝛾 

�̂� 𝛾𝑚𝑖𝑛 𝛾∗ 0 1 

𝛾0 

𝜎𝜔(𝛾)�̃� < 0 

 

 

𝜎𝜔(𝛾)�̃� ≥ 0 

 

 

𝛼∗ 

𝛾∗∗ 


