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On the economic theory of crop rotations: value of the crop rotation effects and

implications on acreage choice modeling

Abstract

Crop rotations are known to have two main kinds of economic effects: direct effects on potential
yields and on the productivity of different inputs, and indirect effects on economically optimal
input levels, especially pesticides and fertilizers. The main objective of this article is to uncover
the mechanisms through which crop rotation effects affect the acreage choices of forward-
looking farmers, in a dynamic programming framework. Whereas most models considering
acreage choices with crop rotation effects are based on discrete choice models at the plot level,
our model considers a farm level strategy. This implies that our theoretical modeling framework
is closely related to the models commonly used for empirically investigating farmers’ acreage
choices, either in the multicrop econometric literature or in the mathematical programming
literature. We provide original results aimed at characterizing the properties of optimal acreage
choices accounting for crop rotation effects and constraints in an uncertain context. Using a
stochastic programming approach together with a Lagrangian approach we show that optimal
dynamic acreage choices can be formally characterized as static acreage choices with contingent
renting/lending markets for acreages with specific preceding crops. The crop rotation constraint
Lagrange multipliers provide the renting/lending prices of acreages with specific crop histories.
The results presented in the article are mainly theoretical. Our modeling framework can easily be
implemented in practice since it mainly considers quadratic programming problems and their

solution functions.

Keywords: crop rotation, constrained optimization, dynamic programming, stochastic

programming, dynamic acreage choice model

JEL classifications: C61, D21, D24, D92, Q12
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Micro-économie des successions culturales : valeur économique des successions culturales et

dynamique des choix d’assolement

Résumé

La prise en compte des effets des précédents culturaux jouent a deux niveaux sur les choix de
production. Les précédents culturaux impactent directement les rendements potentiels des
cultures (courants et futurs) et la productivité (courante et future) d’intrants variables, des
pesticides et des engrais en particulier. Ceci entraine que les précédents culturaux doivent
¢galement affecter les choix d’assolement (courants et futurs) des agriculteurs : les précédents
culturaux affectent les marges (courantes et futures) des cultures assolées et les surfaces en
précedents culturaux sont déterminées par les choix d’assolement passés. Le principal objectif de
cet article est d’analyser les mécanismes selon lesquels les effets des précédents culturaux
affectent les choix d’assolement des agriculteurs. Le choix d’assolement de la campagne en cours
doit tenir compte (i) de la disponibilité des surfaces de précédents culturaux, (ii) des effets de ces
précédents sur les marges de la campagne en cours et (iii) les choix d’assolement de la campagne
en cours détermineront les surfaces en précédents des campagnes a venir. Alors que la plupart des
analyses des effets des précedents culturaux sur les choix de culture sont fondés sur I’utilisation
de modeéles de choix discret « a la parcelle », I’analyse conduite ici considére des stratégies de
choix d’assolement définies a 1’échelle de I’exploitation agricole. Les modeles développés ici
peuvent donc étre analysés comme des extensions « dynamiques » des modeéles de choix
d’assolement « statique » considérés habituellement par les économistes de la production
agricole. Notre approche combine des éléments de programmation stochastique et de programme
sous contraintes. Elle permet d’obtenir des résultats originaux caractérisant les propriétés des
choix d’assolements tenant compte des effets et des contraintes des précédents culturaux en
avenir incertain (en horizon fini et avec un espace d’états discret/étisé). En particulier, nous
montrons que les choix d’assolement dynamiques optimaux peuvent étre décrits a partir de
modeéles usuels de choix d’assolement statique dés lors que sont introduits des marchés
contingents virtuels pour la location de surfaces de précédents culturaux. Les multiplicateurs de
Lagrange des contraintes liées aux surfaces de précédents culturaux du probléme d’optimisation

des choix d’assolement dynamiques sont alors les prix de location de ces surfaces sur les marchés
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contingents virtuels. Leur niveau optimal garantit 1’égalité entre 1’offre et la demande de
précédents culturaux dans tous les scénarios possibles. Les résultats d’analyse présentés ici sont
essentiellement théoriques. Ils peuvent néanmoins étre aisément appliqués puisqu’ils sont
développés dans un cadre d’analyse standard. Les problémes d’optimisation dynamique des choix
d’assolement avec effets des précédents culturaux sont ici présentés sous la forme de problémes
d’optimisation quadratique. Nos résultats présentent les spécificités de ces problémes et de leurs

fonctions solutions.

Mots-clés : successions culturales, optimisation sous contraintes, programmation dynamique,

programmation stochastique, modélisation dynamique des choix d’assolement

Classification JEL : C61, D21, D24, D92, Q12
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On the economic theory of crop rotations: value of the crop rotation effects and

implications on acreage choice modeling

1. Introduction

In their critical literature review on the theory and measurement of farmers’ choices, Just and
Pope (2002) forcefully and convincingly argue that “potentially large gains may come from
understanding more of the structure that underlies the production technology for investigating
and modeling farmers’ choices”. In particular these authors ask: “What elements of technology
should economists consider essential?” As far as crop acreage choices are concerned, a
consensus seems to exist among agricultural scientists and extension agents: crop rotation effects
and the related constraints are major determinants of farmers’ crop choices. Moreover the
increasing concerns related to the impacts of agricultural production on the environment (as well
as on public health) suggest that more efforts should be put on the investigation of the impacts
crop rotation effects and constraints on farmers’ choices. Crop rotation effects are the key stone
of many cropping systems aimed at reducing the use of chemical inputs. The design of economic
instruments aimed at stimulating the adoption of these environmentally friendly cropping
practices relies on a better understanding of the impacts of the dynamic features of the

agricultural production process on farmers’ production choices.

Previous analyses of the impacts of crop rotation effects on farmers’ acreage choices generally
focus on specific case studies and as a result, consider specifically designed modeling

frameworks. Our main aim is to analyze the mechanisms through which crop rotation effects and
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constraints affect forward-looking farmers’ acreage choices. Our focusing on these mechanisms

distinguishes our work from the previous ones on this topic.

To this end, we consider acreage choices within a dynamic stochastic programming framework
and we present a theoretical analysis of this problem aimed at illustrating the role of crop rotation
effects and constraints on farmer’s acreage choices. Our models are based on quadratic
programming problems for three main reasons. First, quadratic objective functions can
accommodate a large scope of problems. Second, the solution functions to parametric quadratic
programming problems can, to some extent, be characterized using analytical results. Third,
quadratic programming problems, even very large ones, can be solved by using any optimization

software.

Crop rotation effects are generally ignored in the acreage choice models found in the agricultural
production economics literature. Most of the papers dealing with crop rotation effects focus on
stock management issues or/and on the effects of specific crop sequences. Whereas Thomas
(2003) focuses on nutrient management issues, the approaches considered in Ecktein (1984),
Ozarem and Miranovski (1994) or McEwan and Howitt (2011) aggregate the crop rotation effects
in a “fertility index”. Such a “fertility index” is well suited for modeling the effects of crop
rotation which are coproducts of a previous crop and which will be inputs for any succeeding
crop. Nutrients surpluses and soil structure effects meet these requirements. Crop rotation effects
related to pest management need to be handled in a different manner. Any crop affects the pest
and weed populations present in a considered plot. But these impacts affect differently the
succeeding crops, depending on the impacts of the considered pest and weed populations on these

succeeding crops.
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Due to crop rotation effects related to pest management, we prefer to consider crop rotation
effects at the crop sequence level. The modeling framework developed by El-Nazer and McCarl
(1986) also considers crop sequences. However, their approach implicitly assumes that farmers
commit on long crop sequences. It seems more relevant to consider that farmers adapt their
acreage choices continuously over time according to the evolution of the economic and bio-

climatic contexts, as in Hendricks et al. (2014) or in Livingston et al. (2008, 2013).

If crop rotation effects are generally not explicitly considered in agricultural production choice
models, they are often used for arguing assumptions underlying these models, either in the
Multicrop Econometric literature (ME) (see, e.g., Chambers and Just, 1989) or in the (Positive)
Mathematical programming (P)MP (see, e.g., Howitt, 1995 ; Heckelei and Wolff, 2003). These
assumptions often motivate crop diversification. Crop rotation effects partly underlie the crop
acreage bounds used in MP models, the implicit cost function used in the (P)MP literature or the

decreasing marginal return to crop acreage assumption used in both the PMP and ME literatures.’

Oude Lansink and Stefanou (2001) consider dynamic acreage choice models but from a fairly
different viewpoint. They consider exogenous acreage adjustment costs but ignore the effects of

crop rotation per se. To our knowledge, Hennessy (2006) is the only author addressing the issues

1 Of course agricultural scientists extensively deal with crop rotation effects. If their analyses focus on biological
aspects, a growing literature addresses acreage optimization problems involving crop rotation effects and constraints
as shown by the recent survey of Dury et al. (2012). These studies generally propose a modeling framework
followed by an empirical application on a case study (see, e.g., Cai et al., 2013 ; Schonhart et al., 2011 ; and
Detlefsen and Jensen, 2007). The modeling framework proposed by Salassi et al (2013) is the most closely related to
ours. But these studies do not seek to provide a general analysis of the mechanisms through which crop rotation

affects the optimal acreage choices. To provide such a general analysis is the main objective of this article.
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raised by the identification and the optimal use of crop rotation effects lasting for more than one

year.?

Accounting for crop rotations in acreage choice models is especially challenging. First, a
dynamic programming framework must be employed because dynamic crop acreage choices
involve inter-temporal trade-offs. Second, crop rotations involve many constraints in addition to
the usual acreage non-negativity constraints. Third, crop rotation effects in the crop production
technologies must be represented in addition to the other determinants of acreage choices, e.g.

management of labor and capital at peak-times or economic risk spreading.

Our considering acreage optimization strategies at the farm level distinguishes our work from that
of McEwan and Howitt (2011), Hendricks et al. (2014) and Livingston et al. (2008, 2013). In
these recent studies acreage choices are defined as sums of discrete choices defined at the plot
level. By addressing farm level strategy we will provide further insights on the practice of
acreage choice modeling. Hennessy (2004) also considered the effects of crop rotations on
acreage choices according to a farm level strategy involving issues. But his analysis was
essentially static. It was focused on the optimal use of crop rotation effects on one hand, and on

farm income risk management and labor management on the other hand.

Our analysis is based on a set of mathematical results characterizing optimal dynamic acreage
choices as the solutions to a particular dynamic programming problem. The purpose of this article

is not to highlight the proofs of these results but rather to develop their economic interpretations.

Z See also Klein Haneveld and Stegeman (2005) for a related study from an operation research viewpoint.




Working Paper SMART — LERECO N°15-04

The related proofs are detailed in the Technical Appendix which is available from the authors
upon request®. These results heavily rely on results published in the operations research literature.
In particular, we extensively use the results of Bemporad et al (2002) and of Berkelaar et al
(1997). These authors consider sensitivity analysis of quadratic programming problems for
characterizing the solutions to the so-called “multiparametric quadratic programming problems”.
We use these comparative statics results for characterizing the solutions to dynamic programming
problems involving quadratic per period objective functions and linear constraints. Our results are
also closely related to those obtained by Rockafellar (1999) for general multistage stochastic

programming problems casted in the so-called “extended linear-quadratic framework”.

The first section considers the modeling of the crop rotation effects at the crop sequence level and
uncovers the determinants of the economic value of the crop rotation effects. The second section
defines the problem considered by a farmer when choosing his acreage while accounting for crop
rotation effects and constraints. The next sections aim at characterizing the solutions to this
dynamic programming problem denoted as problem (D). We proceed in three steps. The third
section considers a simple static acreage choice problem and its solution functions. This problem
is denoted as problem (S). Its solution functions are then used for providing simple
characterizations of the solutions to more complicated problems. In the fourth section we analyze
the myopic acreage choice problem, denoted as problem (M). Myopic acreage choices account
for crop rotation constraints, as it is the case for dynamic acreage choices, but they ignore the

effects of the current acreage choices on the future profit stream, as it is the case for static acreage

® The supplementary material is available on the website http://www.rennes.inra.fr/smart_eng/Working-Papers-

SMART-LERECO
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choices. The analysis of the myopic problem is an intermediate step from the simple static
problem (S) to the dynamic programming problem (D). The fifth section is devoted to the
analysis of problem (D) and to the characterization of its solutions. We proceed by employing a
Lagrangian approach for handling the crop rotation constraints in problems (M) and (D). The
Lagrange multipliers of these constraints are particularly useful for characterizing the solutions to
these problems (M) and (D) when combined with the simple solution functions to problem (S).
We also stress out that these Lagrange multipliers have particularly interesting economic, e.g.
market based, interpretations as implicit prices of the crop rotation effects. Some extensions of

our modeling framework and some implications of our results are discussed in the sixth section.

2. Crop rotations effects: yield levels, input uses and gross margins

The preceding crop of a crop grown on a given plot can generate three main types of effects. It
partially determines (i) the level of pest and disease, as well as weed, infestation levels, (ii) the
nutrient levels available at the beginning of the cropping process and (iii) the soil structure of the
plot.* These effects can directly affect the yield levels as well as the input productivity levels. To
explicitly model these effects would be a considerable task. But these effects can be incorporated
in an agricultural production technology model in an approximate framework, by considering

crop sequences.

We assume for the ease of exposition that the agricultural production process is dynamic of order

1. Let §,,..(x,) denote the yield at date t of crop k on plots with previous crop m when variable

* And, as a consequence, the soil properties with respect to the development of the plant root system, with respect to

the soil flora and fauna or with respect to water drainage or holding capacity.

10
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inputs are used in the quantities given in X, . This yield level is random because it depends on
random cropping conditions. First, this yield depends on the cropping conditions induced by the

previous crop. These effects are denoted by the random vector ¢, if crop k is planted on a plot

t
with previous crop m. The term €, contains, e.g., the nutrient surpluses left by crop m, the
effects of previous crop m on the pest and weed populations affecting the yield of crop k, etc.
Second, the yield of crop k also depends on the effects exogenous random events such as, e.g.,

climatic conditions. Denoting these random events by €, ¥, ,(x,) can be defined as:

Y %) = T (X3 €100, €1) 1)

where f,(.;.) is a “generalized” yield function of crop k. The effects of €, on ¥, ,(x,) define

the crop rotation effects of previous crop m on the yield of crop k at date t. They differ from that

of previous cropnif ¢, #C,,.

In order to investigate the economic impacts of crop rotation we need to specify farmers’

behavior and information set. Let {, , denote the price of crop k at date t, and W, , denote that of

the variable input price vector. Let v_, . define the information available to the farmer when he

mk,t

chooses his variable input levels x, at date t. Of course v, includes the realization of W, , . It also

contains the realizations of elements of (C,,,,€,) and, more generally, informative signals related

m,t?

to the realization of (p,,.C,.&). v, is a realization of the random variable o, ,. Assuming

that the considered farmer is risk neutral, his optimal input choice maximizes the expectation

11
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conditional on o_, . of the gross margin of crop k with previous crop m, i.e. the optimal input

mk,t

choice is determined by:
X;k,t (V) =2rg max, .o Eumkv, Tkt X P Wi ) 2

where 7, (X5 Purs Wi 1) = Pr Vo (X ) = Wi X, . The term E, denotes the expectation operator

conditional on v, ,.
The gross margin obtained by the farmer is then the random variable defined by:
T :wk,t (Vi) = T [X:nk,t (Onc); P Wi o] = By y:wk Ui 1) =W, ,tX:nk « Unier) 3)

while the obtained yield is defined by ¥, (V) = fi (X (Onc1)i€ir €. The gross margin of
crop k with previous crop m depends on the crop rotation effects of crop k on previous crop m

through two main (interrelated) channels. First, 7., (v,,,) depends on &, through its (direct)

effects on the yield function of crop k at X, (Un,), i-€. on ¥, (V). These effects include,

e.g., the crop rotation effects related to pest infestations against which no commercial pesticide is

available. Second, 7, ,(U.,) depends on €, through its effects on the optimal variable input
choices X, () - The considered farmer chooses X, according to his knowledge on the

interactions of ¢, and x, in ¥, (u,,). This results in higher productivity levels of X, .

m,t
Depending on the effects of (C,,,x,) in y;k,t(umk,t), on input savings or additional expenses. If

crop m leaves large nutrient amount to the succeeding crops, then to account for crop rotation
effects with previous crop m results in fertilizer savings. If crop m reduces (increases) the levels
of the pest population affecting crop k, then to account for crop rotation effects of crop k with

previous crop m results in pesticide savings (additional expenses).

12
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The differences in crop sequence gross margins i;k,t(l}mk,t) across crop sequences provide the

basis for the usual crop rotation schemes designed by agricultural scientists and extension agents.
From an economic viewpoint these rotation schemes can be interpreted as rules of thumb which
are approximately optimal in given price ranges. Of course high crop prices tend to magnify the
economic value of the direct effects of crop rotation on yields, while high input prices magnify
those on input uses. These price effects need to be considered when designing economic policies
aimed at promoting environmentally friendly agricultural production practices. E.g., pesticide
taxes clearly provide incentives for taking advantage of crop rotation effects which are pesticide
use reducing. But high output prices tend to reduce the incentives for reducing input uses through

crop rotations.

3. Dynamic acreage choices: dynamic programming and crop rotation constraints

This section proposes a modeling framework for investigating optimal acreage choices
accounting for crop rotation effects and constraints. It is fairly general and, as will be seen below,
can be further extended. However, it relies on several specific assumptions with respect to the

production technology which are discussed below.

As in the preceding section we assume production dynamics of order 1 even if the proposed
framework can easily be extended to dynamics of higher order, at least in theory. The considered

crop bundle is assumed to be fixed. It is denoted by K ={L,..., K}. The expected return of crop k

(fork € K) on plots with previous crop m (for m e ) is described by the random variable 7, .

T 18 t0 be interpreted as the random gross margin obtained by a farmer optimizing his variable

13
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input choices at the crop level subject to the technological constraint described in equation (1). If

the farmer is considered as risk neutral as assumed in the previous section, 7, . is defined by:

mk,t

Tkt = T [X;k,t (Onie)s Peor Wy ] 4)
where 7, ,(.;.) is defined in equation (3).

The probability distribution of the random vector (C,,,&,, B, W, ) determines that of 7.

This probability distribution describes how the considered farmer perceives at date 1 the random
elements which will affect his yields and input choices at date t. In particular, the farmer knows
that some information set will be available to him at date t. But this information set is unknown at
date 1. At date 1 the farmer just knows that he will receive an information set according to the

probability distribution defined by that of 5_ . and that we will choose in variable input levels

mk,t

for crop k on previous crop m according to the probability distribution of (C,,,&., P, W,,)

conditional on the realization of O, , .

The 7,,, terms are stacked in the &, , = (7, :meX) vectors for kX which are themselves

mk,t
stacked in the &, = (7, , :k € K) vectors. The differences in the elements of &, terms describe

the crop rotation effects related to the preceding crops of crop k.

In order to account for these effects farmers need to consider acreage choices at the crop

sequence level. Let s_ . be the acreage of crop k planted in year t on plots with preceding crop m.

mk,t

Let s, =(s,-meXK) denote the acreage vector describing the use of preceding crop acreage

for crop k in year t, and let v denote the K dimensional unitary vector. The term a, , =1’s,,

14



Working Paper SMART — LERECO N°15-04

defines the (total) acreage of crop k in year t. The crop rotation constraints in year t state that the

use of preceding crop acreages must equal their corresponding supplies, i.e. Vs, =a,, , must
hold for mex where s =(s, :keX). The matrices A=1®" and D=V®I, where I

denotes the K dimensional identity matrix, allow defining the crop rotation constraints in year t in

the following compact form:
Ds,=As,_, =4a,, ()

where s, =(s,,:kex) and a,=(a,,:keX). Note that Ds, can be defined as d, =Ds, with
d, =(d,,:mexK) and d_, =1's,, being interpreted as the “demand” of acreage with preceding

crop m induced by s, .

As stated in our description of the agricultural process in the previous section, it is assumed that
the production technology of any crop sequence (m,k) exhibits constant return to acreage. l.e.,
the f, (x.;C,,,& ) functions do not depend on s,. Although constant returns to crop acreages is a

ms
maintained assumption in models considering risk spreading as a diversification motive (see, e.g.,
Hazell and Norton, 1986 ; Chavas and Holt, 1990 and 1996 ; Holt, 1999), marginal returns to
crop acreages are often assumed decreasing in the acreage of the considered crop (see, e.g., Just
et al, 1983 ; Howitt, 1995). This assumption is often based on crop rotation arguments: the larger
the acreage of a given crop is, the less this acreage can exploit crop rotation effects. These crop
rotation considerations are explicitly accounted for in the present framework as it is related to the

“effect” of a,, =S, 1 on s, @, assuming that s, , is optimally chosen.

15



Working Paper SMART — LERECO N°15-04

According to this assumption farmers’ acreage choices do not affect their variable input choices
at the crop sequence level.” This implies that the crop variable input level choices and the acreage
choices can be separately analyzed. This section and the remaining ones focus on the later

choices.

Finally we consider that farmers adopt a farm level strategy when deciding their acreage with a

per period objective function of the form:
T(s;7,) =s7t, —C(s,). (6)

C is assumed to be convex and strictly increasing in s, >0. Due to its convexity in s, the term
C(s,) provides incentives for diversifying the acreages. By contrast the weighted sum of the

gross margins s;&, provides incentives for allocating the preceding acreage to the most profitable

Crop sequences.

In the present framework we define the term C(s,) as an implicit management cost function

which can be interpreted as a smooth reduced form approximation of the shadow costs generated
by the quasi-fixed factor limiting quantities. Quasi-fixed factor constraints generate implicit costs

depending on farmers’ acreage choices because a large acreage of a given crop generates costly
peak loads for labor and machinery. Cost functions similar to C(s,) are used in the multicrop

econometric models considered by Carpentier and Letort (2012, 2014) and is sometimes defined

> As discussed in Carpentier and Letort (2012, 2014) this assumption is reasonable in cases where farmers are more
reluctant to change their cropping practices, at the crop sequence level, than to change their acreages. This is a

stylized fact often reported by agricultural scientists and extension agents.

16
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as the “PMP term” in the PMP literature (Heckelei et al, 2012). The term TI(s,;7,) will be

referred to as a profit function. Extensions of this simple periodic objective function are discussed

later.

To optimally choose acreages accounting for crop rotation effects and constraints consists in

solving the following dynamic programming problem:
(D) max,, {E% ST BUE, G %) st DS, = AS,, fort =1,...,T}

with §=(5,:t=1..,T) and with the convention AS,=a,. The objective function of the

considered problem is the expected discounted sum of profits where S <(0,1) is the discount
factor and T is the considered horizon which is assumed to be finite. The previous crop acreage at

date t =1, a, € 4, is a parameter of the considered problem.

The land allocation vector S defines the set of control variables of problem (D). The state of the
process to be optimized is described by two state variables at date t : the exogenous state variable

@, and the endogenous state variables &, , = AS, ;. The state variable &, ; is endogenous because
it is determined by the control variable §, ,. With va, =S >0 any feasible solution to problem
(D) satisfies j'§, =S for t=1..,T , where j=1®u is the dimension N unitary vector. The
exogenous state @, is defined as a random variable with support %/ . The realizations @, € ¥, of

the random terms @, are defined as the information sets containing the information relevant for
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updating the probability distribution of the current and future gross margins @_ for r=1..,t°
Information sets are rarely explicitly introduced in the description of dynamic programming
problems. They are considered here because the terms @, have a convenient interpretation as
scenarios in the finite horizon framework with discrete exogenous state variables, the case

considered later.

The probability distribution of the random terms ,, S, and @, terms in the definition of problem

(D) is conditional on the fixed initial information set @, . l.e., @, describes the probability
distribution of the information set which will be available at date t as anticipated at date 1. The

acreage choices $, are defined as random variables because their optimal choices, denoted by 37,
are to be defined as optimal responses to the exogenous random state variables @,. The only
exception is the acreage choice at date 1, s,, which is fixed because @, is known at date 1, i.e.

W ={w}.

The term E, denotes the expectation operator conditional on the information set o, . The

formulation of problem (D) indicates that the farmer knows that he will get information signals

each year and will update his information set accordingly, and then make use of this information

® The dynamic programming problems found in the literature usually relies on assumptions related to the stochastic
process generating the exogenous state variables of the problem, e.g. Markov and stationary assumptions. Such
assumptions are useful, if not necessary, for simplifying the analysis of long horizon problems but they are less
crucial for short horizon problems. Moreover, various public interventions almost continuously affect agricultural
markets and the economic incentives of farmers. In short horizon problems the impact of these interventions act as
exogenous random shocks, e.g. on the prices of the agricultural commodities, which are difficult to model and which

can affect large parts of the considered horizon.
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set for optimizing his acreage choices. The fact that the realizations of the control variables §_ for
r=1,...,t—1 are known is implicit. The expectation of &, conditional on the information set &,
received at date t, denoted as =, =E_#,, is an exogenous state variable which is part of &, J

Thanks to the linearity of T1(s;#,) in @, we have E,TI(s;,) =TI(s,; T, ) -

The next sections aim at characterizing the solutions to problem (D) under the assumptions that
the cost function C is quadratic in s, and that the distribution of the @, terms is discrete with

finite support. In particular, we aim at showing that the solutions to problem (D) can be
characterized by using the solutions functions of a standard static acreage choice problem and

that this characterization provides simple and useful economic interpretations.

4.  Static acreage choices

We first characterize the solutions to the following static problem:
(S) maxg,II(s;m) where seR" and meR".

Considering crop sequences apart this problem is fairly standard. It ignores the dynamic aspects
of farmers’ acreage choice, i.e. the crop rotation effects and constraints. The only feature of
problem (S) which is not usual is that the choice of s is not constrained by a total land use

constraint. A total land use constraint would not change the main results presented in this section.

" Although it partially depends on the variable input choices of the farmer, the expected gross margin vector my, IS

exogenous in problem (D) because it is not controlled by the farmer through his acreage choices.

19



Working Paper SMART — LERECO N°15-04

But to ignore this constraint allow simpler characterizations of the solutions to the more
complicated myopic and dynamic problems. As noted above, to account for crop rotation
constraints automatically enforces a total land use constraint. As a result, problems (M) and (D)

are implicitly constrained by the available land of the considered farm.

The cost function C is assumed to be quadratic in s. This functional form is usual as it can be
considered as a smooth second order (local) approximation to any sufficiently smooth cost
function. Quadratic cost functions are employed in the PMP literature (see, e.g., Heckelei et al,
2012) and in the multicrop econometric literature (see, e.g., Carpentier and Letort, 2012).

Quadratic functions such as I1(s; ) =s'w—C(s) are also convenient as period objective functions

in dynamic programming problems, as shown by the extensive use of quadratic cost functions in
the partial adjustment literature (see, e.g., Epstein 1981 ; Oude Lansink and Stefanou 2001) or in
the operations research literature (see, e.g., Bemporad et al 2002 or Rockafellar 1999). In
particular, C being quadratic in s problem (S) is a quadratic programming problem, i.e. a
workhorse of the optimization literatures. The theoretical properties of quadratic programming
are fairly well documented and any optimization software contains efficient quadratic

programming algorithms.

The cost function C is assumed to be quadratic and strictly convex in s, i.e.:
C(s)=h's+1/2xs'Hs where HeR" xR" is positive definite, he R" and seR" . (7)

C can also be chosen strictly increasing in s on R" . This can be guaranteed by assuming, e.g.,

that h and H are both positive. The strict convexity assumption mainly aims at avoiding
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multiple solutions in s to the considered optimization problems. It significantly simplifies the

analysis as it allows using standard differential calculus (see, e.g., Fiacco and Kyparisis, 1985).

Given our interpretation of C(s) the assumption stating its strict convexity in s is debatable.
Cropping practices vary much more across crops than they vary across preceding crops for a

given crop. Hence, it seems more sensible to define the acreage management cost as a function of

the crop acreage vector a=As, i.e. as C*(a)=h'a+1/2xa'Ga where G e R xR" is positive

definite, g e R* and a e R . Of course C*(As) is strictly convex in As and convex in s, but it is

not strictly convex in s.

Our approach consists in defining C(S) as a strictly convex perturbed version of the “only”

convex C*(As). The perturbation device is often used in operations research for obtaining a well-
behaved objective function smoothly approximating the objective function of interest. Linear or
quadratic programming problems are usually perturbed by quadratic terms. We also use a
quadratic perturbation term. The solutions to the perturbed version of our problem of interest
converge (in a perturbation parameter) to solutions to the problem of interest, i.e. the perturbed
solutions are & — solutions to the problem of interest. Our viewpoint is that to consider &—
solutions instead of “true” solutions is a reasonable price to pay for significantly simplifying the

analysis of the considered dynamic programming problems.

Proposition 1 collects a set of results characterizing the solutions to problem (S). These results

are useful for analyzing the myopic and dynamic problems. We assume in this section and in the

next one that the vectors s and z are structured as the vectors s, and =, .
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Proposition 1. Standard (or static) problem. Let consider problem (S): max,, I1(s;@) where
TI(s;m) =s'm—C(s) and (5,m) e R" xR" . Let assume that C:R" — R is quadratic and strictly

convex inson R" .
(i) The solution in s to problem (S) is unique and defines the function s*: R" —R" by
s*(m) =arg max, I1(s; ). $* is continuous in = on R".

(ii) The solution to problem (S) defines the value function IT°:R" - R by

IT° (x) = max_., [1(s; @) . IT° is convex in =

520
(iii) S° is piecewise affine and IT° is piecewise quadratic in @ on R" .
(iv) IT® is continuously differentiable on R" with 2 11°(x) = s° () .
(V) sq isstrictly increasing in 7, at m if s7, (x)>0. If s, isconstantin 7, at & then
s, (m)=0.
Let define the functions d; :R" >R, by d? =vs;,, for mex and & :R" >R, by a =vs;
for keX .Let neR".
(vi) Let ke X . a? is strictly increasing in 4, at a+p® if & (r+p®1) >0. If a8 is
constant in 4, at w+p®u then @ (w+p®1) =0.
(vii) Let me k. d? is strictly decreasing in x4, at x—1®p if d;(m—1®p)>0.1f d? is

constant in x, at ;—1®p then d; (x—1®p)=0.
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Proof. See Technical Appendix.

Results (i)-(iii) are either well known or demonstrated in Bemporad et al (2002).% The strict
concavity of II in s, and the linearity of the constraints imposed in problem (S) imply that its
solution in s, s°(m), is unique. Result (iii) is a consequence of IT being quadratic in s and of
problem (S) involving linear inequality constraints only. It indicates that there exists a polyhedral

partition {®, : j € 7} of R" such that there exists (b;,B;) e R" xR"" satisfying:
$'(m)=s}(m)=b,; +B;m and IT’(m)=TI1](n) =s} () n—s;(m)'h~1/ 2xs}(m) Hs’ (n) (8)

if ;e ®; for any J € 7. The interior of each polyhedron j is characterized by a subset of crop
sequences with strictly positive acreage. These crop sequence subsets define the so-called

regimes of s°(m). The full characterization of the functions s° and IT® is provided in Proposition

Al in the Appendix.

The fact that IT° is continuously differentiable in = on R", and not just “almost everywhere”,

might be a less standard result. Jittorntrum (1984) provides sufficient conditions ensuring the
differentiability of IT° even at points where the non-negativity constraints imposed on the

elements of s are just binding, i.e. at the regime switching points of IT° and s°.° These

® See also Lau and Womersley (2001) for similar results in a more general framework.

° IT° is twice continuously differentiable almost everywhere in  on P. TI° is twice continuously differentiable in «

on inte, for any je 7. IT° is continuously differentiable 7t on P but it is not twice differentiable in m on the set
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conditions, i.e. the strict concavity of IT in s and non redundant constraints on s, are met here.°

The differentiability of IT° yields the important equation:

0 s s N

ZI1°(m) =s°(w) forany meR 9
which can be interpreted as a special case of the so-called Hotelling Lemma.

Results (v)-(vii) provide the monotonicity properties of s* which appear useful later by observing
that pn®1=A'p and +®p=D'p. In particular, result (vii) indicates that the demand function of
preceding crop m, d:(m—1®p), strictly decreases in r,, as long as this demand is strictly
positive and that this demand is null for a sufficiently large level of g .. The term g can be

seen as the renting price of a unit of land with preceding crop m. In the next section it denotes the

Lagrange multiplier associated to the crop rotation constraint d, ., =vs, =vs ., =a, ;-

5. Myopic acreage choices
The considered farmer solves the following problem:
(M)  max,{I1(s;x) s.t. Ds =a} where seR", reR" and ac_1={acR" :va> (0}

if he adopts a myopic strategy. He accounts for the effects of his past choices, a, on his current

choices, s, but he ignores the fact that his current choice will affect his future choice

collecting the separating frontiers of the polyhedral partition {®, : j € 7}. This last set has null Lebesgue measure

(almost everywhere).

10 Jittorntrum’s (1984) results provide an extension to the classical Envelope Theorem and a partial extension to the

Implicit Function Theorem (see, e.g., Fiacco and Kyparisis, 1985).
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opportunities. The investigation of the solutions to this problem is useful for analyzing the
mechanisms underlying the effects of the crop rotation constraints Ds=a on the acreage choices

as well as on the properties of its value functions.

The results characterizing the solution functions to problem (M) are collected in Proposition 2.

Proposition 2. Myopic problem. Let consider the problem max,{I1(s;x) s.t. Ds = a} under the

assumptions defined in Proposition 1. Let further assume that ae 4 ={acR" :va > 0}.

(i) The solution in s to problem (M) is unique and defines the function S" RYx 42— RT by

s"(mt,a) = arg max,{I1(s; z) s.t. Ds = a}. s" is continuous in (m,a) on RN x 4.

(ii) The solution to problem (M) defines the value function TI" :R" x 4 >R by

I1" (7, a) = max,{I1(s; 7) s.t. Ds =a}. IT" is convex in & and concave inaon R" x 1.
(iii) " is piecewise affine and I1" is piecewise quadratic in (r,a) on R" x 4.

(iv) TI" is continuously differentiable in (zr,a) on R" x_7 with 2 " (x,a) =s"(m,a) and
p" (m,a) =2 I1"(m,a).
Let define the Lagrangian problem associated to problem (M) as:

(LM) min_, ., max {I1(s; 7t) +s"A +p'(a—Ds)}

and let ™ (m,a) denote the set of solutions in p to problem (LM).
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(v) s°(m—D'p) =s"(mt,a) and IT°(x—D'p) +pwa=I1"(x,a) if and only if p e M" (x,a).
(vi) M™ (m,a) =arg minueRK{Hs(n—D’p) +p'a} and M"(m,a) ={p e R* :Ds*(m—D'p) =a}.
(vii) Let define the sets K" (@) ={nek :a, >0} and K°(@)={ne K :a, =0}.

(@) If neX"(a) then the solutions in &, and 4, to problem (LM) are unique. Let

denote these solutions by A}, (m,a) and ' (m,a).
(b) If nek’(a) then there exists " (m,a) > —o such that ™ is a solution in g, to
problem (LM) if and only if y' €[z (7, a), +0).
(c) %Hm(n,a) = 4" (m,a) and p"(m,a) = (1" (m,a) :neK) forany (ma)e R" x 1.

Proof. See Technical Appendix.

Results (i)-(iii) either are well known or are direct applications of the results of Bemporad et al

(2002). The continuous differentiability of I1" in (xr,a) on R" x 7 are less standard results

which are obtained by applying results due to Berkelaar et al (1997) as well as the results of
Jittorntrum (1984) mentioned above. The differentiability of I1" in a is an essential property of

the value function I1" . In particular, the first derivative of I1"(mr,a) ina, i.e.;
STI1"(m,a) =p" (m,a) forany (ma)eR" x4, (10)

has both a very useful economic interpretation and a central role for characterizing the solutions

to the dynamic programming problem (D). The main difficulty in the proof of these properties of
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s™ and I1" lies in the cases where a, =0 for some ne K . These cases cannot be excluded as

they are likely to frequently occur in applications. They are considered in result (vii).

The term A eR" denotes the Lagrange multiplier vector associated to the non-negativity

constraint s>0 while peR" denotes the Lagrange multiplier vector associated to the crop

rotation constraint Ds =a. The Lagrangian problem (LM) defined in Proposition 2 is equivalent

to the following modified"* Lagrangian problem:
min, max . {I1(s;x—D'pn) +p'a}. (11)

Observing that the elements of =—D'n are given by =z, —u,, the acreage choice problem

defined by max_, I'1(s;w—D'p) has a simple interpretation. This virtual problem is defined as if

markets for land with specific preceding crops are actually available. The renting prices of the

land unit with specific preceding crops are given in p. The farmer can rent land with specific
preceding crops, at total gross cost equals to p'Ds, while having the opportunity to lend his own

plots according to their last crop, with a total gross revenue equals to p'a .

Besides this useful interpretation of the crop rotation Lagrange multipliers, the problem given in
equation (11) also provides the first part of the link between problem (M) and problem (S).

According to Proposition 1 the problem given in equation (11) is equivalent to the dual problem:

min {IT°(nx—D'p) +p'a} (12)

! since keeping implicit the non-negativity constraint s>0.
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with:

%HS (r—D'p) =s’(m—D'p) =argmax_, I1(s;7—D'p). (13)

It suffices to observe that max_,I1(s;t—D'n) =IT°(m—D'p). Result (v) states that s™ (xr,a) and

$>0

I1"(mt,a) are equal to s°(mr—D'p) and IT°(xr—D'p)+p'a when p is a solution to the dual

problem described in equation (12), i.e. when p e argmin {IT°(x—D'p) +p'a} = " (m,a) .

The second part of the link between problems (M) and (S) is provided by result (vi). This result
states that p e M™ (mt,a) if and only if p is a solution to the equation Ds*(m—D'n) =a , i.e. if

and only if p “enforces” the crop rotation constraints Ds=a.

The elements of the vector Ds*(mr—D'u) can be interpreted as the demand functions for land
with specific previous crops where the elements of p are the renting prices of these differentiated

land areas. These demand functions describe derive demands mainly driven by the current
profitability of the different crop sequences. E.g., the demand of the land with the best previous
crops of crop k is high if assuming that the price of crop k is high. This intuitive result is a

consequence of result (vi) of Proposition 1.

The availability of markets for land with specific preceding crops is a potential source of

additional profit, at any renting/lending price p. The standard duality inequality related to the

Lagrangian problem (11) yields:

[T°(m-D'p) +p'a>I1" (m,a) = min {IT°(x—D'p) +p'a}. (14)
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The increase in profit due to the availability of “complete” land markets rely on two mechanisms.
First, the considered farmer can adjust his total crop area, i.e. V'Ds®(m—D'n) #1'a in general. He
can increase his total crop area if 7—D'p is “high” and he can decrease it if ;—D'p is “low”.
Second, the farmer can rent and lend as much land with specific preceding crops as he wishes to,
according to the comparison of the elements of —D'p . In this case farmers’ choices are only

constrained by the acreage management costs.

At any pe M" (mt,a), the farmer rents from himself his past acreage and, consequently, do not

lend any piece of land. Any land price vector p in M" (m,a) basically eliminates the additional

benefits from the availability of markets for land with specific preceding crops.

It remains to interpret the marginal effect of a on I1"(mt,a), i.e. the term p"(m,a) . According to
result (vii) n" (m,a) is an equilibrium price vector of the land markets for land with specific crop
prices, i.e. n"(mt,a) is a solution to the equation Ds®(m—D'n) =a. However, this equation has
infinitely many solutions in peR" if a,,, =0 for some neX, i.e. if a previous crop is not
available to the farmer. As shown by result (vii) of Propositions 1 and 2, the constraint
Us;, (m—D'n)=a =0 can be enforced by choosing s, sufficiently large.'? Hence p"(m,a) is

just a particular element of M" (m,a) .

*2 From a technical viewpoint, the multiplicity of the solutions in (k,,4,) for nex such that a, =0 comes from
the fact that the non-negativity constraints s, >0 and the crop rotation constraint v's, >a, are redundant if

a, =0, with s, =0.
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According to result (vii) of Proposition 2 the term 4 (w,a) is the lowest equilibrium price of the

“farm market” for preceding crop n. It is also the price of land with preceding crop n which

implies that the farmer’s demand for such land is exactly equal to 0 if a,, , =0. Any decrease in
u, from g7 (m,a) increases the demand for land with preceding crop n to strictly positive levels.

In fact, the optimal Lagrange multiplier y;"(m,a) of the crop rotation constraint n can be

interpreted as the maximal willingness to pay for renting a unit of land with preceding crop n of
the farmer, whether such land is available on his farm or not. This is the usual interpretation of

the marginal effect of a constraint parameter on the value function of a maximization problem.

6. Dynamic acreage choices

The main theoretical tools which are to be used in this section for characterizing the solution to
problem (D) have been presented in the previous sections. They are employed in this section for

analyzing a specific, albeit fairly general, version of problem (D).

We now assume that the probability distribution of @, conditional on @, is discrete with finite
support. Of course, this assumption is restrictive. But the support sets 4, of the exogenous state
variables @, can be defined as large as one wants in our theoretical analysis. Moreover, in the
case where @, is assumed to be continuous, any solution approach to problem (D) is likely to rely
on some discretization of the continuous support of %, . In that case the set ¥4, can be
interpreted as the scenario set of the considered problem. It contains the W, =#%4 possible
histories for the exogenous state variables of the problem from date 1 to date T. Similarly, %, is

the set containing the W, = #14] sub-scenarios from date 1 to date t.
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Let p, €(0,1) denote the probability conditional on @, of the event @, = w, . Of course, we have
ZMW p, =land p, =1. Letalso (e ,) denote the support of the probability distribution of

@, conditional on @, , and, finally, let p €(0,1) denote the probability conditional on @, ; of

oy,
the event @, = &, . The definition of the @, terms as information sets implies a nested structure of
the supports W, : {W(@_,):®,_, € W} defines a mutually exclusive partition of 9, . This

implies that p,,, = pq(pm)‘1 for any @, e ¥ . If o € W(®,,) then @_, is the sub-scenario

oy

from date 1 to date t—1 of the scenario from date 1 to date t described by o, .

The probability distributions of the control variable S, can be defined based on those of @,. The
random variable §, conditional on @, is defined as the discrete random variable characterized by
the support {s,, : @, € W} and by the probability set of o, i.e. by {p, :e e W}. Of course, to

compute the solutions in s of problem (D) consists in computing the optimal levels of the support

points s, for &, € ;.

These notations allow rewriting problem (D) as problem (D%):

T ot .=
Zt:lﬂ Z@ewt p‘“t XH(S“%’“”@
S.t.
Ds, =a,
Ds, =As, foro eW(w.,) o, e andt=2.T

(DY) max.,
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where s=(s,, :t=1..,T) and s, =(s,q @ €¥) and with the convention s, =s, . The

solution in s to problem (D% can be defined as functions of a, and n=(m, t=1..,T) where

Ty = (T, 0y €W).

Of course problem (D% may be seriously affected by the curse of dimensionality. The number of

support points to be computed, i.e. W 51+Z::2Wt, may be huge. W, the number of scenarios
and sub-scenarios to be considered, depends on T and on W, for t=2,...,T . Each support point

of §, contains N =K? elements and that W, , the number of support points of S, , grows

exponentially in t.

The support of the exogenous state variable being discrete and finite, two approaches are
available for solving problem (D). The stochastic programming approach consists in directly
solving problem (D% in s while taking some advantage of its structure.™ In fact problem (D%) can
be interpreted as a (very) large ‘‘static” quadratic programming problem with a specific
multistage structure. The dynamic programming approach relies on Bellman’s dynamic principle.
It involves recursively defined value (or recourse) functions. In the dynamic programming

approach, the optimal values of the s, terms are characterized as functions of the state variables

based on a backward recursion while they are characterized simultaneously for t=1,...,T in the

'3 One such approach consists in optimally computing W, sequences of acreage choices, one for each scenario of

4 . Of course, the optimal sequences cannot be independently computed. The acreage choice sequence up to date t

of two scenarios which are identical up to date t must be equal, i.e. the so-called non-anticipatory constraints need to

be enforced.
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stochastic programming approach. In what follows we consider both approaches as they

emphasize different features of the considered dynamic stochastic optimization problem.

The stochastic programming approach consists in considering problem (D% as a (very) large

quadratic programming problem involving the objective function:

T ot o=
Zt:lﬁ z@ew, p{qH(Sq ’ntlwt (15)
and the non-empty feasible set:
F(a,)={seR}" :Ds, =a, and Ds,, =As, for o, e W(w ), o, W ,t=2..T}  (16)

The objective function of problem (DY is strictly concave in the control variable s and the
feasible set #(a,) has a non-empty interior, implying that problem (DY is strongly dual.

Proposition 3 provides results for characterizing the solutions to problem (D% using a stochastic

programming approach.

Proposition 3. Dynamic problem. Let consider the stochastic dynamic optimization problem
(DY: maxse,F(ao)ZtT:l ,B”quwt p,II(s,;7,,) wherethe feasible set #(a,) is defined in
equation (16) and under the assumptions stated in Propositions 1 and 2.

(i) The solution in s to problem (DY is unique. Let s° (7, a,) denote this solution with

s°(m,a,) = (s, (W,a,) :t=1...,T) and s, (m,a,) = (s;, (W, 2,) - g, € W)).

(ii) The function s° : R™ x 1 — R defined by the solution in s to problem (D°:
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0 (= _ T t-1 i
S (7:, ao) =arg maxseT(ao) Zt:lﬂ zwtewl pth(swt ! nt|“’t '
. . . . . . _ NW
is piecewise affine and continuous in (7,a,) on R™ x 1.

(iiii) The value function V,; :R™ x 2 —R™' of problem (D) defined by:

V,, (®ag) =max ZLﬁHZW P, TI(s,, 7Ty,
is piecewise quadratic and continuous in (m,a,) on RW x 7. Vai is convex in w and
concave in a, on R™ x 4.
Let peR"" denote a vector with the same structure as s, i.e. p=(p, :t=1...,T) with

By =, ‘@ €W). Let define the term i, by M.y, Ez%e it PPy, With the

convention p, =0.

(iv) To solve problem (DY) is equivalent to solve the following dual problem:
. T _ S f— r r— i
(DDd) mlnp {thlﬁt lZa{e’Wt p@H (nt\a{ -D l’l’a‘\ +IBA utJr].](u\ ) +l'l’a)la0}
with:

s, (ma;)=s"(®,, —D'p, +BAR,,) for o, e and t=1..T

tly

forany pe 9, (m,a,) where M, (m,a,) is the solution set in to problem (DDY), i.e.:

0 /— . T = S = ’ — '

(v) peM, (m,a,) if and only if p is a solution to equation system:
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Ds*(@,,, —D'n,, + BAH,, ) =1,
Ds® (T_Etlwt N D’uwt + ﬂA'l—lHﬂa&) = As’ (ﬁt—llwta N D'lle + ﬂA,ﬁt\fm)
forw e, o, eW(ow,)andt=2,..,T.

(vi) V(fl is continuously differentiable in & on R™ x 4 with 2V2 (/,a,) =s°(,a,) -

(vii) Va: is continuously differentiable in a, on R™ x4, i.e. there exists a function
o, :R™ x 4 — M (7,a,), continuous in a, on R™ x 4, such that Vo (@ a,) =, (7,a,).

Proof. See Technical Appendix.

Once again results (i)-(iii) obtained are by applying the results obtained by Bemporad et al
(2002). It suffices to observe that problem (D% is a quadratic programming problem. Result (iv)

is demonstrated by considering a specific version of the Lagrangian problem associated to
problem (D% where pe R™ is the vector collecting the Lagrange multiplier vectors associated
to the crop rotation constraints arising in each possible sub-scenario of the exogenous state
variable @, for t=1..,T (see the Technical Appendix).** This Lagrangian problem is equivalent

to the following modified Lagrangian problem:
. T _ — ’ r— ’
mlnu {Zt:]_ﬁt lz(qew pq maxsq >0 H(qu ;nt\m[ -D p’@ +IBA "’t-f—ll(q ) + "l(olao} . (17)

The objective function of this problem is a discounted sum of expected static maximization

problems interrelated via the crop rotation constraints Lagrange multiplier vectors collected in p.

 Indeed, this formulation of the Lagrangian problem associated to problem (D) simply takes advantage of the

multistage structure of this problem, as in the dynamic programming approach.
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In this objective function, the considered farmer solves a static acreage choice problem for any
possible sub-scenario of the exogenous state variable @, for t=1..,T . In each of this sub-

scenario, he solves the profit maximization problem:

max, ., 1‘[(3(q STy, —D’u{q + ,BA’;TMJ q) , (18)

o =

i.e. the farmer has the opportunity to rent and lend land on virtual (contingent) markets at prices

defined by p. The elements of the vector @, —D'p, + SA'H,,,, can be interpreted as “crop

ey

sequence dynamic gross margins”. They are defined by:
ﬁmkvtlwt T Hin o +'Bﬁk,t+ﬂ¢q where ﬁkytﬂia{ EZ%E%M pa’t+1|(0t Mo - (19)

According to problem (.) and to the “dynamic gross margins” defined in the previous equation,

farmers choose their acreage in the sub-scenario @, by maximizing their current farm profit with
the opportunity to rent land with specific preceding crops at price p, and knowing that they

will have the opportunity to lend their current acreage as land with specific preceding crops in the

next period. They anticipate to lend their acreage As, at expected price p,,,,, and the resulting
discounted expected gross revenue is given by g, As, . Basically, the terms p, and Au, .,

sum up the dynamic features of the dynamic acreage choice process.

The feasible set #(a,) having an non-empty interior the modified Lagrangian problem given in

equation (17) has solutions in p and these solutions, which define the set mf)l (m,a,), allows

characterizing the solutions to problem (D%). By Proposition 1, the problem given in equation

(17) is equivalent to the problem:
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. T _ S f— r r— ’
mlnp {Zt=lﬂt 12&}6(% pw\H (nt|w\ _D l’l@ +ﬂA ”t+].la)t)+uwla0} (20)

and this yields:

0 /— . T _ S f— ' — '
Vlal (nlao) = mlnp {Zt=lﬂt 12(46’(/1/[ p(qH (nt|(q _D u@ +ﬂA utJrllw\)—i_u’(an} (21)
and:
s, (ma;)=s"(®,, —D'p, +BAR,,) for o, e and t=1...T if peM; (ma,). (22)

Note that the minimization problem stated in equation (21) can be interpreted as a (modified)

dual problem associated to the (primal) problem (D).

Result (iv) states that the solution set in p to the problem given in (20), M, (ma,), is

characterized as the subset of R™ containing the vectors p which enforce the crop rotation
constraint in each possible sub-scenario described by @, for @, € ¥/ and t=1,...,T . The demand

of land with specific preceding crops is given by Ds’(@,, —D'p, + BA'R,,, ) while the term

tloy
As’(®, ,, —D'n, +pA'R, ) (or a, if t=1) defines the corresponding land supply, in sub-

scenario @, . According to our interpretation of p as price vectors of market of land with specific

preceding crops, any element of Mj,l (m,a,) is a vector of contingent price vectors which ensures

the equilibrium of the set of contingent markets of land with specific preceding crops defined by

each sub-scenario @,, for o, e ¥ and t=1,...,T .

Let now consider problem (D% following to a dynamic programming perspective, i.e. by relying

on Bellman’s dynamic programming principle. Let define the vector =, as =, = (@, 7 ,))
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where &, =(7,, ‘0, e W (0,,), =t+1..,T) and let define W," as W," =dim=,,, . Provided

7],

that a, ;, € 4 denote the preceding crop acreage at date t, the value functions associated to

problem (DY) are recursively defined as:
Va: (R:{a{ ! atfl) = maxsw‘ ZO{H(SQ ’ ﬁﬂa{ ) + ﬂ\zfr)l](u\ (ﬁz—(q) ! As(u\) St Ds(q = atfl} (23)

for @ e, and t=1..,T where V., (&,,.a)=) P Ve (T, a) and with the

a{ﬁE{VVHl (“{ )

+

. o /-
convention V,; (@, .

a,)=0. Equation (23) is a direct application of Bellman’s principle.

Provided that the problems described this equation have the structure of problem (D), the results

collected in Proposition 3 are applicable. In particular, results (v) and (vi) provide the

differentiability properties of the value functions V7 . These properties mirror those of I1", the
value function of the myopic problem. They are obtained by applying the results of Berkelaar et

al (1997). The marginal effect of &, on V, (m,, ,a ,) is summarized by the optimal acreage
choice vector s¢ (=}, .a,,) . The value function V,, (7, ,a,) provides, by definition, the value
of crop acreage a, , in sub-scenario @, , i.e. V, (m,, ,a,,) is the discounted sum of the expected

optimal profits from date t up to date T as perceived in sub-scenario «, . Result (vi) states that the

marginal values of the elements of a, = As,, in sub-scenario @, are provided by

Ve (7_[?@) ! Aswf ) - ﬁfﬂl@ (ﬁ?@) ! Asa& ) ' (24)

da,  tHley

i.e. a farmer increasing his acreage of crop k in the sub-scenario @, by one unit anticipates to

“lend to himself” this unit of land at expected price Zy,y,, (7, As,,) in period t+1.

The first order conditions in s, of the problem defining V,; (7. a, ) is given by
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ﬁtkq - D’u; (EJ@ ! at—l) + IBA"'_I’?{U@ (EZQ) ! AS; (RJ@ ’at—l))

0 (=+ 0 0 [=+ (25)
+A, (7, 24) _EC (sw‘ (“qq ' at—l)) =0

tley !
where k; (Tt{m,at_l) is the optimal Lagrange multiplier vector associated to the non-negativity
constraint s, >0. These first order conditions provide the formal links between the stochastic
programming and dynamic programming approaches. They show that problem (D% is of the
Euler type in (u,s) according to the terminology of Rust (1996). But they also show that the

dynamic programming approach doesn’t offer much simplification over the stochastic
programming approach for solving the finite horizon problem (D%).%® Finally, these first order

conditions could be used for defining estimating equations in a micro-econometric framework.

7.  Extensions and implications

The framework presented in this article can be extended for cases where the parameters (h, H)
characterizing the form of the cost function C depend on @, , as long as C is a function of s, only,

as well as to cases where H is only positive semidefinite. Building on the work of Rockafellar
(1987) and of Rockafellar and Wets (1990) on the so-called “extended linear-quadratic
framework”, Rockafellar (1999) obtained general versions of the main results of Proposition 3.
The results presented in Proposition 3, especially those related to the uniqueness of the solution
in s and to the differentiability of the value function, take advantage of the strict convexity of C

and of the specificity of the crop rotation constraints.

15 Because the functions B () Or \7&4,q () are needed for determining the terms p;, (%,.a,,), S, (7,2, ,) and

k; (ﬁ(*t) 2, ).
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The extension to cases where C depends on a, is useful for, e.g., introducing risk spreading

motives in the analysis. Let assume that the considered farmer is risk averse and, for the ease of
exposition, that he is not constrained in his acreage choices by quasi-fixed factor limiting
quantities. In a mean-variance approach (see, e.g., Chavas and Holt, 1990 and1996 ; Holt, 1999)

the term C, (s,,;0) =1/2x0xs(V, @ )s, defines the risk premium associated to the random
profit S;,[ m,. The parameter @ denotes the absolute risk aversion index summarizing the farmer’s

attitude toward income risk and V,, denotes the variance operator conditional on @,. The per

period objective function E,ms, —C, (s, :0)=E,ms, —1/2x0xs, (V,@)s, is the certainty

@

equivalent of S;,ﬁt of the considered farmer.

While our framework only considers the effects of the previous crop on the current crop, i.e.
assumes that the agricultural dynamics is of order 1, agricultural science has shown that crop
rotation effects can last for several years. E.g. weed seeds, bug eggs or fungus spora may remain
viable for several years. The considered framework easily accommodates such increase in the
dynamics order, at least in theory. While production dynamics of order 1 requires considering
crop sequences of length 2, production dynamics of order 2 requires considering crop sequences
of length 3, etc. Moreover, there is no need to assume that the same memory length matters for

each crop.

However, to account for crop production dynamics of high orders raises practical difficulties of
two kinds. High order dynamics can lead to dynamic programming problem with considerable
dimension. Dynamic programming problem with uncertainty are already subject to the curse of

dimensionality even with order 1 dynamics and short time horizon. Furthermore, the crop rotation
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effects of long crop sequences are rather poorly documented in the agricultural science literature.
In fact our modeling framework is well suited for investigating the effects of crop rotations with

relatively short memory.*°

Of course the presented framework can also be extended to cases where additional constraints,
e.g. due to limiting quantities of quasi-fixed factors other than land, affect acreage choices. Such
an extension would not change the main results presented above as long as the additional

constraints are linear in s.

LP or PMP models often consider explicit constraints on the activity choices. Some of them
impose upper bounds on acreage choices which are justified by crop rotation constraints. Such
constraints are often debatable because they rely on arbitrary bounds. In fact they are useless in
the present framework. Some crop sequences are impossible due to inconsistencies in biological
cycles. These crop sequences can simply be removed from the choice set of problem (D). Crop
sequences which are “biologically” possible should be included in the choice set. Their acreage
being null or not should result from economic trade-offs. Of course, for some crop sequences the

crop rotation effects are so detrimental that they would be profitable only in extreme price

18 ong memory crop rotation effects usually depend on stock management issues and could be analyzed explicitly
as such. It is well known that some nutrients are used in a medium to long run perspective, following an investment
strategy aimed at managing soil quality levels. According to the agricultural scientists and extension agents we have
consulted, herbicides are often used according to a similar logic. Because some weed species are perennial and the
seeds of many weeds are able to survive for many years, the management of weed populations and of weed seed

stocks relies on long run strategies.
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contexts. E.g. the yield level of rapeseed grown after rapeseed is likely to be dramatically low due
to pest infestations. Rapeseed after rapeseed acreages can only be profitable in very unlikely
situations. The exclusion of this crop sequence from the choice set can be justified according to

these economic arguments.

The results of Proposition 3 can also be used for investigating the empirical modeling of farmers’
acreage choices. As shown by the econometric analyses cited in the introduction, a dynamic
programming approach is more relevant for addressing this issue than the stochastic
programming approach adopted for deriving the results of Proposition 3. In fact, according to us
the main conclusions to be drawn from the dynamic programming approach deals with the

empirical modeling of farmers’ acreage choice.
Farmers decide their acreage year after year in an ever evolving context. The observed choice of
a farmer with the information set «, and the previous acreage a, ; can be modeled as the solution

in's, to the following maximization given in equation (23). This problem accounts for (i) the
characteristics of the current scenario, i.e. ,, (ii) the features of forward looking behavior, i.e.
Ay, and (7, , P, .,) for o, e W (o, ;) and =t+1..,T, and (iii) the constraints imposed

by past choices, Ds, =a, ,. The properties of the expected value function Ve

t+ley

heavily depend

on the probability terms p,, , for @, e W (w,,) and z=t+1..,T, i.e. on the anticipations of the

considered farmers according to the foregoing economic and bio-physical contexts. This remark
is to be related to that of Manski (2004) who basically states that our knowledge on the
perceptions of the future by the economic agents usually is very limited despite the crucial role of

these perceptions on the current choices of these agents. In particular, Manski (2004) raises an
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important identification issue: it is difficult to disentangle perceptions of the future and attitudes

toward uncertainty by only observing risky choices.

Just and Pope (2003) and Lence (2009) raise other identification problems in agricultural
production economics: it is difficult to disentangle attitudes toward uncertainty and technology
properties when observing production choices only. Just and Just (2011) supplement the
observation of Just and Pope (2003) and Lence (2009) by that of Manski (2004). They consider

uncertainty perceptions in addition to attitudes toward uncertainty and technology properties.

By adopting a dynamic perspective, the present study adds a further identification problem in

acreage choice models. The value function V,°

e, 1S ShOwn to be concave in the current acreage

choice As, . This property of \Ziﬂq doesn’t rely on the concavity of the profit function IT (or,

equivalently, on the convexity of the function C).!" It is a direct consequence of dynamic features
of the acreage choices considered in problem (DY). This has important implications on the
interpretation of standard modeling practices of farmers’ acreages choices. A standard acreage

choice model adapted from the present framework is usually derived from a static profit
maximization problem of the form maxa(qzo{a;j:th -C,(a,) st va, =va_} where
1=rt| o = (;k,tl . -k eXK) denotes a measure of expected gross margin vector of the considered crop
bundle. Notwithstanding the issue related to the aggregation of =, into thm, any statistical
estimate or calibration of a term C;, (a,, ) exhibiting concavity in a, may capture the effects of a

risk premium, of shadow costs of quasi-fixed factor constraints, of a value function accounting

1" Standard linear programming arguments show that the value function V°

e 1SCONCavein a, =As, if H=0.
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for crop rotation effects and constraints, of partial adjustment costs, or any combination of these

crop diversification motives.

8.  Concluding remarks

Crop rotations are known to have two main kinds of economic effects: direct effects on potential
yields and on the productivity of different inputs, and indirect effects on economically optimal
input levels, especially pesticides and fertilizers. These effects are summarized in the gross
margins of the crop sequences. The main aim of this article is to analyze how these effects affect

the acreage choices of forward-looking farmers adopting a farm level strategy.

To consider a farm level strategy instead of a plot level one requires a modeling framework
which differs from the often considered dynamic discrete choice model. The main advantage of
our approach is that it is more closely related to the models commonly used for empirically
investigating farmers’ acreage choices, either in the multicrop econometric literature or in the
mathematical programming literature. We consider a dynamic programming problem involved
per period farm profit with crop rotation constraints. In this modeling framework the crop
rotation option values uncovered by the plot level analysis are embedded in the crop rotation

constraint Lagrange multipliers.

A main result of this article is that optimal dynamic acreage choices can be formally
characterized as static acreage choices with contingent renting/lending markets for acreages with
specific preceding crops. The crop rotation constraint Lagrange multipliers provide the

renting/lending prices of acreages with specific crop histories.
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This market-based interpretation of the crop rotation Lagrange multipliers is not purely
theoretical. E.g., in southwestern France corn producers and carrot producers exchange plots for
the beneficial effects of alternating crops. The characterization of the dynamic acreage choices
provided in Proposition 3 may also be useful for the practical computation of optimal dynamic
acreage choices. As suggested by Rockafellar (1999) in a more general framework, this
characterization can provide a basis for designing specifically designed algorithms with static
acreage choice problems as inner loops and the search for the optimal levels of the crop rotation
Lagrange multipliers as outer loop. Such algorithms might be useful for investigating high

dimensional optimal dynamic acreage choice through simulation exercises purposes.

The article focuses on the “quadratic case” with finite horizon. But it is worthwhile to note that
the theoretical analysis of the solution functions to problems (D) and (DY) rely on general
arguments which apply for infinite horizon problems or problem with alternative functional

forms for the profit functions and general (linear) constraints on acreage choices.

Quadratic periodic objective functions are common for analyzing dynamic optimization problem
in the economic literature. Provided that the considered dynamic optimization problem is a
quadratic programming problem, it can be implemented with efficient algorithms coded in any
standard optimization software, at least for moderate size problems. The infinite horizon case
(with relevant stationary assumptions) is an interesting topic for further research as it can allow

characterizing crop rotation schemes aimed at guiding acreage choices.

Although our analysis focuses on the order 1 dynamics case, it provides results which
accommodate higher order dynamics, at least in theory. Once again the curse of dimensionality

raises practical problems. But, more fundamentally, if our modeling framework is well suited for
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accounting for short memory crop rotation effects long memory crop rotations effects should

probably considered following different approaches.

Besides its purely theoretical aspects, the analysis presented in this article also has implications
for applied work on acreage choice modeling, either in the multicrop econometric framework or

in the (positive) mathematical programming framework.

The results presented might be used for empirical investigations of farmer’s acreage choices. Of
course, the empirical investigation of dynamic acreage choices remains a challenge due to data,

theoretical and computational issues.

Our results also show that revealed concave effects of acreage in the farmers’ objective function
might capture the effects of different diversification motives, i.e. risk spreading considerations,
implicit acreage management costs, partial adjustment costs or the shadow values of crop rotation
effects and constraints. These last effects add a further identification issue to those already raised

by Just and Pope (2003), Manski (2004), Lence (2009) and Just and Just (2011).

While agricultural economists have mainly focused their efforts on modeling risk spreading and
implicit acreage management costs, the increasing concerns related to the impacts of agricultural
production on the environment or on public health suggest that more efforts should be put on
crop rotation effects and constraints. Crop rotation effects are key elements of most cropping

systems aimed at reducing the use of chemical inputs.
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